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The Wright brothers invented the first practical airplane in the first decade
of the twentieth century. Along with this came the rise of aeronautical
engineering as an exciting, new, distinct discipline. College courses in

aeronautical engineering were offered as early as 1914 at the University of
Michigan and at MIT. Michigan was the first university to establish an aero-
nautics department with a four-year degree-granting program in 1916; by 1926 it
had graduated over one hundred students. The need for substantive textbooks in
various areas of aeronautical engineering became critical. Rising to this demand,
McGraw-Hill became one of the first publishers of aeronautical engineering text-
books, starting with Airplane Design and Construction by Ottorino Pomilio in
1919, and the classic and definitive text Airplane Design: Aerodynamics by the
iconic Edward P. Warner in 1927. Warner’s book was a watershed in aeronautical
engineering textbooks.

Since then, McGraw-Hill has become the time-honored publisher of books in
aeronautical engineering. With the advent of high-speed flight after World War II
and the space program in 1957, aeronautical and aerospace engineering grew
to new heights. There was, however, a hiatus that occurred in the 1970s when
aerospace engineering went through a transition, and virtually no new books in
the field were published for almost a decade by anybody. McGraw-Hill broke
this hiatus with the foresight of its Chief Engineering Editor, B.J. Clark, who
was instrumental in the publication of Introduction to Flight by John Anderson.
First published in 1978, Introduction to Flight is now in its 8th edition. Clark’s
bold decision was followed by McGraw-Hill riding the crest of a new wave of
students and activity in aerospace engineering, and it opened the flood-gates for
new textbooks in the field.

In 1988, McGraw-Hill initiated its formal series in Aeronautical and
Aerospace Engineering, gathering together under one roof all its existing texts
in the field, and soliciting new manuscripts. This author is proud to have been
made the consulting editor for this series, and to have contributed some of the
titles. Starting with eight books in 1988, the series now embraces 24 books cov-
ering a broad range of discipline in the field. With this, McGraw-Hill continues
its tradition, started in 1919, as the premier publisher of important textbooks in
aeronautical and aerospace engineering.
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PREFACE TO THE SIXTH EDITION

This book follows in the same tradition as the previous editions: it is for
students—to be read, understood, and enjoyed. It is consciously written in
a clear, informal, and direct style to talk to the reader and gain his or her

immediate interest in the challenging and yet beautiful discipline of aerodynamics.
The explanation of each topic is carefully constructed to make sense to the reader.
Moreover, the structure of each chapter is highly organized in order to keep
the reader aware of where we are, where we were, and where we are going.
Too frequently the student of aerodynamics loses sight of what is trying to be
accomplished; to avoid this, I attempt to keep the reader informed of my intent
at all times. For example, preview boxes are introduced at the beginning of each
chapter. These short sections, literally set in boxes, inform the reader in plain
language what to expect from each chapter and why the material is important and
exciting. They are primarily motivational; they help to encourage the reader to
actually enjoy reading the chapter, therefore enhancing the educational process.
In addition, each chapter contains a road map—a block diagram designed to
keep the reader well aware of the proper flow of ideas and concepts. The use of
preview boxes and chapter road maps are unique features of this book. Also, to
help organize the reader’s thoughts, there are special summary sections at the end
of most chapters.

The material in this book is at the level of college juniors and seniors in
aerospace or mechanical engineering. It assumes no prior knowledge of fluid
dynamics in general, or aerodynamics in particular. It does assume a familiarity
with differential and integral calculus, as well as the usual physics background
common to most students of science and engineering. Also, the language of
vector analysis is used liberally; a compact review of the necessary elements
of vector algebra and vector calculus is given in Chapter 2 in such a fashion
that it can either educate or refresh the reader, whatever may be the case for
each individual.

This book is designed for a one-year course in aerodynamics. Chapters 1 to 6
constitute a solid semester emphasizing inviscid, incompressible flow. Chapters 7
to 14 occupy a second semester dealing with inviscid, compressible flow. Finally,
Chapters 15 to 20 introduce some basic elements of viscous flow, mainly to serve
as a contrast to and comparison with the inviscid flows treated throughout the bulk
of the text. Specific sections on viscous flow, however, have been added much
earlier in the book in order to give the reader some idea of how the inviscid results
are tempered by the influence of friction. This is done by adding self-contained
viscous flow sections at the end of various chapters, written and placed in such a
way that they do not interfere with the flow of the inviscid flow discussion, but
are there to complement the discussion. For example, at the end of Chapter 4 on

xv
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incompressible inviscid flow over airfoils, there is a viscous flow section that deals
with the prediction of skin friction drag on such airfoils. A similar viscous flow
section at the end of Chapter 12 deals with friction drag on high-speed airfoils.
At the end of the chapters on shock waves and nozzle flows, there are viscous
flow sections on shock wave/boundary-layer interactions. And so forth.

Other features of this book are:

1. An introduction to computational fluid dynamics as an integral part of the
study of aerodynamics. Computational fluid dynamics (CFD) has recently
become a third dimension in aerodynamics, complementing the previously
existing dimension of pure experiment and pure theory. It is absolutely
necessary that the modern student of aerodynamics be introduced to some
of the basic ideas of CFD—he or she will most certainly come face to face
with either its “machinery” or its results after entering the professional
ranks of practicing aerodynamicists. Hence, such subjects as the source and
vortex panel techniques, the method of characteristics, and explicit
finite-difference solutions are introduced and discussed as they naturally
arise during the course of our discussion. In particular, Chapter 13 is
devoted exclusively to numerical techniques, couched at a level suitable to
an introductory aerodynamics text.

2. A chapter is devoted entirely to hypersonic flow. Although hypersonics is at
one extreme end of the flight spectrum, it has current important applications
to the design of hypervelocity missiles, planetary entry vehicles, and
modern hypersonic atmospheric cruise vehicles. Therefore, hypersonic flow
deserves some attention in any modern presentation of aerodynamics. This
is the purpose of Chapter 14.

3. Historical notes are placed at the end of many of the chapters. This follows
in the tradition of some of my previous textbooks, Introduction to Flight: Its
Engineering and History, 8th Edition (McGraw-Hill, 2016) and Modern
Compressible Flow: With Historical Perspecive, 3rd Edition (McGraw-Hill,
2003). Although aerodynamics is a rapidly evolving subject, its foundations
are deeply rooted in the history of science and technology. It is important
for the modern student of aerodynamics to have an appreciation for the
historical origin of the tools of the trade. Therefore, this book addresses
such questions as who Bernoulli, Euler, d’Alembert, Kutta, Joukowski, and
Prandtl were; how the circulation theory of lift developed; and what
excitement surrounded the early development of high-speed aerodynamics.
I wish to thank various members of the staff of the National Air and Space
Museum of the Smithsonian Institution for opening their extensive files for
some of the historical research behind these history sections. Also, a
constant biographical reference was the Dictionary of Scientific Biography,
edited by C. C. Gillespie, Charles Schribner’s Sons, New York, 1980. This
is a 16-volume set of books that is a valuable source of biographic
information on the leading scientists in history.
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4. Design boxes are scattered throughout the book. These design boxes are
special sections for the purpose of discussing design aspects associated with
the fundamental material covered throughout the book. These sections are
literally placed in boxes to set them apart from the mainline text. Modern
engineering education is placing more emphasis on design, and the design
boxes in this book are in this spirit. They are a means of making the
fundamental material more relevant and making the whole process of
learning aerodynamics more fun.

Due to the extremely favorable comments from readers and users of the first
five editions, virtually all the content of the earlier editions has been carried over
intact to the present sixth edition. In this edition, however, a completely new edu-
cational tool has been introduced in some of the chapters in order to enhance and
expand the reader’s learning process. Throughout the previous editions, numer-
ous worked examples have been included at the end of many of the sections to
illustrate and reinforce the ideas and methods discussed in that particular section.
These are still included in the present sixth edition. However, added at the end of
a number of the chapters in this sixth edition, a major challenge is given to the
reader that integrates and uses thoughts and equations drawn from the chapter
as a whole. These new sections are called END OF CHAPTER INTEGRATED
WORK CHALLENGES. They are listed next:

1. Chapter 1: A forward-facing axial aerodynamic force on an airfoil sounds
not possible, but it can actually happen. What are the conditions under
which it can happen?
Also, the history of when such a forward-facing force was first observed is
discussed.

2. Chapter 2: Using the momentum equation, develop the relation between
drag on an aerodynamic body and the loss of total pressure in the flow field.

3. Chapter 3: Perform a conceptual design of a low-speed subsonic wind
tunnel.

4. Chapter 4: Find a way to account for the effects of wind tunnel walls on the
measurements made on an aerodynamic body in a low-speed wind tunnel.

5. Chapter 7: Obtain and discuss a relation between supersonic wave drag on
a body and the entropy increase in the flow.

6. Chapter 9: Consider the sonic boom generated from a body in supersonic
flight. What is it? How is it created? How can its strength be reduced?

7. Chapter 10: Perform a conceptual design of a supersonic wind tunnel.
8. Chapter 11: At the end of World War II, in the face of the lack of reliable

transonic wind tunnels and the extreme theoretical difficulty solving the
nonlinear mathematical equations that govern transonic flow, the NACA
developed an innovative experimental method for obtaining transonic
aerodynamic data. Called the “wing-flow technique,” it involved mounting
a small airfoil wing model vertically on the surface of the wing of a P-51
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fighter airplane at a location inside the bubble of locally supersonic flow
formed on the P-51 wing when the airplane exceeded its critical Mach
number. Design this apparatus, taking into account the size of the test
model, the flow conditions over the test model, the optimum locations on the
P-51 wing, etc. Also, the history of the wing-flow techniques will be given.

The answers to these Integrated Work Challenges are given right there in the
text so that the reader can gain instant gratification after working them out, just
like the other worked examples; the answers are just more complex with a more
widespread educational value.

New homework problems have been added to McGraw-Hill’s online learning
environment, Connect®. These question banks will include all end-of-chapter
problems from the textbook and additional problems unique to Connect.

All the new additional material not withstanding, the main thrust of this book
remains the presentation of the fundamentals of aerodynamics; the new material
is simply intended to enhance and support this thrust. I repeat that the book is
organized along classical lines, dealing with inviscid incompressible flow, inviscid
compressible flow, and viscous flow in sequence. My experience in teaching this
material to undergraduates finds that it nicely divides into a two-semester course
with Parts 1 and 2 in the first semester and Parts 3 and 4 in the second semester.
Also, I have taught the entire book in a fast-paced, first-semester graduate course
intended to introduce the fundamentals of aerodynamics to new graduate students
who have not had this material as part of their undergraduate education. The book
works well in such a mode.

I would like to thank the McGraw-Hill editorial and production staff for their
excellent help in producing this book, especially Jolynn Kilburg and Thomas
Scaife, PhD, in Dubuque. Our photo researcher, David Tietz, was invaluable
in searching out new and replacement photographs for the new edition to sat-
isfy new McGraw-Hill guidelines; I don’t know what I would have done with-
out him. Also, special thanks go to my long-time friend and associate, Sue
Cunningham, whose expertise as a scientific typist is beyond comparison and
who has typed all my book manuscripts for me, including this one, with great care
and precision.

I want to thank my students over the years for many stimulating discussions on
the subject of aerodynamics, discussions that have influenced the development of
this book. Special thanks go to three institutions: (1) The University of Maryland
for providing a challenging intellectual atmosphere in which I have basked for
the past 42 years; (2) The National Air and Space Museum of the Smithsonian
Institution for opening the world of the history of the technology of flight for me;
and (3) the Anderson household—Sarah-Allen, Katherine, and Elizabeth—who
have been patient and understanding over the years while their husband and father
was in his ivory tower. Also, I pay respect to the new generation, which includes
my two beautiful granddaughters, Keegan and Tierney Glabus, who represent the
future. To them, I dedicate this book.
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As a final comment, aerodynamics is a subject of intellectual beauty, com-
posed and drawn by many great minds over the centuries. Fundamentals of Aero-
dynamics is intended to portray and convey this beauty. Do you feel challenged
and interested by these thoughts? If so, then read on, and enjoy!

John D. Anderson, Jr.









P A R T 1
Fundamental Principles

In Part 1, we cover some of the basic principles that apply to aerodynamics in
general. These are the pillars on which all of aerodynamics is based.

1





C H A P T E R 1
Aerodynamics: Some
Introductory Thoughts

The term “aerodynamics” is generally used for problems arising from flight and
other topics involving the flow of air.

Ludwig Prandtl, 1949

Aerodynamics: The dynamics of gases, especially atmospheric interactions with
moving objects.

The American Heritage
Dictionary of the English
Language, 1969

PREVIEW BOX

Why learn about aerodynamics? For an answer, just
take a look at the following five photographs showing
a progression of airplanes over the past 70 years. The
Douglas DC-3 (Figure 1.1), one of the most famous
aircraft of all time, is a low-speed subsonic trans-
port designed during the 1930s. Without a knowl-
edge of low-speed aerodynamics, this aircraft would
have never existed. The Boeing 707 (Figure 1.2)
opened high-speed subsonic flight to millions of pas-
sengers beginning in the late 1950s. Without a knowl-
edge of high-speed subsonic aerodynamics, most of
us would still be relegated to ground transportation. Figure 1.1 Douglas DC-3 (NASA).

3
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Figure 1.2 Boeing 707 (© Everett Collection
Historical/Alamy).

Figure 1.3 Bell X-1 (Library of Congress
[LC-USZ6-1658]).

Figure 1.4 Lockheed F-104 (Library of Congress
[LC-USZ62-94416]).

The Bell X-1 (Figure 1.3) became the first piloted air-
plane to fly faster than sound, a feat accomplished
with Captain Chuck Yeager at the controls on Oc-
tober 14, 1947. Without a knowledge of transonic
aerodynamics (near, at, and just above the speed of
sound), neither the X-1, nor any other airplane, would
have ever broken the sound barrier. The Lockheed
F-104 (Figure 1.4) was the first supersonic airplane

Figure 1.5 Lockheed-Martin F-22 (U.S. Air Force
Photo/Staff Sgt. Vernon Young Jr.).

Figure 1.6 Blended wing body (NASA).

point-designed to fly at twice the speed of sound,
accomplished in the 1950s. The Lockheed-Martin
F-22 (Figure 1.5) is a modern fighter aircraft designed
for sustained supersonic flight. Without a knowledge
of supersonic aerodynamics, these supersonic air-
planes would not exist. Finally, an example of an
innovative new vehicle concept for high-speed sub-
sonic flight is the blended wing body shown in Figure
1.6. At the time of writing, the blended-wing-body
promises to carry from 400 to 800 passengers over
long distances with almost 30 percent less fuel per
seat-mile than a conventional jet transport. This would
be a “renaissance” in long-haul transport. The salient
design aspects of this exciting new concept are dis-
cussed in Section 11.10. The airplanes in Figures 1.1–
1.6 are six good reasons to learn about aerodynamics.
The major purpose of this book is to help you do this.
As you continue to read this and subsequent chapters,
you will progressively learn about low-speed aerody-
namics, high-speed subsonic aerodynamics, transonic
aerodynamics, supersonic aerodynamics, and more.
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Airplanes are by no means the only application
of aerodynamics. The air flow over an automobile,
the gas flow through the internal combustion engine
powering an automobile, weather and storm predic-
tion, the flow through a windmill, the production of
thrust by gas turbine jet engines and rocket engines,
and the movement of air through building heater and
air-conditioning systems are just a few other exam-
ples of the application of aerodynamics. The material
in this book is powerful stuff—important stuff. Have
fun reading and learning about aerodynamics.

To learn a new subject, you simply have to start
at the beginning. This chapter is the beginning of our
study of aerodynamics; it weaves together a series
of introductory thoughts, definitions, and concepts
essential to our discussions in subsequent chapters.
For example, how does nature reach out and grab
hold of an airplane in flight—or any other object

emmersed in a flowing fluid—and exert an aerody-
namic force on the object? We will find out here. The
resultant aerodynamic force is frequently resolved
into two components defined as lift and drag; but
rather than dealing with the lift and drag forces them-
selves, aerodynamicists deal instead with lift and drag
coefficients. What is so magic about lift and drag
coefficients? We will see. What is a Reynolds number?
Mach number? Inviscid flow? Viscous flow? These
rather mysterious sounding terms will be demystified
in the present chapter. They and others constitute the
language of aerodynamics, and as we all know, to
do anything useful you have to know the language.
Visualize this chapter as a beginning language lesson,
necessary to go on to the exciting aerodynamic appli-
cations in later chapters. There is a certain enjoyment
and satisfaction in learning a new language. Take this
chapter in that spirit, and move on.

1.1 IMPORTANCE OF AERODYNAMICS:
HISTORICAL EXAMPLES

On August 8, 1588, the waters of the English Channel churned with the gyrations
of hundreds of warships. The great Spanish Armada had arrived to carry out an
invasion of Elizabethan England and was met head-on by the English fleet under
the command of Sir Francis Drake. The Spanish ships were large and heavy;
they were packed with soldiers and carried formidable cannons that fired 50 lb
round shot that could devastate any ship of that era. In contrast, the English
ships were smaller and lighter; they carried no soldiers and were armed with
lighter, shorter-range cannons. The balance of power in Europe hinged on the
outcome of this naval encounter. King Philip II of Catholic Spain was attempting
to squash Protestant England’s rising influence in the political and religious affairs
of Europe; in turn, Queen Elizabeth I was attempting to defend the very existence
of England as a sovereign state. In fact, on that crucial day in 1588, when the
English floated six fire ships into the Spanish formation and then drove headlong
into the ensuing confusion, the future history of Europe was in the balance.
In the final outcome, the heavier, sluggish, Spanish ships were no match for the
faster, more maneuverable, English craft, and by that evening the Spanish Armada
lay in disarray, no longer a threat to England. This naval battle is of particular
importance because it was the first in history to be fought by ships on both sides
powered completely by sail (in contrast to earlier combinations of oars and sail),
and it taught the world that political power was going to be synonymous with
naval power. In turn, naval power was going to depend greatly on the speed and
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Figure 1.7 Isaac Newton’s model of fluid flow in the year 1687. This
model was widely adopted in the seventeenth and eighteenth centuries
but was later found to be conceptually inaccurate for most fluid flows.

maneuverability of ships. To increase the speed of a ship, it is important to reduce
the resistance created by the water flow around the ship’s hull. Suddenly, the
drag on ship hulls became an engineering problem of great interest, thus giving
impetus to the study of fluid mechanics.

This impetus hit its stride almost a century later, when, in 1687, Isaac Newton
(1642–1727) published his famous Principia, in which the entire second book
was devoted to fluid mechanics. Newton encountered the same difficulty as others
before him, namely, that the analysis of fluid flow is conceptually more difficult
than the dynamics of solid bodies. A solid body is usually geometrically well
defined, and its motion is therefore relatively easy to describe. On the other
hand, a fluid is a “squishy” substance, and in Newton’s time it was difficult to
decide even how to qualitatively model its motion, let alone obtain quantitative
relationships. Newton considered a fluid flow as a uniform, rectilinear stream
of particles, much like a cloud of pellets from a shotgun blast. As sketched in
Figure 1.7, Newton assumed that upon striking a surface inclined at an angle θ

to the stream, the particles would transfer their normal momentum to the surface
but their tangential momentum would be preserved. Hence, after collision with
the surface, the particles would then move along the surface. This led to an
expression for the hydrodynamic force on the surface which varies as sin2 θ . This
is Newton’s famous sine-squared law (described in detail in Chapter 14). Although
its accuracy left much to be desired, its simplicity led to wide application in naval
architecture. Later, in 1777, a series of experiments was carried out by Jean
LeRond d’Alembert (1717–1783), under the support of the French government,
in order to measure the resistance of ships in canals. The results showed that “the
rule that for oblique planes resistance varies with the sine square of the angle of
incidence holds good only for angles between 50 and 90◦ and must be abandoned
for lesser angles.” Also, in 1781, Leonhard Euler (1707–1783) pointed out the
physical inconsistency of Newton’s model (Figure 1.7) consisting of a rectilinear
stream of particles impacting without warning on a surface. In contrast to this
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model, Euler noted that the fluid moving toward a body “before reaching the latter,
bends its direction and its velocity so that when it reaches the body it flows past
it along the surface, and exercises no other force on the body except the pressure
corresponding to the single points of contact.” Euler went on to present a formula
for resistance that attempted to take into account the shear stress distribution
along the surface, as well as the pressure distribution. This expression became
proportional to sin2 θ for large incidence angles, whereas it was proportional to
sin θ at small incidence angles. Euler noted that such a variation was in reasonable
agreement with the ship-hull experiments carried out by d’Alembert.

This early work in fluid dynamics has now been superseded by modern con-
cepts and techniques. (However, amazingly enough, Newton’s sine-squared law
has found new application in very high-speed aerodynamics, to be discussed in
Chapter 14.) The major point here is that the rapid rise in the importance of
naval architecture after the sixteenth century made fluid dynamics an important
science, occupying the minds of Newton, d’Alembert, and Euler, among many
others. Today, the modern ideas of fluid dynamics, presented in this book, are still
driven in part by the importance of reducing hull drag on ships.

Consider a second historical example. The scene shifts to Kill Devil Hills,
4 mi south of Kitty Hawk, North Carolina. It is summer of 1901, and Wilbur
and Orville Wright are struggling with their second major glider design, the first
being a stunning failure the previous year. The airfoil shape and wing design of
their glider are based on aerodynamic data published in the 1890s by the great
German aviation pioneer Otto Lilienthal (1848–1896) and by Samuel Pierpont
Langley (1934–1906), secretary of the Smithsonian Institution—the most presti-
gious scientific position in the United States at that time. Because their first glider
in 1900 produced no meaningful lift, the Wright brothers have increased the wing
area from 165 to 290 ft2 and have increased the wing camber (a measure of the
airfoil curvature—the larger the camber, the more “arched” is the thin airfoil
shape) by almost a factor of 2. But something is still wrong. In Wilbur’s words,
the glider’s “lifting capacity seemed scarcely one-third of the calculated amount.”
Frustration sets in. The glider is not performing even close to their expectations,
although it is designed on the basis of the best available aerodynamic data. On
August 20, the Wright brothers despairingly pack themselves aboard a train going
back to Dayton, Ohio. On the ride back, Wilbur mutters that “nobody will fly for
a thousand years.” However, one of the hallmarks of the Wrights is perseverance,
and within weeks of returning to Dayton, they decide on a complete departure
from their previous approach. Wilbur later wrote that “having set out with abso-
lute faith in the existing scientific data, we were driven to doubt one thing after
another, until finally after two years of experiment, we cast it all aside, and de-
cided to rely entirely upon our own investigations.” Since their 1901 glider was
of poor aerodynamic design, the Wrights set about determining what constitutes
good aerodynamic design. In the fall of 1901, they design and build a 6 ft long,
16 in square wind tunnel powered by a two-bladed fan connected to a gasoline
engine. A replica of the Wrights’ tunnel is shown in Figure 1.8a. In their wind
tunnel they test over 200 different wing and airfoil shapes, including flat plates,
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(a)

(b)

Figure 1.8 (a) Replica of the wind tunnel designed, built,
and used by the Wright brothers in Dayton, Ohio, during
1901–1902. (b) Wing models tested by the Wright brothers
in their wind tunnel during 1901–1902. ((a) NASA;
(b) Courtesy of John Anderson).

curved plates, rounded leading edges, rectangular and curved planforms, and var-
ious monoplane and multiplane configurations. A sample of their test models is
shown in Figure 1.8b. The aerodynamic data are taken logically and carefully.
Armed with their new aerodynamic information, the Wrights design a new glider
in the spring of 1902. The airfoil is much more efficient; the camber is reduced
considerably, and the location of the maximum rise of the airfoil is moved closer
to the front of the wing. The most obvious change, however, is that the ratio of
the length of the wing (wingspan) to the distance from the front to the rear of the
airfoil (chord length) is increased from 3 to 6. The success of this glider during
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the summer and fall of 1902 is astounding; Orville and Wilbur accumulate over a
thousand flights during this period. In contrast to the previous year, the Wrights
return to Dayton flushed with success and devote all their subsequent efforts to
powered flight. The rest is history.

The major point here is that good aerodynamics was vital to the ultimate
success of the Wright brothers and, of course, to all subsequent successful airplane
designs up to the present day. The importance of aerodynamics to successful
manned flight goes without saying, and a major thrust of this book is to present
the aerodynamic fundamentals that govern such flight.

Consider a third historical example of the importance of aerodynamics, this
time as it relates to rockets and space flight. High-speed, supersonic flight had
become a dominant feature of aerodynamics by the end of World War II. By this
time, aerodynamicists appreciated the advantages of using slender, pointed body
shapes to reduce the drag of supersonic vehicles. The more pointed and slender
the body, the weaker the shock wave attached to the nose, and hence the smaller
the wave drag. Consequently, the German V-2 rocket used during the last stages
of World War II had a pointed nose, and all short-range rocket vehicles flown
during the next decade followed suit. Then, in 1953, the first hydrogen bomb
was exploded by the United States. This immediately spurred the development
of long-range intercontinental ballistic missiles (ICBMs) to deliver such bombs.
These vehicles were designed to fly outside the region of the earth’s atmosphere
for distances of 5000 mi or more and to reenter the atmosphere at suborbital speeds
of from 20,000 to 22,000 ft/s. At such high velocities, the aerodynamic heating of
the reentry vehicle becomes severe, and this heating problem dominated the minds
of high-speed aerodynamicists. Their first thinking was conventional—a sharp-
pointed, slender reentry body. Efforts to minimize aerodynamic heating centered
on the maintenance of laminar boundary layer flow on the vehicle’s surface;
such laminar flow produces far less heating than turbulent flow (discussed in
Chapters 15 and 19). However, nature much prefers turbulent flow, and reentry
vehicles are no exception. Therefore, the pointed-nose reentry body was doomed
to failure because it would burn up in the atmosphere before reaching the earth’s
surface.

However, in 1951, one of those major breakthroughs that come very infre-
quently in engineering was created by H. Julian Allen at the NACA (National
Advisory Committee for Aeronautics) Ames Aeronautical Laboratory—he in-
troduced the concept of the blunt reentry body. His thinking was paced by the
following concepts. At the beginning of reentry, near the outer edge of the atmo-
sphere, the vehicle has a large amount of kinetic energy due to its high velocity
and a large amount of potential energy due to its high altitude. However, by the
time the vehicle reaches the surface of the earth, its velocity is relatively small and
its altitude is zero; hence, it has virtually no kinetic or potential energy. Where
has all the energy gone? The answer is that it has gone into (1) heating the body
and (2) heating the airflow around the body. This is illustrated in Figure 1.9. Here,
the shock wave from the nose of the vehicle heats the airflow around the vehicle;
at the same time, the vehicle is heated by the intense frictional dissipation within
the boundary layer on the surface. Allen reasoned that if more of the total reentry
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Figure 1.9 Energy of reentry goes into heating both the body
and the air around the body.

energy could be dumped into the airflow, then less would be available to be trans-
ferred to the vehicle itself in the form of heating. In turn, the way to increase the
heating of the airflow is to create a stronger shock wave at the nose (i.e., to use
a blunt-nosed body). The contrast between slender and blunt reentry bodies is
illustrated in Figure 1.10. This was a stunning conclusion—to minimize aerody-
namic heating, you actually want a blunt rather than a slender body. The result was
so important that it was bottled up in a secret government document. Moreover,
because it was so foreign to contemporary intuition, the blunt-reentry-body con-
cept was accepted only gradually by the technical community. Over the next few
years, additional aerodynamic analyses and experiments confirmed the validity
of blunt reentry bodies. By 1955, Allen was publicly recognized for his work,
receiving the Sylvanus Albert Reed Award of the Institute of the Aeronautical
Sciences (now the American Institute of Aeronautics and Astronautics). Finally,
in 1958, his work was made available to the public in the pioneering document
NACA Report 1381 entitled “A Study of the Motion and Aerodynamic Heating of
Ballistic Missiles Entering the Earth’s Atmosphere at High Supersonic Speeds.”
Since Harvey Allen’s early work, all successful reentry bodies, from the first Atlas
ICBM to the manned Apollo lunar capsule, have been blunt. Incidentally, Allen
went on to distinguish himself in many other areas, becoming the director of the
NASA Ames Research Center in 1965, and retiring in 1970. His work on the
blunt reentry body is an excellent example of the importance of aerodynamics to
space vehicle design.

In summary, the purpose of this section has been to underscore the importance
of aerodynamics in historical context. The goal of this book is to introduce the
fundamentals of aerodynamics and to give the reader a much deeper insight to
many technical applications in addition to the few described above. Aerodynamics
is also a subject of intellectual beauty, composed and drawn by many great minds
over the centuries. If you are challenged and interested by these thoughts, or even
the least bit curious, then read on.
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Figure 1.10 Contrast of aerodynamic heating for slender
and blunt reentry vehicles. (a) Slender reentry body.
(b) Blunt reentry body.

1.2 AERODYNAMICS: CLASSIFICATION
AND PRACTICAL OBJECTIVES

A distinction between solids, liquids, and gases can be made in a simplistic sense
as follows. Put a solid object inside a larger, closed container. The solid object will
not change; its shape and boundaries will remain the same. Now put a liquid inside
the container. The liquid will change its shape to conform to that of the container
and will take on the same boundaries as the container up to the maximum depth
of the liquid. Now put a gas inside the container. The gas will completely fill the
container, taking on the same boundaries as the container.

The word fluid is used to denote either a liquid or a gas. A more technical
distinction between a solid and a fluid can be made as follows. When a force
is applied tangentially to the surface of a solid, the solid will experience a finite
deformation, and the tangential force per unit area—the shear stress—will usually
be proportional to the amount of deformation. In contrast, when a tangential shear
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stress is applied to the surface of a fluid, the fluid will experience a continuously
increasing deformation, and the shear stress usually will be proportional to the
rate of change of the deformation.

The most fundamental distinction between solids, liquids, and gases is at
the atomic and molecular level. In a solid, the molecules are packed so closely
together that their nuclei and electrons form a rigid geometric structure, “glued”
together by powerful intermolecular forces. In a liquid, the spacing between
molecules is larger, and although intermolecular forces are still strong, they allow
enough movement of the molecules to give the liquid its “fluidity.” In a gas,
the spacing between molecules is much larger (for air at standard conditions,
the spacing between molecules is, on the average, about 10 times the molecular
diameter). Hence, the influence of intermolecular forces is much weaker, and the
motion of the molecules occurs rather freely throughout the gas. This movement
of molecules in both gases and liquids leads to similar physical characteristics,
the characteristics of a fluid—quite different from those of a solid. Therefore,
it makes sense to classify the study of the dynamics of both liquids and gases
under the same general heading, called fluid dynamics. On the other hand, certain
differences exist between the flow of liquids and the flow of gases; also, different
species of gases (say, N2, He, etc.) have different properties. Therefore, fluid
dynamics is subdivided into three areas as follows:

Hydrodynamics—flow of liquids
Gas dynamics—flow of gases
Aerodynamics—flow of air

These areas are by no means mutually exclusive; there are many similarities and
identical phenomena between them. Also, the word “aerodynamics” has taken on
a popular usage that sometimes covers the other two areas. As a result, this author
tends to interpret the word aerodynamics very liberally, and its use throughout
this book does not always limit our discussions just to air.

Aerodynamics is an applied science with many practical applications in engi-
neering. No matter how elegant an aerodynamic theory may be, or how mathemat-
ically complex a numerical solution may be, or how sophisticated an aerodynamic
experiment may be, all such efforts are usually aimed at one or more of the fol-
lowing practical objectives:

1. The prediction of forces and moments on, and heat transfer to, bodies
moving through a fluid (usually air). For example, we are concerned with
the generation of lift, drag, and moments on airfoils, wings, fuselages,
engine nacelles, and most importantly, whole airplane configurations. We
want to estimate the wind force on buildings, ships, and other surface
vehicles. We are concerned with the hydrodynamic forces on surface ships,
submarines, and torpedoes. We need to be able to calculate the aerodynamic
heating of flight vehicles ranging from the supersonic transport to a
planetary probe entering the atmosphere of Jupiter. These are but a few
examples.
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Figure 1.11 A CO2-N2 gas-dynamic laser, circa 1969 (Courtesy of John Anderson).

2. Determination of flows moving internally through ducts. We wish to
calculate and measure the flow properties inside rocket and air-breathing jet
engines and to calculate the engine thrust. We need to know the flow
conditions in the test section of a wind tunnel. We must know how much
fluid can flow through pipes under various conditions. A recent, very
interesting application of aerodynamics is high-energy chemical and
gas-dynamic lasers (see Reference 1), which are nothing more than
specialized wind tunnels that can produce extremely powerful laser beams.
Figure 1.11 is a photograph of an early gas-dynamic laser designed in the
late 1960s.

The applications in item 1 come under the heading of external aerodynamics since
they deal with external flows over a body. In contrast, the applications in item 2
involve internal aerodynamics because they deal with flows internally within
ducts. In external aerodynamics, in addition to forces, moments, and aerodynamic
heating associated with a body, we are frequently interested in the details of
the flow field away from the body. For example, the communication blackout
experienced by the space shuttle during a portion of its reentry trajectory is due to
a concentration of free electrons in the hot shock layer around the body. We need
to calculate the variation of electron density throughout such flow fields. Another
example is the propagation of shock waves in a supersonic flow; for instance, does
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the shock wave from the wing of a supersonic airplane impinge upon and interfere
with the tail surfaces? Yet another example is the flow associated with the strong
vortices trailing downstream from the wing tips of large subsonic airplanes such
as the Boeing 747. What are the properties of these vortices, and how do they
affect smaller aircraft which happen to fly through them?

The above is just a sample of the myriad applications of aerodynamics. One
purpose of this book is to provide the reader with the technical background nec-
essary to fully understand the nature of such practical aerodynamic applications.

Figure 1.12 Road map for Chapter 1.
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1.3 ROAD MAP FOR THIS CHAPTER
When learning a new subject, it is important for you to know where you are,
where you are going, and how you can get there. Therefore, at the beginning of
each chapter in this book, a road map will be given to help guide you through the
material of that chapter and to help you obtain a perspective as to how the material
fits within the general framework of aerodynamics. For example, a road map for
Chapter 1 is given in Figure 1.12. You will want to frequently refer back to these
road maps as you progress through the individual chapters. When you reach the
end of each chapter, look back over the road map to see where you started, where
you are now, and what you learned in between.

1.4 SOME FUNDAMENTAL AERODYNAMIC
VARIABLES

A prerequisite to understanding physical science and engineering is simply learn-
ing the vocabulary used to describe concepts and phenomena. Aerodynamics is
no exception. Throughout this book, and throughout your working career, you
will be adding to your technical vocabulary list. Let us start by defining four of
the most frequently used words in aerodynamics: pressure, density, temperature,
and flow velocity.1

Consider a surface immersed in a fluid. The surface can be a real, solid surface
such as the wall of a duct or the surface of a body; it can also be a free surface
which we simply imagine drawn somewhere in the middle of a fluid. Also, keep
in mind that the molecules of the fluid are constantly in motion. Pressure is the
normal force per unit area exerted on a surface due to the time rate of change
of momentum of the gas molecules impacting on (or crossing) that surface. It is
important to note that even though pressure is defined as force “per unit area,”
you do not need a surface that is exactly 1 ft2 or 1 m2 to talk about pressure. In
fact, pressure is usually defined at a point in the fluid or a point on a solid surface
and can vary from one point to another. To see this more clearly, consider a point
B in a volume of fluid. Let

dA = elemental area at B

dF = force on one side of dA due to pressure
Then, the pressure at point B in the fluid is defined as

p = lim
(

dF

dA

)
dA → 0

The pressure p is the limiting form of the force per unit area, where the area of
interest has shrunk to nearly zero at the point B.2 Clearly, you can see that pressure

1 A basic introduction to these quantities is given on pages 56–61 of Reference 2.
2 Strictly speaking, dA can never achieve the limit of zero, because there would be no molecules at
point B in that case. The above limit should be interpreted as dA approaching a very small value, near
zero in terms of our macroscopic thinking, but sufficiently larger than the average spacing between
molecules on a microscopic basis.
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is a point property and can have a different value from one point to another in the
fluid.

Another important aerodynamic variable is density, defined as the mass per
unit volume. Analogous to our discussion on pressure, the definition of density
does not require an actual volume of 1 ft3 or 1 m3. Rather, it is a point property
that can vary from point to point in the fluid. Again, consider a point B in the
fluid. Let

dv = elemental volume around B

dm = mass of fluid inside dv

Then, the density at point B is

ρ = lim
dm

dv
dv → 0

Therefore, the density ρ is the limiting form of the mass per unit volume, where the
volume of interest has shrunk to nearly zero around point B. (Note that dv cannot
achieve the value of zero for the reason discussed in the footnote concerning dA
in the definition of pressure.)

Temperature takes on an important role in high-speed aerodynamics (intro-
duced in Chapter 7). The temperature T of a gas is directly proportional to the
average kinetic energy of the molecules of the fluid. In fact, if KE is the mean
molecular kinetic energy, then temperature is given by KE = 3

2 kT , where k is the
Boltzmann constant. Hence, we can qualitatively visualize a high-temperature
gas as one in which the molecules and atoms are randomly rattling about at high
speeds, whereas in a low-temperature gas, the random motion of the molecules is
relatively slow. Temperature is also a point property, which can vary from point
to point in the gas.

The principal focus of aerodynamics is fluids in motion. Hence, flow velocity
is an extremely important consideration. The concept of the velocity of a fluid is
slightly more subtle than that of a solid body in motion. Consider a solid object
in translational motion, say, moving at 30 m/s. Then all parts of the solid are
simultaneously translating at the same 30 m/s velocity. In contrast, a fluid is
a “squishy” substance, and for a fluid in motion, one part of the fluid may be
traveling at a different velocity from another part. Hence, we have to adopt a
certain perspective, as follows. Consider the flow of air over an airfoil, as shown
in Figure 1.13. Lock your eyes on a specific, infinitesimally small element of mass

Figure 1.13 Illustration of flow velocity and streamlines.
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in the gas, called a fluid element, and watch this element move with time. Both
the speed and direction of this fluid element can vary as it moves from point to
point in the gas. Now fix your eyes on a specific fixed point in space, say, point B
in Figure 1.13. Flow velocity can now be defined as follows: The velocity of a
flowing gas at any fixed point B in space is the velocity of an infinitesimally small
fluid element as it sweeps through B. The flow velocity V has both magnitude
and direction; hence, it is a vector quantity. This is in contrast to p, ρ, and T ,
which are scalar variables. The scalar magnitude of V is frequently used and is
denoted by V . Again, we emphasize that velocity is a point property and can vary
from point to point in the flow.

Referring again to Figure 1.13, a moving fluid element traces out a fixed
path in space. As long as the flow is steady (i.e., as long as it does not fluctuate
with time), this path is called a streamline of the flow. Drawing the streamlines
of the flow field is an important way of visualizing the motion of the gas; we will
frequently be sketching the streamlines of the flow about various objects. A more
rigorous discussion of streamlines is given in Chapter 2.

Finally, we note that friction can play a role internally in a flow. Consider
two adjacent streamlines a and b as sketched in Figure 1.14. The streamlines are
an infinitesimal distance, dy, apart. At point 1 on streamline b the flow velocity
is V ; at point 2 on streamline a the flow velocity is slightly higher, V + dV . You
can imagine that streamline a is rubbing against streamline b and, due to friction,
exerts a force of magnitude dF f on streamline b acting tangentially toward the
right. Furthermore, imagine this force acting on an elemental area dA, where dA
is perpendicular to the y axis and tangent to the streamline b at point 1. The local
shear stress, τ , at point 1 is

τ = lim
(

dF f

dA

)
dA → 0

The shear stress τ is the limiting form of the magnitude of the frictional force per
unit area, where the area of interest is perpendicular to the y axis and has shrunk

a

bdFf

V

y

dy

V + dV

1

2

Figure 1.14 Generation of frictional force due to a
velocity gradient in a flow.
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to nearly zero at point 1. Shear stress acts tangentially along the streamline. For
the type of gases and liquids of interest in aerodynamic applications, the value
of the shear stress at a point on a streamline is proportional to the spatial rate
of change of velocity normal to the streamline at that point (i.e., for the flow
illustrated in Figure 1.14, τ ∝ dV/dy). The constant of proportionality is defined
as the viscosity coefficient, μ. Hence,

τ = μ
dV

dy

where dV/dy is the velocity gradient. In reality, μ is not really a constant; it is
a function of the temperature of the fluid. We will discuss these matters in more
detail in Section 1.11. From the above equation, we deduce that in regions of
a flow field where the velocity gradients are small, τ is small and the influence
of friction locally in the flow is small. On the other hand, in regions where the
velocity gradients are large, τ is large and the influence of friction locally in the
flow can be substantial.

1.4.1 Units

Two consistent sets of units will be used throughout this book, SI units (Systeme
International d’Unites) and the English engineering system of units. The basic
units of force, mass, length, time, and absolute temperature in these two systems
are given in Table 1.1.

For example, units of pressure and shear stress are lb/ft2 or N/m2, units
of density are slug/ft3 or kg/m3, and units of velocity are ft/s or m/s. When
a consistent set of units is used, physical relationships are written without the
need for conversion factors in the basic formulas; they are written in the pure
form intended by nature. Consistent units will always be used in this book. For
an extensive discussion on units and the significance of consistent units versus
nonconsistent units, see pages 65–70 of Reference 2.

The SI system of units (metric units) is the standard system of units throughout
most of the world today. In contrast, for more than two centuries the English
engineering system (or some variant) was the primary system of units in the
United States and England. This situation is changing rapidly, especially in the
aerospace industry in the United States and England. Nevertheless, a familiarity
with both systems of units is still important today. For example, even though most
engineering work in the future will deal with the SI units, there exists a huge bulk of

Table 1.1

Force Mass Length Time Temp.

SI Units Newton kilogram meter second Kelvin
(N) (kg) (m) (s) (K)

English pounds slug feet second deg. Rankine
Engineering (lb) (ft) (s) (◦R)
Units
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present and past engineering literature written in the English engineering system,
literature that will be used well into the future. The modern engineering student
must be bilingual in these units, and must feel comfortable with both systems.
For this reason, although many of the worked examples and end-of-the-chapter
problems in this book are in the SI units, some are in the English engineering
system of units. You are encouraged to join this bilingual spirit and to work to
make yourself comfortable in both systems.

1.5 AERODYNAMIC FORCES AND MOMENTS
At first glance, the generation of the aerodynamic force on a giant Boeing 747
may seem complex, especially in light of the complicated three-dimensional flow
field over the wings, fuselage, engine nacelles, tail, etc. Similarly, the aerody-
namic resistance on an automobile traveling at 55 mi/h on the highway involves
a complex interaction of the body, the air, and the ground. However, in these and
all other cases, the aerodynamic forces and moments on the body are due to only
two basic sources:

1. Pressure distribution over the body surface
2. Shear stress distribution over the body surface

No matter how complex the body shape may be, the aerodynamic forces and
moments on the body are due entirely to the above two basic sources. The only
mechanisms nature has for communicating a force to a body moving through a
fluid are pressure and shear stress distributions on the body surface. Both pressure
p and shear stress τ have dimensions of force per unit area (pounds per square
foot or newtons per square meter). As sketched in Figure 1.15, p acts normal to
the surface, and τ acts tangential to the surface. Shear stress is due to the “tugging
action” on the surface, which is caused by friction between the body and the air
(and is studied in great detail in Chapters 15 to 20).

The net effect of the p and τ distributions integrated over the complete body
surface is a resultant aerodynamic force R and moment M on the body, as sketched
in Figure 1.16. In turn, the resultant R can be split into components, two sets of

Figure 1.15 Illustration of pressure and shear
stress on an aerodynamic surface.
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Figure 1.16 Resultant aerodynamic force
and moment on the body.

Figure 1.17 Resultant aerodynamic force and the
components into which it splits.

which are shown in Figure 1.17. In Figure 1.17, V∞ is the relative wind, defined
as the flow velocity far ahead of the body. The flow far away from the body is
called the freestream, and hence V∞ is also called the freestream velocity. In
Figure 1.17, by definition,

L ≡ lift ≡ component of R perpendicular to V∞
D ≡ drag ≡ component of R parallel to V∞

The chord c is the linear distance from the leading edge to the trailing edge of
the body. Sometimes, R is split into components perpendicular and parallel to the
chord, as also shown in Figure 1.17. By definition,

N ≡ normal force ≡ component of R perpendicular to c

A ≡ axial force ≡ component of R parallel to c

The angle of attack α is defined as the angle between c and V∞. Hence, α is
also the angle between L and N and between D and A. The geometrical relation
between these two sets of components is, from Figure 1.17,

L = N cos α − A sin α (1.1)

D = N sin α + A cos α (1.2)
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Figure 1.18 Nomenclature for the integration of pressure and shear stress distributions over
a two-dimensional body surface.

Let us examine in more detail the integration of the pressure and shear stress
distributions to obtain the aerodynamic forces and moments. Consider the two-
dimensional body sketched in Figure 1.18. The chord line is drawn horizontally,
and hence the relative wind is inclined relative to the horizontal by the angle of
attack α. An xy coordinate system is oriented parallel and perpendicular, respec-
tively, to the chord. The distance from the leading edge measured along the body
surface to an arbitrary point A on the upper surface is su; similarly, the distance
to an arbitrary point B on the lower surface is sl . The pressure and shear stress
on the upper surface are denoted by pu and τu , both pu and τu are functions of su .
Similarly, pl and τl are the corresponding quantities on the lower surface and
are functions of sl . At a given point, the pressure is normal to the surface and
is oriented at an angle θ relative to the perpendicular; shear stress is tangential
to the surface and is oriented at the same angle θ relative to the horizontal. In
Figure 1.18, the sign convention for θ is positive when measured clockwise from
the vertical line to the direction of p and from the horizontal line to the direction
of τ . In Figure 1.18, all thetas are shown in their positive direction. Now con-
sider the two-dimensional shape in Figure 1.18 as a cross section of an infinitely
long cylinder of uniform section. A unit span of such a cylinder is shown in
Figure 1.19. Consider an elemental surface area dS of this cylinder, where dS =
(ds)(1) as shown by the shaded area in Figure 1.19. We are interested in the
contribution to the total normal force N ′ and the total axial force A′ due to the
pressure and shear stress on the elemental area dS. The primes on N ′ and A′

denote force per unit span. Examining both Figures 1.18 and 1.19, we see that
the elemental normal and axial forces acting on the elemental surface dS on the
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Figure 1.19 Aerodynamic force on an element of the body surface.

upper body surface are

d N ′
u = −pudsu cos θ − τudsu sin θ (1.3)

dA′
u = −pudsu sin θ + τudsu cos θ (1.4)

On the lower body surface, we have

d N ′
l = pldsl cos θ − τldsl sin θ (1.5)

dA′
l = pldsl sin θ + τldsl cos θ (1.6)

In Equations (1.3) to (1.6), the positive directions of N ′ and A′ are those shown in
Figure 1.17. In these equations, the positive clockwise convention for θ must be
followed. For example, consider again Figure 1.18. Near the leading edge of the
body, where the slope of the upper body surface is positive, τ is inclined upward,
and hence it gives a positive contribution to N ′. For an upward inclined τ , θ would
be counterclockwise, hence negative. Therefore, in Equation (1.3), sin θ would
be negative, making the shear stress term (the last term) a positive value, as it
should be in this instance. Hence, Equations (1.3) to (1.6) hold in general (for
both the forward and rearward portions of the body) as long as the above sign
convention for θ is consistently applied.

The total normal and axial forces per unit span are obtained by integrating
Equations (1.3) to (1.6) from the leading edge (LE) to the trailing edge (TE):

N ′ = −
∫ TE

LE
(pu cos θ + τu sin θ) dsu +

∫ TE

LE
(pl cos θ − τl sin θ) dsl (1.7)

A′ =
∫ TE

LE
(−pu sin θ + τu cos θ) dsu +

∫ TE

LE
(pl sin θ + τl cos θ) dsl (1.8)
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Figure 1.20 Sign convention for aerodynamic moments.

In turn, the total lift and drag per unit span can be obtained by inserting Equa-
tions (1.7) and (1.8) into (1.1) and (1.2); note that Equations (1.1) and (1.2) hold
for forces on an arbitrarily shaped body (unprimed) and for the forces per unit
span (primed).

The aerodynamic moment exerted on the body depends on the point about
which moments are taken. Consider moments taken about the leading edge. By
convention, moments that tend to increase α (pitch up) are positive, and moments
that tend to decrease α (pitch down) are negative. This convention is illustrated
in Figure 1.20. Returning again to Figures 1.18 and 1.19, the moment per unit
span about the leading edge due to p and τ on the elemental area dS on the upper
surface is

d M ′
u = (pu cos θ + τu sin θ)x dsu + (−pu sin θ + τu cos θ)y dsu (1.9)

On the bottom surface,

d M ′
l = (−pl cos θ + τl sin θ)x dsl + (pl sin θ + τl cos θ)y dsl (1.10)

In Equations (1.9) and (1.10), note that the same sign convention for θ applies
as before and that y is a positive number above the chord and a negative number
below the chord. Integrating Equations (1.9) and (1.10) from the leading to the
trailing edges, we obtain for the moment about the leading edge per unit span

M ′
LE =

∫ TE

LE
[(pu cos θ + τu sin θ)x − (pu sin θ − τu cos θ)y] dsu

(1.11)

+
∫ TE

LE
[(−pl cos θ + τl sin θ)x + (pl sin θ + τl cos θ)y] dsl

In Equations (1.7), (1.8), and (1.11), θ , x , and y are known functions of s
for a given body shape. Hence, if pu , pl , τu , and τl are known as functions of s
(from theory or experiment), the integrals in these equations can be evaluated.
Clearly, Equations (1.7), (1.8), and (1.11) demonstrate the principle stated earlier,
namely, the sources of the aerodynamic lift, drag, and moments on a body are
the pressure and shear stress distributions integrated over the body. A major goal
of theoretical aerodynamics is to calculate p(s) and τ(s) for a given body shape
and freestream conditions, thus yielding the aerodynamic forces and moments
via Equations (1.7), (1.8), and (1.11).

As our discussions of aerodynamics progress, it will become clear that there
are quantities of an even more fundamental nature than the aerodynamic forces
and moments themselves. These are dimensionless force and moment coefficients,
defined as follows. Let ρ∞ and V∞ be the density and velocity, respectively, in
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the freestream, far ahead of the body. We define a dimensional quantity called the
freestream dynamic pressure as

Dynamic pressure: q∞ ≡ 1
2ρ∞V 2

∞

The dynamic pressure has the units of pressure (i.e., pounds per square foot
or newtons per square meter). In addition, let S be a reference area and l be a
reference length. The dimensionless force and moment coefficients are defined
as follows:

Lift coefficient: CL ≡ L

q∞S

Drag coefficient: CD ≡ D

q∞S

Normal force coefficient: CN ≡ N

q∞S

Axial force coefficient: CA ≡ A

q∞S

Moment coefficient: CM ≡ M

q∞Sl

In the above coefficients, the reference area S and reference length l are chosen
to pertain to the given geometric body shape; for different shapes, S and l may be
different things. For example, for an airplane wing, S is the planform area, and l
is the mean chord length, as illustrated in Figure 1.21a. However, for a sphere,
S is the cross-sectional area, and l is the diameter, as shown in Figure 1.21b.

Figure 1.21 Some reference areas and lengths.
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The particular choice of reference area and length is not critical; however, when
using force and moment coefficient data, you must always know what reference
quantities the particular data are based upon.

The symbols in capital letters listed above (i.e., CL , CD , CM , and CA) denote
the force and moment coefficients for a complete three-dimensional body such
as an airplane or a finite wing. In contrast, for a two-dimensional body, such as
given in Figures 1.18 and 1.19, the forces and moments are per unit span. For these
two-dimensional bodies, it is conventional to denote the aerodynamic coefficients
by lowercase letters; for example,

cl ≡ L ′

q∞c
cd ≡ D′

q∞c
cm ≡ M ′

q∞c2

where the reference area S = c(1) = c.
Two additional dimensionless quantities of immediate use are

Pressure coefficient: Cp ≡ p − p∞
q∞

Skin friction coefficient: c f ≡ τ

q∞

where p∞ is the freestream pressure.
The most useful forms of Equations (1.7), (1.8), and (1.11) are in terms of

the dimensionless coefficients introduced above. From the geometry shown in
Figure 1.22,

dx = ds cos θ (1.12)

dy = −(ds sin θ) (1.13)

S = c(1) (1.14)

Substituting Equations (1.12) and (1.13) into Equations (1.7), (1.8), and (1.11),
dividing by q∞, and further dividing by S in the form of Equation (1.14), we

Figure 1.22 Geometrical relationship of
differential lengths.
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obtain the following integral forms for the force and moment coefficients:

cn = 1

c

[∫ c

0
(Cp,l − Cp,u) dx +

∫ c

0

(
c f,u

dyu

dx
+ c f,l

dyl

dx

)
dx

]
(1.15)

ca = 1

c

[∫ c

0

(
Cp,u

dyu

dx
− Cp,l

dyl

dx

)
dx +

∫ c

0
(c f,u + c f,l) dx

]
(1.16)

cmLE = 1

c2

[∫ c

0
(Cp,u − Cp,l)x dx −

∫ c

0

(
c f,u

dyu

dx
+ c f,l

dyl

dx

)
x dx

(1.17)

+
∫ c

0

(
Cp,u

dyu

dx
+ c f,u

)
yu dx +

∫ c

0

(
−Cp,l

dyl

dx
+ c f,l

)
yl dx

]
The simple algebraic steps are left as an exercise for the reader. When evaluating
these integrals, keep in mind that yu is directed above the x axis, and hence is
positive, whereas yl is directed below the x axis, and hence is negative. Also,
dy/dx on both the upper and lower surfaces follow the usual rule from calculus
(i.e., positive for those portions of the body with a positive slope and negative for
those portions with a negative slope).

The lift and drag coefficients can be obtained from Equations (1.1) and (1.2)
cast in coefficient form:

cl = cn cos α − ca sin α (1.18)

cd = cn sin α + ca cos α (1.19)

Integral forms for cl and cd are obtained by substituting Equations (1.15) and
(1.16) into (1.18) and (1.19).

It is important to note from Equations (1.15) through (1.19) that the aerody-
namic force and moment coefficients can be obtained by integrating the pressure
and skin friction coefficients over the body. This is a common procedure in both
theoretical and experimental aerodynamics. In addition, although our derivations
have used a two-dimensional body, an analogous development can be presented
for three-dimensional bodies—the geometry and equations only get more com-
plex and involved—the principle is the same.

EXAMPLE 1.1

Consider the supersonic flow over a 5◦ half-angle wedge at zero angle of attack, as sketched
in Figure 1.23a. The freestream Mach number ahead of the wedge is 2.0, and the freestream
pressure and density are 1.01×105 N/m2 and 1.23 kg/m3, respectively (this corresponds to
standard sea level conditions). The pressures on the upper and lower surfaces of the wedge
are constant with distance s and equal to each other, namely, pu = pl = 1.31×105 N/m2,
as shown in Figure 1.23b. The pressure exerted on the base of the wedge is equal to p∞.
As seen in Figure 1.23c, the shear stress varies over both the upper and lower surfaces as
τw = 431s−0.2. The chord length, c, of the wedge is 2 m. Calculate the drag coefficient
for the wedge.
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Figure 1.23 Illustration for Example 1.1.
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■ Solution
We will carry out this calculation in two equivalent ways. First, we calculate the drag
from Equation (1.8), and then obtain the drag coefficient. In turn, as an illustration of an
alternate approach, we convert the pressure and shear stress to pressure coefficient and
skin friction coefficient, and then use Equation (1.16) to obtain the drag coefficient.

Since the wedge in Figure 1.23 is at zero angle of attack, then D′ = A′. Thus, the
drag can be obtained from Equation (1.8) as

D′ =
∫ TE

LE
(−pu sin θ + τu cos θ) dsu +

∫ TE

LE
(pl sin θ + τl cos θ) dsl

Referring to Figure 1.23c, recalling the sign convention for θ , and noting that integration
over the upper surface goes from s1 to s2 on the inclined surface and from s2 to s3 on
the base, whereas integration over the bottom surface goes from s1 to s4 on the inclined
surface and from s4 to s3 on the base, we find that the above integrals become∫ TE

LE
−pu sin θ dsu =

∫ s2

s1

−(1.31 × 105) sin(−5◦) dsu

+
∫ s3

s2

−(1.01 × 105) sin 90◦ dsu

= 1.142 × 104(s2 − s1) − 1.01 × 105(s3 − s2)

= 1.142 × 104
( c

cos 5◦
)

− 1.01 × 105(c)(tan 5◦)

= 1.142 × 104(2.008) − 1.01 × 105(0.175) = 5260 N∫ TE

LE
pl sin θ dsl =

∫ s4

s1

(1.31 × 105) sin(5◦) dsl +
∫ s3

s4

(1.01 × 105) sin(−90◦) dsl

= 1.142 × 104(s4 − s1) + 1.01 × 105(−1)(s3 − s4)

= 1.142 × 104
( c

cos 5◦
)

− 1.01 × 105(c)(tan 5◦)

= 2.293 × 104 − 1.767 × 104 = 5260 N

Note that the integrals of the pressure over the top and bottom surfaces, respectively,
yield the same contribution to the drag—a result to be expected from the symmetry of the
configuration in Figure 1.23:∫ TE

LE
τu cos θ dsu =

∫ s2

s1

431s−0.2 cos(−5◦) dsu

= 429

(
s0.8

2 − s0.8
1

0.8

)

= 429
( c

cos 5◦
)0.8 1

0.8
= 936.5 N
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∫ TE

LE
τl cos θ dsl =

∫ s4

s1

431s−0.2 cos(−5◦) dsl

= 429

(
s0.8

4 − s0.8
1

0.8

)
= 429

( c

cos 5◦
)0.8 1

0.8
= 936.5 N

Again, it is no surprise that the shear stresses acting over the upper and lower surfaces,
respectively, give equal contributions to the drag; this is to be expected due to the symmetry
of the wedge shown in Figure 1.23. Adding the pressure integrals, and then adding the
shear stress integrals, we have for total drag

D′ = 1.052 × 104︸ ︷︷ ︸
pressure

drag

+ 0.1873 × 104︸ ︷︷ ︸
skin friction

drag

= 1.24 × 104 N

Note that, for this rather slender body, but at a supersonic speed, most of the drag is pressure
drag. Referring to Figure 1.23a, we see that this is due to the presence of an oblique shock
wave from the nose of the body, which acts to create pressure drag (sometimes called wave
drag). In this example, only 15 percent of the drag is skin friction drag; the other 85 percent
is the pressure drag (wave drag). This is typical of the drag of slender supersonic bodies.
In contrast, as we will see later, the drag of a slender body at subsonic speed, where there
is no shock wave, is mainly skin friction drag.

The drag coefficient is obtained as follows. The velocity of the freestream is twice
the sonic speed, which is given by

a∞ =
√

γ RT∞ =
√

(1.4)(287)(288) = 340.2 m/s

(See Chapter 8 for a derivation of this expression for the speed of sound.) Note that, in
the above, the standard sea level temperature of 288 K is used. Hence, V∞ = 2(340.2) =
680.4 m/s. Thus,

q∞ = 1
2ρ∞V 2∞ = (0.5)(1.23)(680.4)2 = 2.847 × 105 N/m2

Also, S = c(1) = 2.0 m2

Hence, cd = D′

q∞S
= 1.24 × 104

(2.847 × 105)(2)
= 0.022

An alternate solution to this problem is to use Equation (1.16), integrating the pressure
coefficients and skin friction coefficients to obtain directly the drag coefficient. We proceed
as follows:

C p,u = pu − p∞
q∞

= 1.31 × 105 − 1.01 × 105

2.847 × 105 = 0.1054

On the lower surface, we have the same value for C p , that is,

C p,l = C p,u = 0.1054
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Also,

c f,u = τw

q∞
= 431s−0.2

q∞
= 431

2.847 × 105

( x

cos 5◦
)−0.2

= 1.513 × 10−3x−0.2

On the lower surface, we have the same value for c f , that is,

c f,l = 1.513 × 10−3x−0.2

Also,
dyu

dx
= tan 5◦ = 0.0875

and
dyl

dx
= − tan 5◦ = −0.0875

Inserting the above information into Equation (1.16), we have

cd = ca = 1

c

∫ c

0

(
C p,u

dyu

dx
− C p,l

dyl

dx

)
dx + 1

c

∫ c

0
(c f,u + c f,l) dx

= 1

2

∫ 2

0
[(0.1054)(0.0875) − (0.1054)(−0.0875)] dx

+ 1

2

∫ 2

0
2(1.513 × 10−3)x−0.2 dx

= 0.009223x
∣∣2
0 + 0.00189x0.8

∣∣2
0

= 0.01854 + 0.00329 = 0.022

This is the same result as obtained earlier.

EXAMPLE 1.2

Consider a cone at zero angle of attack in a hypersonic flow. (Hypersonic flow is very
high-speed flow, generally defined as any flow above a Mach number of 5; hypersonic
flow is further defined in Section 1.10.) The half-angle of the cone is θc, as shown in
Figure 1.24. An approximate expression for the pressure coefficient on the surface of a
hypersonic body is given by the newtonian sine-squared law (to be derived in Chapter 14):

C p = 2 sin2 θc

Note that C p , hence, p, is constant along the inclined surface of the cone. Along
the base of the body, we assume that p = p∞. Neglecting the effect of friction, obtain
an expression for the drag coefficient of the cone, where CD is based on the area of the
base Sb.

■ Solution
We cannot use Equations (1.15) to (1.17) here. These equations are expressed for a two-
dimensional body, such as the airfoil shown in Figure 1.22, whereas the cone in Figure 1.24
is a shape in three-dimensional space. Hence, we must treat this three-dimensional body
as follows. From Figure 1.24, the drag force on the shaded strip of surface area is

(p sin θc)(2πr)
dr

sin θc
= 2πr p dr
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Figure 1.24 Illustration for Example 1.2.

The total drag due to the pressure acting over the total surface area of the cone is

D =
∫ rb

0
2πr p dr −

∫ rb

0
r2πp∞ dr

The first integral is the horizontal force on the inclined surface of the cone, and the second
integral is the force on the base of the cone. Combining the integrals, we have

D =
∫ rb

0
2πr(p − p∞) dr = π(p − p∞)r2

b

Referenced to the base area, πr2
b , the drag coefficient is

CD = D

q∞πr2
b

= πr2
b (p − p∞)

πr2
b q∞

= C p
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(Note: The drag coefficient for a cone is equal to its surface pressure coefficient.) Hence,
using the newtonian sine-squared law, we obtain

CD = 2 sin2 θc

1.6 CENTER OF PRESSURE
From Equations (1.7) and (1.8), we see that the normal and axial forces on the
body are due to the distributed loads imposed by the pressure and shear stress
distributions. Moreover, these distributed loads generate a moment about the
leading edge, as given by Equation (1.11). Question: If the aerodynamic force
on a body is specified in terms of a resultant single force R, or its components
such as N and A, where on the body should this resultant be placed? The answer
is that the resultant force should be located on the body such that it produces
the same effect as the distributed loads. For example, the distributed load on a
two-dimensional body such as an airfoil produces a moment about the leading
edge given by Equation (1.11); therefore, N ′ and A′ must be placed on the airfoil
at such a location to generate the same moment about the leading edge. If A′ is
placed on the chord line as shown in Figure 1.25, then N ′ must be located at a
distance xcp downstream of the leading edge such that

M ′
LE = −(xcp)N ′

xcp = − M ′
LE

N ′ (1.20)

In Figure 1.25, the direction of the curled arrow illustrating M ′
LE is drawn in the

positive (pitch-up) sense. (From Section 1.5, recall the standard convention that
aerodynamic moments are positive if they tend to increase the angle of attack.)
Examining Figure 1.25, we see that a positive N ′ creates a negative (pitch-down)
moment about the leading edge. This is consistent with the negative sign in
Equation (1.20). Therefore, in Figure 1.25, the actual moment about the leading
edge is negative, and hence is in a direction opposite to the curled arrow shown.

Figure 1.25 Center of pressure for an
airfoil.
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Figure 1.26 Equivalent ways of specifying the force-and-moment system on an airfoil.

In Figure 1.25 and Equation (1.20), xcp is defined as the center of pressure.
It is the location where the resultant of a distributed load effectively acts on the
body. If moments were taken about the center of pressure, the integrated effect of
the distributed loads would be zero. Hence, an alternate definition of the center of
pressure is that point on the body about which the aerodynamic moment is zero.

In cases where the angle of attack of the body is small, sin α ≈ 0 and
cos α ≈ 1; hence, from Equation (1.1), L ′ ≈ N ′. Thus, Equation (1.20) becomes

xcp ≈ − M ′
LE

L ′ (1.21)

Examine Equations (1.20) and (1.21). As N ′ and L ′ decrease, xcp increases.
As the forces approach zero, the center of pressure moves to infinity. For this
reason, the center of pressure is not always a convenient concept in aerodynamics.
However, this is no problem. To define the force-and-moment system due to a
distributed load on a body, the resultant force can be placed at any point on the
body, as long as the value of the moment about that point is also given. For
example, Figure 1.26 illustrates three equivalent ways of specifying the force-
and-moment system on an airfoil. In the left figure, the resultant is placed at
the leading edge, with a finite value of M ′

LE. In the middle figure, the resultant is
placed at the quarter-chord point, with a finite value of M ′

c/4. In the right figure, the
resultant is placed at the center of pressure, with a zero moment about that point.
By inspection of Figure 1.26, the quantitative relation between these cases is

M ′
LE = −c

4
L ′ + M ′

c/4 = −xcpL ′ (1.22)

EXAMPLE 1.3

In low-speed, incompressible flow, the following experimental data are obtained for an
NACA 4412 airfoil section at an angle of attack of 4◦: cl = 0.85 and cm,c/4 = −0.09.
Calculate the location of the center of pressure.
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■ Solution
From Equation (1.22),

xcp = c

4
−

M ′
c/4

L ′

xcp

c
= 1

4
− (Mc/4/q∞c2)

(L ′/q∞c)
= 1

4
− cm,c/4

cl

= 1

4
− (−0.09)

0.85
= 0.356

(Note: In Chapter 4, we will learn that, for a thin, symmetrical airfoil, the center of
pressure is at the quarter-chord location. However, for the NACA 4412 airfoil, which is
not symmetric, the center-of-pressure location is behind the quarter-chord point.)

EXAMPLE 1.4

Consider the DC-3 shown in Figure 1.1. Just outboard of the engine nacelle, the airfoil
chord length is 15.4 ft. At cruising velocity (188 mi/h) at sea level, the moments per
unit span at this airfoil location are M ′

c/4 = −1071 ft lb/ft and M ′
LE = −3213.9 ft lb/ft.

Calculate the lift per unit span and the location of the center of pressure on the airfoil.

■ Solution
From Equation (1.22),

c

4
L ′ = M ′

c/4 − M ′
LE = −1071 − (−3213.9) = 2142.9

At this airfoil location on the wing,
c

4
= 15.4

4
= 3.85 ft.

Thus,

L ′ = 2142.9

3.85
= 556.6 lb/ft

Returning to Equation (1.22),

−xcpL ′ = M ′
LE

−xcp = − M ′
LE

L ′ = − (−3213.9)

556.6
= 5.774 ft

Note: In this section, we have shown that the force and moment system acting on an airfoil
is uniquely specified by giving the lift acting at any point on the airfoil and the moment
about that point. Analogously, this example proves that the force and moment system is
also uniquely specified by giving the moments acting about any two points on the airfoil.

1.7 DIMENSIONAL ANALYSIS: THE BUCKINGHAM
PI THEOREM

The aerodynamic forces and moments on a body, and the corresponding force and
moment coefficients, have been defined and discussed in Section 1.5. Question:
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What physical quantities determine the variation of these forces and moments?
The answer can be found from the powerful method of dimensional analysis,
which is introduced in this section.3

Consider a body of given shape at a given angle of attack (e.g., the airfoil
sketched in Figure 1.17). The resultant aerodynamic force is R. On a physical,
intuitive basis, we expect R to depend on:

1. Freestream velocity V∞.
2. Freestream density ρ∞.
3. Viscosity of the fluid. We have seen that shear stress τ contributes to the

aerodynamic forces and moments, and that τ is proportional to the velocity
gradients in the flow. For example, if the velocity gradient is given by
∂u/∂y, then τ = μ∂u/∂y. The constant of proportionality is the viscosity
coefficient μ. Hence, let us represent the influence of viscosity on aero-
dynamic forces and moments by the freestream viscosity coefficient μ∞.

4. The size of the body, represented by some chosen reference length. In
Figure 1.17, the convenient reference length is the chord length c.

5. The compressibility of the fluid. The technical definition of compressibility
is given in Chapter 7. For our present purposes, let us just say that
compressibility is related to the variation of density throughout the flow
field, and certainly the aerodynamic forces and moments should be
sensitive to any such variation. In turn, compressibility is related to the
speed of sound a in the fluid, as shown in Chapter 8.4 Therefore, let us
represent the influence of compressibility on aerodynamic forces and
moments by the freestream speed of sound, a∞.

In light of the above, and without any a priori knowledge about the variation of
R, we can use common sense to write

R = f (ρ∞, V∞, c, μ∞, a∞) (1.23)

Equation (1.23) is a general functional relation, and as such is not very practical
for the direct calculation of R. In principle, we could mount the given body in a
wind tunnel, incline it at the given angle of attack, and then systematically measure
the variation of R due to variations of ρ∞, V∞, c, μ∞, and a∞, taken one at a time.
By cross-plotting the vast bulk of data thus obtained, we might be able to extract
a precise functional relation for Equation (1.23). However, it would be hard work,
and it would certainly be costly in terms of a huge amount of required wind-tunnel
time. Fortunately, we can simplify the problem and considerably reduce our time
and effort by first employing the method of dimensional analysis. This method will

3 For a more elementary treatment of dimensional analysis, see Chapter 5 of Reference 2.
4 Common experience tells us that sound waves propagate through air at some finite velocity, much
slower than the speed of light; you see a flash of lightning in the distance, and hear the thunder moments
later. The speed of sound is an important physical quantity in aerodynamics and is discussed in detail in
Section 8.3.
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define a set of dimensionless parameters that governs the aerodynamic forces and
moments; this set will considerably reduce the number of independent variables
as presently occurs in Equation (1.23).

Dimensional analysis is based on the obvious fact that in an equation dealing
with the real physical world, each term must have the same dimensions. For
example, if

ψ + η + ζ = φ

is a physical relation, then ψ , η, ζ , and φ must have the same dimensions. Other-
wise we would be adding apples and oranges. The above equation can be made
dimensionless by dividing by any one of the terms, say, φ:

ψ

φ
+ η

φ
+ ζ

φ
= 1

These ideas are formally embodied in the Buckingham pi theorem, stated below
without derivation. (See Reference 3, pages 21–28, for such a derivation.)

Buckingham pi Theorem
Let K equal the number of fundamental dimensions required to describe the
physical variables. (In mechanics, all physical variables can be expressed in
terms of the dimensions of mass, length, and time; hence, K = 3.) Let P1, P2, . . . ,

PN represent N physical variables in the physical relation

f1(P1, P2, . . . , PN ) = 0 (1.24)

Then, the physical relation Equation (1.24) may be reexpressed as a relation of
(N − K ) dimensionless products (called  products),

f2(1, 2, . . . , N−K ) = 0 (1.25)

where each  product is a dimensionless product of a set of K physical variables
plus one other physical variable. Let P1, P2, . . . , PK be the selected set of K
physical variables. Then

1 = f3(P1, P2, . . . , PK , PK+1) (1.26)

2 = f4(P1, P2, . . . , PK , PK+2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N−K = f5(P1, P2, . . . , PK , PN )

The choice of the repeating variables, P1, P2, . . . , PK should be such that they
include all the K dimensions used in the problem. Also, the dependent variable
[such as R in Equation (1.23)] should appear in only one of the  products.
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Returning to our consideration of the aerodynamic force on a given body
at a given angle of attack, Equation (1.23) can be written in the form of Equa-
tion (1.24):

g(R, ρ∞, V∞, c, μ∞, a∞) = 0 (1.27)

Following the Buckingham pi theorem, the fundamental dimensions are

m = dimensions of mass
l = dimension of length
t = dimension of time

Hence, K = 3. The physical variables and their dimensions are

[R] = mlt−2

[ρ∞] = ml−3

[V∞] = lt−1

[c] = l

[μ∞] = ml−1t−1

[a∞] = lt−1

Hence, N = 6. In the above, the dimensions of the force R are obtained from
Newton’s second law, force = mass × acceleration; hence, [R] = mlt−2. The
dimensions of μ∞ are obtained from its definition [e.g., μ = τ/(∂u/∂y)], and
from Newton’s second law. (Show for yourself that [μ∞] = ml−1t−1.) Choose
ρ∞, V∞, and c as the arbitrarily selected sets of K physical variables. Then
Equation (1.27) can be reexpressed in terms of N − K = 6−3 = 3 dimensionless
 products in the form of Equation (1.25):

f2(1, 2, 3) = 0 (1.28)

From Equation (1.26), these  products are

1 = f3(ρ∞, V∞, c, R) (1.29a)

2 = f4(ρ∞, V∞, c, μ∞) (1.29b)

3 = f5(ρ∞, V∞, c, a∞) (1.29c)

For the time being, concentrate on 1, from Equation (1.29a). Assume that

1 = ρd
∞V b

∞ce R (1.30)

where d, b, and e are exponents to be found. In dimensional terms, Equa-
tion (1.30) is

[1] = (ml−3)d(lt−1)b(l)e(mlt−2) (1.31)

Because 1 is dimensionless, the right side of Equation (1.31) must also be
dimensionless. This means that the exponents of m must add to zero, and similarly
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for the exponents of l and t . Hence,

For m: d + 1 = 0

For l: −3d + b + e + 1 = 0

For t : −b − 2 = 0

Solving the above equations, we find that d = −1, b = −2, and e = −2.
Substituting these values into Equation (1.30), we have

1 = Rρ−1
∞ V −2

∞ c−2

= R

ρ∞V 2∞c2

(1.32)

The quantity R/ρ∞V 2
∞c2 is a dimensionless parameter in which c2 has the di-

mensions of an area. We can replace c2 with any reference area we wish (such as
the planform area of a wing S), and 1 will still be dimensionless. Moreover, we
can multiply 1 by a pure number, and it will still be dimensionless. Thus, from
Equation (1.32), 1 can be redefined as

1 = R
1
2ρ∞V 2∞S

= R

q∞S
(1.33)

Hence, 1 is a force coefficient CR , as defined in Section 1.5. In Equation (1.33),
S is a reference area germane to the given body shape.

The remaining  products can be found as follows. From Equation (1.29b),
assume

2 = ρ∞V h
∞ciμ j

∞ (1.34)

Paralleling the above analysis, we obtain

[2] = (ml−3)(lt−1)h(l)i (ml−1t−1) j

Hence,

For m: 1 + j = 0

For l: −3 + h + i − j = 0

For t : −h − j = 0

Thus, j = −1, h = 1, and i = 1. Substitution into Equation (1.34) gives

2 = ρ∞V∞c

μ∞
(1.35)

The dimensionless combination in Equation (1.35) is defined as the freestream
Reynolds number Re = ρ∞V∞c/μ∞. The Reynolds number is physically a mea-
sure of the ratio of inertia forces to viscous forces in a flow and is one of the
most powerful parameters in fluid dynamics. Its importance is emphasized in
Chapters 15 to 20.
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Returning to Equation (1.29c), assume

3 = V∞ρk
∞cr as

∞
[3] = (lt−1)(ml−3)k(l)r (lt−1)s

(1.36)

For m: k = 0

For l: 1 − 3k + r + s = 0

For t : −1 − s = 0

Hence, k = 0, s = −1, and r = 0. Substituting Equation (1.36), we have

e = V∞
a∞

(1.37)

The dimensionless combination in Equation (1.37) is defined as the freestream
Mach number M = V∞/a∞. The Mach number is the ratio of the flow velocity
to the speed of sound; it is a powerful parameter in the study of gas dynamics. Its
importance is emphasized in subsequent chapters.

The results of our dimensional analysis may be organized as follows. Inserting
Equations (1.33), (1.35), and (1.37) into (1.28), we have

f2

(
R

1
2ρ∞V 2∞S

,
ρ∞V∞c

μ∞
,

V∞
a∞

)
= 0

or f2(CR, Re, M∞) = 0

or CR = f6(Re, M∞) (1.38)

This is an important result! Compare Equations (1.23) and (1.38). In Equa-
tion (1.23), R is expressed as a general function of five independent variables.
However, our dimensional analysis has shown that:

1. R can be expressed in terms of a dimensionless force coefficient,
CR = R/ 1

2ρ∞V 2
∞S.

2. CR is a function of only Re and M∞, from Equation (1.38).

Therefore, by using the Buckingham pi theorem, we have reduced the number
of independent variables from five in Equation (1.23) to two in Equation (1.38).
Now, if we wish to run a series of wind-tunnel tests for a given body at a given
angle of attack, we need only to vary the Reynolds and Mach numbers in order to
obtain data for the direct formulation of R through Equation (1.38). With a small
amount of analysis, we have saved a huge amount of effort and wind-tunnel time.
More importantly, we have defined two dimensionless parameters, Re and M∞,
which govern the flow. They are called similarity parameters, for reasons to be
discussed in the following section. Other similarity parameters are introduced as
our aerodynamic discussions progress.
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Since the lift and drag are components of the resultant force, corollaries to
Equation (1.38) are

CL = f7(Re, M∞) (1.39)

CD = f8(Re, M∞) (1.40)

Moreover, a relation similar to Equation (1.23) holds for the aerodynamic mo-
ments, and dimensional analysis yields

CM = f9(Re, M∞) (1.41)

Keep in mind that the above analysis was for a given body shape at a given angle
of attack α. If α is allowed to vary, then CL , CD , and CM will in general depend
on the value of α. Hence, Equations (1.39) to (1.41) can be generalized to

CL = f10(Re, M∞, α)

CD = f11(Re, M∞, α)

CM = f12(Re, M∞, α)

(1.42)

(1.43)

(1.44)

Equations (1.42) to (1.44) assume a given body shape. Much of theoretical and
experimental aerodynamics is focused on obtaining explicit expressions for Equa-
tions (1.42) to (1.44) for specific body shapes. This is one of the practical ap-
plications of aerodynamics mentioned in Section 1.2, and it is one of the major
thrusts of this book.

For mechanical problems that also involve thermodynamics and heat transfer,
the temperature, specific heat, and thermal conductivity of the fluid, as well as
the temperature of the body surface (wall temperature), must be added to the list
of physical variables, and the unit of temperature (say, kelvin or degree Rankine)
must be added to the list of fundamental dimensions. For such cases, dimensional
analysis yields additional dimensionless products such as heat transfer coeffi-
cients, and additional similarity parameters such as the ratio of specific heat at
constant pressure to that at constant volume cp/cv, the ratio of wall tempera-
ture to freestream temperature Tw/T∞, and the Prandtl number Pr = μ∞cp/k∞,
where k∞ is the thermal conductivity of the freestream.5 Thermodynamics is
essential to the study of compressible flow (Chapters 7 to 14), and heat transfer
is part of the study of viscous flow (Chapters 15 to 20). Hence, these additional
similarity parameters will be emphasized when they appear logically in our subse-
quent discussions. For the time being, however, the Mach and Reynolds numbers
will suffice as the dominant similarity parameters for our present considerations.

5 The specific heat of a fluid is defined as the amount of heat added to a system, δq, per unit increase in
temperature; cv = δq/dT if δq is added at constant volume, and similarly, for cp if δq is added at constant
pressure. Specific heats are discussed in detail in Section 7.2. The thermal conductivity relates heat flux
to temperature gradients in the fluid. For example, if q̇x is the heat transferred in the x direction per
second per unit area and dT /dx is the temperature gradient in the x direction, then thermal conductivity
k is defined by q̇x = −k(dT /dx). Thermal conductivity is discussed in detail in Section 15.3.
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1.8 FLOW SIMILARITY
Consider two different flow fields over two different bodies. By definition, dif-
ferent flows are dynamically similar if:

1. The streamline patterns are geometrically similar.
2. The distributions of V/V∞, p/p∞, T/T∞, etc., throughout the flow

field are the same when plotted against common nondimensional
coordinates.

3. The force coefficients are the same.

Actually, item 3 is a consequence of item 2; if the nondimensional pressure and
shear stress distributions over different bodies are the same, then the nondimen-
sional force coefficients will be the same.

The definition of dynamic similarity was given above. Question: What are
the criteria to ensure that two flows are dynamically similar? The answer comes
from the results of the dimensional analysis in Section 1.7. Two flows will be
dynamically similar if:

1. The bodies and any other solid boundaries are geometrically similar for
both flows.

2. The similarity parameters are the same for both flows.

So far, we have emphasized two parameters, Re and M∞. For many aerodynamic
applications, these are by far the dominant similarity parameters. Therefore, in a
limited sense, but applicable to many problems, we can say that flows over geomet-
rically similar bodies at the same Mach and Reynolds numbers are dynamically
similar, and hence the lift, drag, and moment coefficients will be identical for the
bodies. This is a key point in the validity of wind-tunnel testing. If a scale model
of a flight vehicle is tested in a wind tunnel, the measured lift, drag, and moment
coefficients will be the same as for free flight as long as the Mach and Reynolds
numbers of the wind-tunnel test-section flow are the same as for the free-flight
case. As we will see in subsequent chapters, this statement is not quite precise
because there are other similarity parameters that influence the flow. In addition,
differences in freestream turbulence between the wind tunnel and free flight can
have an important effect on CD and the maximum value of CL . However, direct
simulation of the free-flight Re and M∞ is the primary goal of many wind-tunnel
tests.

EXAMPLE 1.5

Consider the flow over two circular cylinders, one having four times the diameter of
the other, as shown in Figure 1.27. The flow over the smaller cylinder has a freestream
density, velocity and temperature given by ρ1, V1, and T1, respectively. The flow over the
larger cylinder has a freestream density, velocity, and temperature given by ρ2, V2, and
T2, respectively, where ρ2 = ρ1/4, V2 = 2V1, and T2 = 4T1. Assume that both μ and a
are proportional to T 1/2. Show that the two flows are dynamically similar.
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Figure 1.27 Example of dynamic flow similarity. Note that as
part of the definition of dynamic similarity, the streamlines
(lines along which the flow velocity is tangent at each point)
are geometrically similar between the two flows.

■ Solution
Since μ ∝ √

T and a ∝ √
T , then

μ2

μ1
=

√
T2

T1
=

√
4T1

T1
= 2

and a2

a1
=

√
T2

T1
= 2

By definition, M1 = V1

a1

and M2 = V2

a2
= 2V1

2a1
= V1

a1
= M1

Hence, the Mach numbers are the same. Basing the Reynolds number on the diameter d
of the cylinder, we have by definition,

Re1 = ρ1V1d1

μ1

and Re2 = ρ2V2d2

μ2
= (ρ1/4)(2V1)(4d1)

2μ1
= ρ1V1d1

μ1
= Re1

Hence, the Reynolds numbers are the same. Since the two bodies are geometrically sim-
ilar and M∞ and Re are the same, we have satisfied all the criteria; the two flows are
dynamically similar. In turn, as a consequence of being similar flows, we know from the
definition that:

1. The streamline patterns around the two cylinders are geometrically similar.
2. The nondimensional pressure, temperature, density, velocity, etc., distributions are

the same around two cylinders. This is shown schematically in Figure 1.28, where
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Figure 1.28 One aspect of the definition
of dynamically similar flows. The
nondimensional flow variable distributions
are the same.

the nondimensional pressure distribution p/p∞ is shown as a function of the
nondimensional surface distance s/d. It is the same curve for both bodies.

3. The drag coefficients for the two bodies are the same. Here, CD = D/q∞S, where
S = πd2/4. As a result of the flow similarity, CD1 = CD2. (Note: Examining
Figure 1.27, we see that the lift on the cylinders is zero because the flow is
symmetrical about the horizontal axis through the center of the cylinder. The
pressure distribution over the top is the same as over the bottom, and they cancel
each other in the vertical direction. Therefore, drag is the only aerodynamic force on
the body.)

EXAMPLE 1.6

Consider a Boeing 747 airliner cruising at a velocity of 550 mi/h at a standard altitude
of 38,000 ft, where the freestream pressure and temperature are 432.6 lb/ft2 and 390◦R,
respectively. A one-fiftieth scale model of the 747 is tested in a wind tunnel where the
temperature is 430◦R. Calculate the required velocity and pressure of the test airstream
in the wind tunnel such that the lift and drag coefficients measured for the wind-tunnel
model are the same as for free flight. Assume that both μ and a are proportional to T 1/2.

■ Solution
Let subscripts 1 and 2 denote the free-flight and wind-tunnel conditions, respectively. For
CL ,1 = CL ,2 and CD,1 = CD,2, the wind-tunnel flow must be dynamically similar to free
flight. For this to hold, M1 = M2 and Re1 = Re2:

M1 = V1

a1
∝ V1√

T1

and M2 = V2

a2
∝ V2√

T2
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Hence,
V2√
T2

= V1√
T1

or V2 = V1

√
T2

T1
= 550

√
430

390
= 577.5 mi/h

Re1 = ρ1V1c1

μ1
∝ ρ1V1c1√

T1

and Re2 = ρ2V2c2

μ2
∝ ρ2V2c2√

T2

Hence,
ρ1V1c1√

T1
= ρ2V2c2√

T2

or ρ2

ρ1
=

(
V1

V2

)(
c1

c2

)√
T2

T1

However, since M1 = M2, then

V1

V2
=

√
T1

T2

Thus,
ρ2

ρ1
= c1

c2
= 50

The equation of state for a perfect gas is p = ρRT , where R is the specific gas constant.
Thus

p2

p1
= ρ2

ρ1

T2

T1
= (50)

(
430

390

)
= 55.1

Hence, p2 = 55.1p1 = (55.1)(432.6) = 23,836 lb/ft2

Since 1 atm = 2116 lb/ft2, then p2 = 23,836/2116 = 11.26 atm .

In Example 1.6, the wind-tunnel test stream must be pressurized far above
atmospheric pressure in order to simulate the proper free-flight Reynolds num-
ber. However, most standard subsonic wind tunnels are not pressurized as such,
because of the large extra financial cost involved. This illustrates a common dif-
ficulty in wind-tunnel testing, namely, the difficulty of simulating both Mach
number and Reynolds number simultaneously in the same tunnel. It is interest-
ing to note that the NACA (National Advisory Committee for Aeronautics, the
predecessor of NASA) in 1922 began operating a pressurized wind tunnel at the
NACA Langley Memorial Laboratory in Hampton, Virginia. This was a subsonic
wind tunnel contained entirely inside a large tank pressurized to as high as 20 atm.
Called the variable density tunnel (VDT), this facility was used in the 1920s and
1930s to provide essential data on the NACA family of airfoil sections at the high
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Figure 1.29 The NACA variable density tunnel (VDT). Authorized in March of 1921, the
VDT was operational in October 1922 at the NACA Langley Memorial Laboratory at
Hampton, Virginia. It is essentially a large, subsonic wind tunnel entirely contained within
an 85-ton pressure shell, capable of 20 atm. This tunnel was instrumental in the development
of the various families of NACA airfoil shapes in the 1920s and 1930s. In the early 1940s, it
was decommissioned as a wind tunnel and used as a high-pressure air storage tank. In 1983,
due to its age and outdated riveted construction, its use was discontinued altogether. Today,
the VDT remains at the NASA Langley Research Center; it has been officially designated as
a National Historic Landmark. (NASA).

Reynolds numbers associated with free flight. A photograph of the NACA vari-
able density tunnel is shown in Figure 1.29; notice the heavy pressurized shell in
which the wind tunnel is enclosed. A cross section of the VDT inside the pressure
cell is shown in Figure 1.30. These figures demonstrate the extreme measures
sometimes taken in order to simulate simultaneously the free-flight values of the
important similarity parameters in a wind tunnel. Today, for the most part, we do
not attempt to simulate all the parameters simultaneously; rather, Mach number
simulation is achieved in one wind tunnel, and Reynolds number simulation in
another tunnel. The results from both tunnels are then analyzed and correlated to
obtain reasonable values for CL and CD appropriate for free flight. In any event,
this example serves to illustrate the difficulty of full free-flight simulation in a
given wind tunnel and underscores the importance given to dynamically similar
flows in experimental aerodynamics.
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Figure 1.30 Schematic of the variable density tunnel (From Baals, D. D. and Carliss, W. R.,
Wind Tunnels of NASA, NASA SP-440, 1981).

DESIGN BOX

Lift and drag coefficients play a strong role in the
preliminary design and performance analysis of air-
planes. The purpose of this design box is to enforce the
importance of CL and CD in aeronautical engineering;
they are much more than just the conveniently defined
terms discussed so far—they are fundamental quan-
tities, which make the difference between intelligent
engineering and simply groping in the dark.

Consider an airplane in steady, level (horizontal)
flight, as illustrated in Figure 1.31. For this case, the
weight W acts vertically downward. The lift L acts
vertically upward, perpendicular to the relative wind

T

L

W

V� D

Figure 1.31 The four forces acting on an airplane in
flight.

V∞ (by definition). In order to sustain the airplane in
level flight,

L = W

The thrust T from the propulsive mechanism and the
drag D are both parallel to V∞. For steady (unaccel-
erated) flight,

T = D

Note that for most conventional flight situations, the
magnitude of L and W is much larger than the mag-
nitude of T and D, as indicated by the sketch in Fig-
ure 1.31. Typically, for conventional cruising flight,
L/D ≈ 15 to 20.

For an airplane of given shape, such as that
sketched in Figure 1.31, at given Mach and Reynolds
number, CL and CD are simply functions of the angle
of attack, α of the airplane. This is the message con-
veyed by Equations (1.42) and (1.43). It is a simple
and basic message—part of the beauty of nature—
that the actual values of CL and CD for a given body
shape just depend on the orientation of the body in the
flow (i.e., angle of attack). Generic variations for CL
and CD versus α are sketched in Figure 1.32. Note
that CL increases linearly with α until an angle of
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CL, max

CL

CD, min

CD

Angle of attack, �

Figure 1.32 Schematic of lift and drag
coefficients versus angle of attack; illustration of
maximum lift coefficient and minimum drag
coefficient.

attack is reached when the wing stalls, the lift coeffi-
cient reaches a peak value, and then drops off as α is
further increased. The maximum value of the lift coef-
ficient is denoted by CL ,max, as noted in Figure 1.32.

The lowest possible velocity at which the air-
plane can maintain steady level flight is the stalling
velocity, Vstall; it is dictated by the value of CL ,max, as
follows.6 From the definition of lift coefficient given
in Section 1.5, applied for the case of level flight where
L = W , we have

CL = L

q∞S
= W

q∞S
= 2W

ρ∞V 2∞S
(1.45)

Solving Equation (1.45) for V∞,

V∞ =
√

2W

ρ∞SCL
(1.46)

For a given airplane flying at a given altitude, W , ρ,
and S are fixed values; hence from Equation (1.46)
each value of velocity corresponds to a specific value

of CL . In particular, V∞ will be the smallest when
CL is a maximum. Hence, the stalling velocity for a
given airplane is determined by CL ,max from Equa-
tion (1.46)

Vstall =
√

2W

ρ∞SCL ,max
(1.47)

For a given airplane, without the aid of any arti-
ficial devices, CL ,max is determined purely by nature,
through the physical laws for the aerodynamic flow-
field over the airplane. However, the airplane designer
has some devices available that artificially increase
CL ,max beyond that for the basic airplane shape. These
mechanical devices are called high-lift devices; exam-
ples are flaps, slats, and slots on the wing which, when
deployed by the pilot, serve to increase CL ,max, and
hence decrease the stalling speed. High-lift devices
are usually deployed for landing and take-off; they
are discussed in more detail in Section 4.12.

On the other extreme of flight velocity, the maxi-
mum velocity for a given airplane with a given maxi-
mum thrust from the engine is determined by the value
of minimum drag coefficient, CD,min, where CD,min is
marked in Figure 1.32. From the definition of drag co-
efficient in Section 1.5, applied for the case of steady
level flight where T = D, we have

CD = D

q∞S
= T

q∞S
= 2T

ρ∞V 2∞S
(1.48)

Solving Equation (1.48) for V∞,

V∞ =
√

2T

ρ∞SCD
(1.49)

For a given airplane flying at maximum thrust Tmax
and a given altitude, from Equation (1.49) the maxi-
mum value of V∞ corresponds to flight at CD,min

Vmax =
√

2Tmax

ρ∞SCD,min
(1.50)

From the above discussion, it is clear that the
aerodynamic coefficients are important engineering

6 The lowest velocity may instead be dictated by the power required to maintain level flight exceeding the
power available from the powerplant. This occurs on the “back side of the power curve.” The velocity at
which this occurs is usually less than the stalling velocity, so is of academic interest only. See Anderson,
Aircraft Performance and Design, McGraw-Hill, 1999, for more details.
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Figure 1.33 Schematic of the variation of lift coefficient with flight
velocity for level flight.

quantities that dictate the performance and design of
airplanes. For example, stalling velocity is determined
in part by CL ,max, and maximum velocity is deter-
mined in part by CD,min.

Broadening our discussion to the whole range of
flight velocity for a given airplane, note from Equa-
tion (1.45) that each value of V∞ corresponds to a
specific value of CL . Therefore, over the whole range
of flight velocity from Vstall to Vmax, the airplane lift
coefficient varies as shown generically in Figure 1.33.
The values of CL given by the curve in Figure 1.33 are
what are needed to maintain level flight over the whole
range of velocity at a given altitude. The airplane de-
signer must design the airplane to achieve these val-
ues of CL for an airplane of given weight and wing
area. Note that the required values of CL decrease as
V∞ increases. Examining the lift coefficient variation
with angle of attack shown in Figure 1.33, note that
as the airplane flies faster, the angle of attack must be

smaller, as also shown in Figure 1.33. Hence, at high
speeds, airplanes are at low α, and at low speeds, air-
planes are at high α; the specific angle of attack which
the airplane must have at a specific V∞ is dictated by
the specific value of CL required at that velocity.

Obtaining raw lift on a body is relatively easy—
even a barn door creates lift at angle of attack. The
name of the game is to obtain the necessary lift with
as low a drag as possible. That is, the values of CL
required over the entire flight range for an airplane,
as represented by Figure 1.33, can sometimes be ob-
tained even for the least effective lifting shape—just
make the angle of attack high enough. But CD also
varies with V∞, as governed by Equation (1.48); the
generic variation of CD with V∞ is sketched in Fig-
ure 1.34. A poor aerodynamic shape, even though it
generates the necessary values of CL shown in Fig-
ure 1.33, will have inordinately high values of CD
(i.e., the CD curve in Figure 1.34 will ride high on the
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Figure 1.34 Schematic of the variation of drag coefficient with flight
velocity for level flight. Comparison between high and low drag
aerodynamic bodies, with the consequent effect on maximum velocity.

graph), as denoted by the dashed curve in Figure 1.34.
An aerodynamically efficient shape, however, will
produce the requisite values of CL prescribed by Fig-
ure 1.33 with much lower drag, as denoted by the solid
curve in Figure 1.34. An undesirable by-product of the
high-drag shape is a lower value of the maximum ve-
locity for the same maximum thrust, as also indicated
in Figure 1.34.

Finally, we emphasize that a true measure of the
aerodynamic efficiency of a body shape is its lift-to-
drag ratio, given by

L

D
= q∞SCL

q∞SCD
= CL

CD
(1.51)

Since the value of CL necessary for flight at a given
velocity and altitude is determined by the airplane’s

weight and wing area (actually, by the ratio of W/S,
called the wing loading) through the relationship given
by Equation (1.45), the value of L/D at this veloc-
ity is controlled by CD , the denominator in Equa-
tion (1.51). At any given velocity, we want L/D to be
as high as possible; the higher is L/D, the more aero-
dynamically efficient is the body. For a given airplane
at a given altitude, the variation of L/D as a func-
tion of velocity is sketched generically in Figure 1.35.
Note that, as V∞ increases from a low value, L/D
first increases, reaches a maximum at some interme-
diate velocity, and then decreases. Note that, as V∞
increases, the angle of attack of the airplane decreases,
as explained earlier. From a strictly aerodynamic con-
sideration, L/D for a given body shape depends on
angle of attack. This can be seen from Figure 1.32,
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Figure 1.35 Schematic of the variation of lift-to-drag ratio with
flight velocity for level flight.
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Figure 1.36 Schematic of the variation of lift-to-drag ratio with angle
of attack.

where CL and CD are given as a function of α. If these
two curves are ratioed, the result is L/D as a func-
tion of angle of attack, as sketched generically in Fig-
ure 1.36. The relationship of Figure 1.35 to Figure 1.36
is that, when the airplane is flying at the velocity that
corresponds to (L/D)max as shown in Figure 1.35, it

is at the angle of attack for (L/D)max as shown in
Figure 1.36.

In summary, the purpose of this design box
is to emphasize the important role played by the
aerodynamic coefficients in the performance analysis
and design of airplanes. In this discussion, what has
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been important is not the lift and drag per se, but
rather CL and CD . These coefficients are a won-
derful intellectual construct that helps us to bet-
ter understand the aerodynamic characteristics of a
body, and to make reasoned, intelligent calculations.
Hence they are more than just conveniently defined
quantities as might first appear when introduced in
Section 1.5.

For more insight to the engineering value of these
coefficients, see Anderson, Aircraft Performance and
Design, McGraw-Hill, 1999, and Anderson, Introduc-

tion to Flight, 6th edition, McGraw-Hill, 2008. Also,
homework Problem 1.15 at the end of this chapter
gives you the opportunity to construct specific curves
for CL , CD , and L/D versus velocity for an actual
airplane so that you can obtain a feel for some real
numbers that have been only generically indicated in
the figures here. (In our present discussion, the use
of generic figures has been intentional for pedagogic
reasons.) Finally, an historical note on the origins
of the use of aerodynamic coefficients is given in
Section 1.14.

EXAMPLE 1.7

Consider an executive jet transport patterned after the Cessna 560 Citation V shown
in three-view in Figure 1.37. The airplane is cruising at a velocity of 492 mph at an
altitude of 33,000 ft, where the ambient air density is 7.9656 × 10−4 slug/ft3. The weight
and wing planform areas of the airplane are 15,000 lb and 342.6 ft2, respectively. The
drag coefficient at cruise is 0.015. Calculate the lift coefficient and the lift-to-drag ratio
at cruise.

■ Solution
The units of miles per hour for velocity are not consistent units. In the English engineering
system of units, feet per second are consistent units for velocity (see Section 2.4 of Refer-
ence 2). To convert between mph and ft/s, it is useful to remember that 88 ft/s = 60 mph.

Figure 1.37 Cessna 560 Citation V.
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For the present example,

V∞ = 492
(

88
60

) = 721.6 ft/s

From Equation (1.45),

CL = 2W

ρ∞V 2∞S
= 2(15,000)

(7.9659 × 10−4)(721.6)2(342.6)
= 0.21

From Equation (1.51),

L

D
= CL

CD
= 0.21

0.015
= 14

Remarks: For a conventional airplane such as shown in Figure 1.37, almost all the lift
at cruising conditions is produced by the wing; the lift of the fuselage and tail are very
small by comparison. Hence, the wing can be viewed as an aerodynamic “lever.” In this
example, the lift-to-drag ratio is 14, which means that for the expenditure of one pound
of thrust to overcome one pound of drag, the wing is lifting 14 pounds of weight—quite
a nice leverage.

EXAMPLE 1.8

The same airplane as described in Example 1.7 has a stalling speed at sea level of 100 mph
at the maximum take-off weight of 15,900 lb. The ambient air density at standard sea
level is 0.002377 slug/ft3. Calculate the value of the maximum lift coefficient for the
airplane.

■ Solution
Once again we have to use consistent units, so

Vstall = 100 88
60 = 146.7 ft/s

Solving Equation (1.47) for CL ,max, we have

CL ,max = 2W

ρ∞V 2
stallS

= 2(15,900)

(0.002377)(146.7)2(342.6)
= 1.81

1.9 FLUID STATICS: BUOYANCY FORCE
In aerodynamics, we are concerned about fluids in motion, and the resulting forces
and moments on bodies due to such motion. However, in this section, we consider
the special case of no fluid motion (i.e., fluid statics). A body immersed in a fluid
will still experience a force even if there is no relative motion between the body
and the fluid. Let us see why.

To begin, we must first consider the force on an element of fluid itself.
Consider a stagnant fluid above the xz plane, as shown in Figure 1.38. The verti-
cal direction is given by y. Consider an infinitesimally small fluid element with
sides of length dx , dy, and dz. There are two types of forces acting on this fluid
element: pressure forces from the surrounding fluid exerted on the surface of the
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Figure 1.38 Forces on a fluid element in a stagnant fluid.

element, and the gravity force due to the weight of the fluid inside the element.
Consider forces in the y direction. The pressure on the bottom surface of the
element is p, and hence the force on the bottom face is p(dx dz) in the upward
direction, as shown in Figure 1.38. The pressure on the top surface of the element
will be slightly different from the pressure on the bottom because the top surface
is at a different location in the fluid. Let dp/dy denote the rate of change of p with
respect to y. Then the pressure exerted on the top surface will be p + (dp/dy) dy,
and the pressure force on the top of the element will be [p + (dp/dy) dy](dx dz)
in the downward direction, as shown in Figure 1.38. Hence, letting upward force
be positive, we have

Net pressure force = p(dx dz) −
(

p + dp

dy
dy

)
(dx dz)

= −dp

dy
(dx dy dz)

Let ρ be the mean density of the fluid element. The total mass of the element is
ρ(dx dy dz). Therefore,

Gravity force = −ρ(dx dy dz)g

where g is the acceleration of gravity. Since the fluid element is stationary (in
equilibrium), the sum of the forces exerted on it must be zero:

−dp

dy
(dx dy dz) − gρ(dx dy dz) = 0

or dp = −gρ dy (1.52)

Equation (1.52) is called the Hydrostatic equation; it is a differential equation
which relates the change in pressure dp in a fluid with a change in vertical
height dy.
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The net force on the element acts only in the vertical direction. The pressure
forces on the front and back faces are equal and opposite and hence cancel;
the same is true for the left and right faces. Also, the pressure forces shown in
Figure 1.38 act at the center of the top and bottom faces, and the center of gravity
is at the center of the elemental volume (assuming the fluid is homogeneous);
hence, the forces in Figure 1.38 are colinear, and as a result, there is no moment
on the element.

Equation (1.52) governs the variation of atmospheric properties as a func-
tion of altitude in the air above us. It is also used to estimate the properties of
other planetary atmospheres such as for Venus, Mars, and Jupiter. The use of
Equation (1.52) in the analysis and calculation of the “standard atmosphere” is
given in detail in Reference 2; hence the details will not be repeated here. Appen-
dices D and E, however, contain a tabulation of the properties of the 1959 ARDC
model atmosphere for earth as compiled by the U.S. Air Force. These standard
atmosphere tables are included in this book for use in solving certain worked ex-
amples and some end-of-chapter homework problems. Moreover, Example 1.10
at the end of this section illustrates how the Hydrostatic equation is used to obtain
some of the entries in Appendices D and E.

Let the fluid be a liquid, for which we can assume ρ is constant. Consider
points 1 and 2 separated by the vertical distance �h as sketched on the right side
of Figure 1.38. The pressure and y locations at these points are p1, h1, and p2,
h2, respectively. Integrating Equation (1.52) between points 1 and 2, we have∫ p2

p1

dp = −ρg
∫ h2

h1

dy

or p2 − p1 = −ρg(h2 − h1) = ρg �h (1.53)

where �h = h1 − h2. Equation (1.53) can be more conveniently expressed as

p2 + ρgh2 = p1 + ρgh1

or p + ρgh = constant (1.54)

Note that in Equations (1.53) and (1.54), increasing values of h are in the positive
(upward) y direction.

A simple application of Equation (1.54) is the calculation of the pressure
distribution on the walls of a container holding a liquid, and open to the atmosphere
at the top. This is illustrated in Figure 1.39, where the top of the liquid is at a
height h1. The atmospheric pressure pa is impressed on the top of the liquid;
hence, the pressure at h1 is simply pa . Applying Equation (1.54) between the top
(where h = h1) and an arbitrary height h, we have

p + ρgh = p1 + ρgh1 = pa + ρgh1

or p = pa + ρg(h1 − h) (1.55)
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Figure 1.39 Hydrostatic pressure distribution on the
walls of a container.

Equation (1.55) gives the pressure distribution on the vertical sidewall of the
container as a function of h. Note that the pressure is a linear function of h as
sketched on the right of Figure 1.39, and that p increases with depth below the
surface.

Another simple and very common application of Equation (1.54) is the liquid-
filled U-tube manometer used for measuring pressure differences, as sketched in
Figure 1.40. The manometer is usually made from hollow glass tubing bent in the
shape of the letter U . Imagine that we have an aerodynamic body immersed in an
airflow (such as in a wind tunnel), and we wish to use a manometer to measure
the surface pressure at point b on the body. A small pressure orifice (hole) at
point b is connected to one side of the manometer via a long (usually flexible)
pressure tube. The other side of the manometer is open to the atmosphere, where
the pressure pa is a known value. The U tube is partially filled with a liquid of
known density ρ. The tops of the liquid on the left and right sides of the U tube
are at points 1 and 2, with heights h1 and h2, respectively. The body surface
pressure pb is transmitted through the pressure tube and impressed on the top of
the liquid at point 1. The atmospheric pressure pa is impressed on the top of the
liquid at point 2. Because in general pb 
= pa , the tops of the liquid will be at
different heights (i.e., the two sides of the manometer will show a displacement
�h = h1 − h2 of the fluid). We wish to obtain the value of the surface pressure

Flexible pressure tube

Tube open to the
atmosphere

Liquid with density �
(frequently mercury
or silicone oil)

U-tube manometer (usually
made from glass tubing)

2

1

pa

�h

b

Figure 1.40 The use of a U-tube manometer.
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at point b on the body by reading the value of �h from the manometer. From
Equation (1.54) applied between points 1 and 2,

pb + ρgh1 = pa + ρgh2

or pb = pa − ρg(h1 − h2)

or pb = pa − ρg �h (1.56)

In Equation (1.56), pa , ρ, and g are known, and �h is read from the U tube, thus
allowing pb to be measured.

At the beginning of this section, we stated that a solid body immersed in a fluid
will experience a force even if there is no relative motion between the body and the
fluid. We are now in a position to derive an expression for this force, henceforth
called the buoyancy force. We will consider a body immersed in either a stagnant
gas or liquid, hence ρ can be a variable. For simplicity, consider a rectangular
body of unit width, length l, and height (h1 − h2), as shown in Figure 1.41.
Examining Figure 1.41, we see that the vertical force F on the body due to the
pressure distribution over the surface is

F = (p2 − p1)l(1) (1.57)

There is no horizontal force because the pressure distributions over the vertical
faces of the rectangular body lead to equal and opposite forces which cancel each
other. In Equation (1.57), an expression for p2 − p1 can be obtained by integrating
the hydrostatic equation, Equation (1.52), between the top and bottom faces:

p2 − p1 =
∫ p2

p1

dp = −
∫ h2

h1

ρg dy =
∫ h1

h2

ρg dy

Substituting this result into Equation (1.57), we obtain for the buoyancy force

F = l(1)

∫ h1

h2

ρg dy (1.58)

Solid or
hollow body Element of fluid

l
l

l
l

p1

p2

h1

h2

h1
dy

h2

y

x

z

Figure 1.41 Source of the buoyancy force on a body immersed
in a fluid.
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Consider the physical meaning of the integral in Equation (1.58). The weight of
a small element of fluid of height dy and width and length of unity as shown at
the right of Figure 1.41 is ρg dy (1)(1). In turn, the weight of a column of fluid
with a base of unit area and a height (h1 − h2) is∫ h1

h2

ρg dy

which is precisely the integral in Equation (1.58). Moreover, if we place l of these
fluid columns side by side, we would have a volume of fluid equal to the volume
of the body on the left of Figure 1.41, and the weight of this total volume of fluid
would be

l
∫ h1

h2

ρg dy

which is precisely the right-hand side of Equation (1.58). Therefore, Equa-
tion (1.58) states in words that

Buoyancy force
on body = weight of fluid

displaced by body

We have just proved the well-known Archimedes principle, first advanced by the
Greek scientist, Archimedes of Syracuse (287–212 B.C.). Although we have used
a rectangular body to simplify our derivation, the Archimedes principle holds for
bodies of any general shape. (See Problem 1.14 at the end of this chapter.) Also,
note from our derivation that the Archimedes principle holds for both gases and
liquids and does not require that the density be constant.

The density of liquids is usually several orders of magnitude larger than the
density of gases (e.g., for water ρ = 103 kg/m3, whereas for air ρ = 1.23 kg/m3).
Therefore, a given body will experience a buoyancy force a thousand times greater
in water than in air. Obviously, for naval vehicles buoyancy force is all important,
whereas for airplanes it is negligible. On the other hand, lighter-than-air vehicles,
such as blimps and hot-air balloons, rely on buoyancy force for sustenation; they
obtain sufficient buoyancy force simply by displacing huge volumes of air. For
most problems in aerodynamics, however, buoyancy force is so small that it can
be readily neglected.

EXAMPLE 1.9

A hot-air balloon with an inflated diameter of 30 ft is carrying a weight of 800 lb, which
includes the weight of the hot air inside the balloon. Calculate (a) its upward acceler-
ation at sea level the instant the restraining ropes are released and (b) the maximum
altitude it can achieve. Assume that the variation of density in the standard atmosphere
is given by ρ = 0.002377(1 − 7 × 10−6h)4.21, where h is the altitude in feet and ρ is
in slug/ft3.
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■ Solution
(a) At sea level, where h = 0, ρ = 0.002377 slug/ft3. The volume of the inflated balloon
is 4

3π(15)3 = 14,137 ft3. Hence,

Buoyancy force = weight of displaced air

= gρV

where g is the acceleration of gravity and V is the volume.

Buoyancy force ≡ B = (32.2)(0.002377)(14,137) = 1082 lb

The net upward force at sea level is F = B − W , where W is the weight. From Newton’s
second law,

F = B − W = ma

where m is the mass, m = 800
32.2 = 24.8 slug. Hence,

a = B − W

m
= 1082 − 800

24.8
= 11.4 ft/s2

(b) The maximum altitude occurs when B = W = 800 lb. Since B = gρV , and assuming
the balloon volume does not change,

ρ = B

gV = 800

(32.2)(14,137)
= 0.00176 slug/ft3

From the given variation of ρ with altitude, h,

ρ = 0.002377(1 − 7 × 10−6h)4.21 = 0.00176

Solving for h, we obtain

h = 1

7 × 10−6

[
1 −

(
0.00176

0.002377

)1/4.21
]

= 9842 ft

EXAMPLE 1.10

The purpose of this example is to show how the standard altitude tables in Appendices D
and E are constructed with the use of the Hydrostatic equation. A complete discussion on
the construction and use of the standard altitude tables is given in Chapter 3 of Reference 2.

From sea level to an altitude of 11 km, the standard altitude is based on a linear
variation of temperature with altitude, h, where T decreases at a rate of −6.5 K per
kilometer (the lapse rate). At sea level, the standard pressure, density, and temperature are
1.01325 × 105 N/m2, 1.2250 kg/m3, and 288.16 K, respectively. Calculate the pressure,
density, and temperature at a standard altitude of 5 km.

■ Solution
Repeating Equation (1.52),

dp = −gρ dy = −gρ dh
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The equation of state for a perfect gas is given in Chapter 7 as Equation (7.1),

p = ρRT

where R is the specific gas constant. Dividing Equation (1.52) by (7.1), we have

dp

p
= − g

R

dh

T
(E1.1)

Denoting the lapse rate by a, we have by definition

a ≡ dT

dh
or

dh = dT

a
(E1.2)

Substituting (E1.2) into (E1.1), we obtain

dp

p
= − g

a R

dT

T
(E1.3)

Integrate Equation (E1.3) from sea level where the standard values of pressure and tem-
perature are denoted by ps and Ts , respectively, and a given altitude h where the values
of pressure and temperature are p and T , respectively.∫ p

ps

dp

p
= −

∫ T

Ts

g

a R

dT

T

or

ln
P

ps
= −

∫ T

Ts

g

a R

dT

T
(E1.4)

In Equation (E1.4), a and R are constants, but the acceleration of gravity, g, varies with
altitude. The integral in Equation (E1.4) is simplified by assuming that g is constant with
altitude, equal to its value at sea level, gs . With this assumption, Equation (E1.4) becomes

ln
P

ps
= − gs

a R
ln

T

Ts

or

p

ps
=

(
T

Ts

)−gs/a R

(E1.5)

Note: Here we must make a distinction between the geometric altitude, hG , which is the
actual “tape measure” altitude above sea level, and the geopotential altitude, h, which is
a slightly fictitious altitude consistent with the assumption of a constant value of g. That
is, when we write the Hydrostatic equation as

dp = −gρ dhG

we are treating g as a variable with altitude and hence the altitude is the actual geometric
altitude, hG . On the other hand, when we assume that g is constant, say equal to its value
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at sea level, gs , the Hydrostatic equation is

p = −gsρ dh (E1.6)

where h is denoted as the geopotential altitude, consistent with the assumption of constant
g. For reasonable altitudes associated with conventional atmospheric flight, the difference
between hG and h is very small. Observe from Appendix D that altitude is listed under two
columns, the first being the geometric altitude, hG , and the second being the geopotential
altitude, h. For the current example we are calculating the properties at an altitude of 5 km.
This is the real “tape measure” altitude, hG . The corresponding value of geopotential
altitude, h, is 4.996 km, only a 0.08 percent difference. The calculation of h for a given hG

is derived in Reference 2; it is not important to our discussions here. What is important,
however, is that when we use Equation (E1.5), or any other such equation assuming a
constant value of g, we must use the geopotential altitude. For the calculations in this
example, where we are calculating properties at a geometric altitude of 5 km, we must
use the value of the geopotential altitude, 4.996 km, in the equations.

Equation (E1.5) explicitly gives the variation of pressure with temperature, and im-
plicitly the variation with altitude because temperature is a known function of altitude via
the given lapse rate a = dT/dh = −6.5 K/km. Specifically, because T varies linearly
with altitude for the altitude region under consideration here, we have

T − Ts = ah (E1.7)

In Equation (E1.7), h is the geopotential altitude. The given value of a = −6.5 K/km =
−0.0065/m is based on the change in geopotential altitude. Thus, from Equation (E1.7),
we have at the specified geometric altitude of 5 km,

T − 288.16 = −(0.0065)(4996) = −32.474

T = 288.16 − 32.474 = 255.69 K

Note that this value of T is precisely the value entered in Appendix D for a geometric
altitude of 5000 m.

In Equation (E1.5), for air, R = 287 J/kg K.
Thus, the exponent is

−gs

a R
= − (9.80)

(−0.0065)(287)
= 5.25328

and

p

ps
=

(
T

Ts

)−gs/a R

=
(

255.69

288.16

)5.25328

= 0.53364

p = 0.53364ps = 0.53364(1.01325 × 105)

p = 5.407 × 104 N/m2

This value of pressure agrees within 0.04 percent with the value entered in Appendix D.
The very slight difference is due to the value of R = 287 J/(kg)(K) used here, which
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depends on the molecular weight of air, which in turn varies slightly from one source to
another.

Finally, the density can be obtained from the equation of state

ρ = p

RT
= 5.407 × 104

(287)(255.69)
= 0.7368 kg/m3

which agrees within 0.05 percent with the value entered in Appendix D.

EXAMPLE 1.11

Consider a U-tube mercury manometer oriented vertically. One end is completely sealed
with a total vacuum above the column of mercury. The other end is open to the atmosphere
where the atmospheric pressure is that for standard sea level. What is the displacement
height of the mercury in centimeters, and in which end is the mercury column the highest?
The density of mercury is 1.36 × 104 kg/m3.

■ Solution
Examining Figure 1.40, consider the sealed end with the total vacuum to be on the left,
where pb = 0, and the height of the mercury column is h1. This is balanced by the right
column of mercury with height h2 plus the atmospheric pressure pa exerted on the top of
the column. Clearly, when these two columns of mercury are balanced, the left column
must be higher to account for the finite pressure being exerted at the top of the right
column, i.e., h1 > h2. From Equation (1.56), we have

pb = pa − ρg �h

where

�h = h1 − h2

Thus,

�h = pa

ρg

From Appendix D, at sea level pa = 1.013 × 105 N/m2. Hence,

�h = pa

ρg
= 1.013 × 105(

1.36 × 104
)
(9.8)

= 0.76 m = 76 cm

Note: Since 2.54 cm = 1 in, then �h = 76/2.54 = 29.92 in. The above calculation
explains why, on a day when the atmospheric pressure happens to be that for standard sea
level, the meteorologist on television will usually say that the pressure is now “76 cm, or
760 mm, or 29.92 in.” You rarely hear the pressure quoted in terms of “pounds per square
foot,” or “pounds per square inch,” and hardly ever in “newtons per square meter.”



62 PART 1 Fundamental Principles

1.10 TYPES OF FLOW
An understanding of aerodynamics, like that of any other physical science, is ob-
tained through a “building-block” approach—we dissect the discipline, form the
parts into nice polished blocks of knowledge, and then later attempt to reassemble
the blocks to form an understanding of the whole. An example of this process is
the way that different types of aerodynamic flows are categorized and visualized.
Although nature has no trouble setting up the most detailed and complex flow
with a whole spectrum of interacting physical phenomena, we must attempt to
understand such flows by modeling them with less detail, and neglecting some of
the (hopefully) less significant phenomena. As a result, a study of aerodynamics
has evolved into a study of numerous and distinct types of flow. The purpose of
this section is to itemize and contrast these types of flow, and to briefly describe
their most important physical phenomena.

1.10.1 Continuum Versus Free Molecule Flow

Consider the flow over a body, say, for example, a circular cylinder of diameter d.
Also, consider the fluid to consist of individual molecules, which are moving about
in random motion. The mean distance that a molecule travels between collisions
with neighboring molecules is defined as the mean-free path λ. If λ is orders
of magnitude smaller than the scale of the body measured by d, then the flow
appears to the body as a continuous substance. The molecules impact the body
surface so frequently that the body cannot distinguish the individual molecular
collisions, and the surface feels the fluid as a continuous medium. Such flow is
called continuum flow. The other extreme is where λ is on the same order as
the body scale; here the gas molecules are spaced so far apart (relative to d) that
collisions with the body surface occur only infrequently, and the body surface can
feel distinctly each molecular impact. Such flow is called free molecular flow. For
manned flight, vehicles such as the space shuttle encounter free molecular flow at
the extreme outer edge of the atmosphere, where the air density is so low that λ

becomes on the order of the shuttle size. There are intermediate cases, where flows
can exhibit some characteristics of both continuum and free molecule flows; such
flows are generally labeled “low-density flows” in contrast to continuum flow. By
far, the vast majority of practical aerodynamic applications involve continuum
flows. Low-density and free molecule flows are just a small part of the total
spectrum of aerodynamics. Therefore, in this book we will always deal with
continuum flow; that is, we will always treat the fluid as a continuous medium.

1.10.2 Inviscid Versus Viscous Flow

A major facet of a gas or liquid is the ability of the molecules to move rather freely,
as explained in Section 1.2. When the molecules move, even in a very random
fashion, they obviously transport their mass, momentum, and energy from one
location to another in the fluid. This transport on a molecular scale gives rise to
the phenomena of mass diffusion, viscosity (friction), and thermal conduction.
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Flow outside the boundary
layer is inviscid Thin boundary layer of

viscous flow adjacent
to surface

Body surface

Figure 1.42 The division of a flow into two regions: (1) the
thin viscous boundary layer adjacent to the body surface and
(2) the inviscid flow outside the boundary layer.

Such “transport phenomena” will be discussed in detail in Chapter 15. For our
purposes here, we need only to recognize that all real flows exhibit the effects
of these transport phenomena; such flows are called viscous flows. In contrast, a
flow that is assumed to involve no friction, thermal conduction, or diffusion is
called an inviscid flow. Inviscid flows do not truly exist in nature; however, there
are many practical aerodynamic flows (more than you would think) where the
influence of transport phenomena is small, and we can model the flow as being
inviscid. For this reason, more than 70 percent of this book (Chapters 3 to 14)
deals primarily with inviscid flows.

Theoretically, inviscid flow is approached in the limit as the Reynolds number
goes to infinity (to be proved in Chapter 15). However, for practical problems,
many flows with high but finite Re can be assumed to be inviscid. For such
flows, the influence of friction, thermal conduction, and diffusion is limited to a
very thin region adjacent to the body surface called the boundary layer, and the
remainder of the flow outside this thin region is essentially inviscid. This division
of the flow into two regions is illustrated in Figure 1.42. Hence, most of the
material discussed in Chapters 3 to 14 applies to the flow outside the boundary
layer. For flows over slender bodies, such as the airfoil sketched in Figure 1.42,
inviscid theory adequately predicts the pressure distribution and lift on the body
and gives a valid representation of the streamlines and flow field away from the
body. However, because friction (shear stress) is a major source of aerodynamic
drag, inviscid theories by themselves cannot adequately predict total drag.

In contrast, there are some flows that are dominated by viscous effects. For
example, if the airfoil in Figure 1.42 is inclined to a high incidence angle to the flow
(high angle of attack), then the boundary layer will tend to separate from the top
surface, and a large wake is formed downstream. The separated flow is sketched
at the top of Figure 1.43; it is characteristic of the flow field over a “stalled”
airfoil. Separated flow also dominates the aerodynamics of blunt bodies, such
as the cylinder at the bottom of Figure 1.43. Here, the flow expands around the
front face of the cylinder, but separates from the surface on the rear face, forming
a rather fat wake downstream. The types of flow illustrated in Figure 1.43 are
dominated by viscous effects; no inviscid theory can independently predict the
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Figure 1.43 Examples of viscous-dominated flow.

aerodynamics of such flows. They require the inclusion of viscous effects, to be
presented in Part 4.

1.10.3 Incompressible Versus Compressible Flows

A flow in which the density ρ is constant is called incompressible. In contrast, a
flow where the density is variable is called compressible. A more precise defini-
tion of compressibility will be given in Chapter 7. For our purposes here, we will
simply note that all flows, to a greater or lesser extent, are compressible; truly
incompressible flow, where the density is precisely constant, does not occur in
nature. However, analogous to our discussion of inviscid flow, there are a number
of aerodynamic problems that can be modeled as being incompressible without
any detrimental loss of accuracy. For example, the flow of homogeneous liquids
is treated as incompressible, and hence most problems involving hydrodynamics
assume ρ = constant. Also, the flow of gases at a low Mach number is essen-
tially incompressible; for M < 0.3, it is always safe to assume ρ = constant. (We
will prove this in Chapter 8.) This was the flight regime of all airplanes from the
Wright brothers’ first flight in 1903 to just prior to World War II. It is still the
flight regime of most small, general aviation aircraft of today. Hence, there exists
a large bulk of aerodynamic experimental and theoretical data for incompressible
flows. Such flows are the subject of Chapters 3 to 6. On the other hand, high-speed
flow (near Mach 1 and above) must be treated as compressible; for such flows ρ

can vary over wide latitudes. Compressible flow is the subject of Chapters 7 to 14.

1.10.4 Mach Number Regimes

Of all the ways of subdividing and describing different aerodynamic flows, the
distinction based on the Mach number is probably the most prevalent. If M is the
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local Mach number at an arbitrary point in a flow field, then by definition the flow
is locally:

Subsonic if M < 1
Sonic if M = 1
Supersonic if M > 1

Looking at the whole field simultaneously, four different speed regimes can be
identified using Mach number as the criterion:

1. Subsonic flow (M < 1 everywhere). A flow field is defined as subsonic
if the Mach number is less than 1 at every point. Subsonic flows are
characterized by smooth streamlines (no discontinuity in slope), as sketched
in Figure 1.44a. Moreover, since the flow velocity is everywhere less than
the speed of sound, disturbances in the flow (say, the sudden deflection of
the trailing edge of the airfoil in Figure 1.44a) propagate both upstream
and downstream, and are felt throughout the entire flow field. Note that a
freestream Mach number M∞ less than 1 does not guarantee a totally
subsonic flow over the body. In expanding over an aerodynamic shape, the
flow velocity increases above the freestream value, and if M∞ is close
enough to 1, the local Mach number may become supersonic in certain
regions of the flow. This gives rise to a rule of thumb that M∞ < 0.8 for
subsonic flow over slender bodies. For blunt bodies, M∞ must be even
lower to ensure totally subsonic flow. (Again, emphasis is made that the
above is just a loose rule of thumb and should not be taken as a precise
quantitative definition.) Also, we will show later that incompressible flow is
a special limiting case of subsonic flow where M → 0.

2. Transonic flow (mixed regions where M < 1 and M > 1). As stated above,
if M∞ is subsonic but is near unity, the flow can become locally supersonic
(M > 1). This is sketched in Figure 1.44b, which shows pockets of
supersonic flow over both the top and bottom surfaces of the airfoil,
terminated by weak shock waves behind which the flow becomes subsonic
again. Moreover, if M∞ is increased slightly above unity, a bow shock wave
is formed in front of the body; behind this shock wave the flow is locally
subsonic, as shown in Figure 1.44c. This subsonic flow subsequently
expands to a low supersonic value over the airfoil. Weak shock waves are
usually generated at the trailing edge, sometimes in a “fishtail” pattern as
shown in Figure 1.44c. The flow fields shown in Figure 1.44b and c are
characterized by mixed subsonic-supersonic flows and are dominated by the
physics of both types of flow. Hence, such flow fields are called transonic
flows. Again, as a rule of thumb for slender bodies, transonic flows occur
for freestream Mach numbers in the range 0.8 < M∞ < 1.2.

3. Supersonic flow (M > 1 everywhere). A flow field is defined as supersonic
if the Mach number is greater than 1 at every point. Supersonic flows are
frequently characterized by the presence of shock waves across which the
flow properties and streamlines change discontinuously (in contrast to the
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Figure 1.44 Different regimes of flow.

smooth, continuous variations in subsonic flows). This is illustrated in
Figure 1.44d for supersonic flow over a sharp-nosed wedge; the flow
remains supersonic behind the oblique shock wave from the tip. Also
shown are distinct expansion waves, which are common in supersonic
flow. (Again, the listing of M∞ > 1.2 is strictly a rule of thumb. For
example, in Figure 1.44d, if θ is made large enough, the oblique shock
wave will detach from the tip of the wedge and will form a strong, curved
bow shock ahead of the wedge with a substantial region of subsonic flow
behind the wave. Hence, the totally supersonic flow sketched in
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Figure 1.44d is destroyed if θ is too large for a given M∞. This shock
detachment phenomenon can occur at any value of M∞ > 1, but the value
of θ at which it occurs increases as M∞ increases. In turn, if θ is made
infinitesimally small, the flow field in Figure 1.44d holds for M∞ ≥ 1.0.
These matters will be considered in detail in Chapter 9. However, the above
discussion clearly shows that the listing of M∞ > 1.2 in Figure 1.44d is a
very tenuous rule of thumb and should not be taken literally.) In a
supersonic flow, because the local flow velocity is greater than the speed of
sound, disturbances created at some point in the flow cannot work their way
upstream (in contrast to subsonic flow). This property is one of the most
significant physical differences between subsonic and supersonic flows. It is
the basic reason why shock waves occur in supersonic flows, but do not
occur in steady subsonic flow. We will come to appreciate this difference
more fully in Chapters 7 to 14.

4. Hypersonic flow (very high supersonic speeds). Refer again to the wedge in
Figure 1.44d. Assume θ is a given, fixed value. As M∞ increases above 1,
the shock wave moves closer to the body surface. Also, the strength of the
shock wave increases, leading to higher temperatures in the region between
the shock and the body (the shock layer). If M∞ is sufficiently large, the
shock layer becomes very thin, and interactions between the shock wave
and the viscous boundary layer on the surface occur. Also, the shock layer
temperature becomes high enough that chemical reactions occur in the air.
The O2 and N2 molecules are torn apart; that is, the gas molecules
dissociate. When M∞ becomes large enough such that viscous interaction
and/or chemically reacting effects begin to dominate the flow
(Figure 1.44e), the flow field is called hypersonic. (Again, a somewhat
arbitrary but frequently used rule of thumb for hypersonic flow is M∞ > 5.)
Hypersonic aerodynamics received a great deal of attention during the
period 1955–1970 because atmospheric entry vehicles encounter the
atmosphere at Mach numbers between 25 (ICBMs) and 36 (the Apollo
lunar return vehicle). Again during the period 1985–1995, hypersonic flight
received a great deal of attention with the concept of air-breathing
supersonic-combustion ramjet-powered transatmospheric vehicles to
provide single-stage-to-orbit capability. Today, hypersonic aerodynamics is
just part of the whole spectrum of realistic flight speeds. Some basic
elements of hypersonic flow are treated in Chapter 14.

In summary, we attempt to organize our study of aerodynamic flows according
to one or more of the various categories discussed in this section. The block
diagram in Figure 1.45 is presented to help emphasize these categories and to
show how they are related. Indeed, Figure 1.45 serves as a road map for this
entire book. All the material to be covered in subsequent chapters fits into these
blocks, which are lettered for easy reference. For example, Chapter 2 contains
discussions of some fundamental aerodynamic principles and equations which fit
into both blocks C and D. Chapters 3 to 6 fit into blocks D and E, Chapter 7 fits into
blocks D and F, etc. As we proceed with our development of aerodynamics, we
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Figure 1.45 Block diagram categorizing the types of
aerodynamic flows.

will frequently refer to Figure 1.45 in order to help put specific, detailed material
in proper perspective relative to the whole of aerodynamics.

1.11 VISCOUS FLOW: INTRODUCTION
TO BOUNDARY LAYERS

Section 1.10.2 speaks to the problem of friction in an aerodynamic flow. Frictional
shear stress is defined in Section 1.4; shear stress, τ , exists at any point in a
flow where there is a velocity gradient across streamlines. For most problems
in aerodynamics, the local shear stress has a meaningful effect on the flow only
where the velocity gradients are substantial. Consider, for example, the flow over
the body shown in Figure 1.42. For the vast region of the flow field away from the
body, the velocity gradients are relatively small, and friction plays virtually no
role. For the thin region of the flow adjacent to the surface, however, the velocity
gradients are large, and friction plays a defining role. This natural division of the
flow into two regions, one where friction is much more important than the other,
was recognized by the famous German fluid dynamicist Ludwig Prandtl in 1904.
Prandtl’s concept of the boundary layer created a breakthrough in aerodynamic
analysis. Since that time theoretical analyses of most aerodynamic flows have
treated the region away from the body as an inviscid flow (i.e., no dissipative
effects due to friction, thermal conduction, or mass diffusion), and the thin region
immediately adjacent to the body surface as a viscous flow where these dissipative
effects are included. The thin viscous region adjacent to the body is called the
boundary layer; for most aerodynamic problems of interest, the boundary layer
is very thin compared to the extent of the rest of the flow. But what an effect this
thin boundary layer has! It is the source of the friction drag on an aerodynamic
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body. The friction drag on an Airbus 380 jumbo jet, for example, is generated
by the boundary layer that wets the entire surface of the airplane in flight. The
phenomena of flow separation, as sketched in Figure 1.43, is associated with
the presence of the boundary layer; when the flow separates from the surface,
it dramatically changes the pressure distribution over the surface resulting in a
large increase in drag called pressure drag. So this thin viscous boundary layer
adjacent to the body surface, although small in extent compared to the rest of the
flow, is extremely important in aerodynamics.

Parts 2 and 3 of this book deal primarily with inviscid flows; viscous flow is
the subject of Part 4. However, at the end of some of the chapters in Parts 2 and 3,
you will find a “viscous flow section” (such as the present section) for the benefit
of those readers who are interested in examining the practical impact of boundary
layers on the inviscid flows studied in the given chapters. These viscous flow
sections are stand-alone sections and do not break the continuity of the inviscid
flow discussion in Parts 2 and 3; they simply complement those discussions.

Why are the velocity gradients inside the boundary layer so large? To help
answer this question, first consider the purely inviscid flow over the airfoil shape
in Figure 1.46. By definition there is no friction effect, so the streamline that
is right on the surface of the body slips over the surface; for example, the flow
velocity at point b on the surface is a finite value, unhindered by the effect of
friction. In actuality, due to friction the infinitesimally thin layer of air molecules
immediately adjacent to the body surface sticks to the surface, thus it has zero
velocity relative to the surface. This is the no-slip condition, and it is the cause of
the large velocity gradients within the boundary layer. To see why, consider the
flow illustrated in Figure 1.47; here the boundary layer is shown greatly magnified

Vbb

The streamline that is right on
the surface slips over the surface

Figure 1.46 Inviscid (frictionless) flow.

Vb

Va = 0
�w

y

b

a

Boundary layer

�

Figure 1.47 Flow in real life, with friction. The thickness of
the boundary layer is greatly overemphasized for clarity.
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in thickness for clarity. The flow velocity at point a on the body surface is zero due
to the no-slip condition. Above point a, the velocity increases until it reaches the
value of Vb at point b at the outer edge of the boundary layer. Because the boundary
layer is so thin, Vb at point b in Figure 1.47 is assumed to be the same as Vb at
point b on the body in the inviscid flow shown in Figure 1.46. Conventional
boundary layer analysis assumes that the flow conditions at the outer edge of the
boundary layer are the same as the surface flow conditions from an inviscid flow
analysis. Examining Figure 1.47, because the flow velocity inside the boundary
layer increases from zero at point a to a significant finite velocity at point b, and
this increase takes place over a very short distance because the boundary layer is
so thin, then the velocity gradients, the local values of dV/dy, are large. Hence
the boundary layer is a region of the flow where frictional effects are dominant.

Also identified in Figure 1.47 is the shear stress at the wall, τw, and the
boundary layer thickness, δ. Both τw and δ are important quantities, and a large
part of boundary layer theory is devoted to their calculation.

It can be shown experimentally and theoretically that the pressure through
the boundary layer in a direction perpendicular to the surface is constant. That is,
letting pa and pb be the pressures at points a and b, respectively, in Figure 1.47,
where the y-axis is perpendicular to the body at point a, then pa = pb. This is an
important phenomenon. This is why the surface pressure distribution calculated
for an inviscid flow (Figure 1.46) gives accurate results for the real-life surface
pressures; it is because the inviscid calculations give the correct pressure at the
outer edge of the thin boundary layer (point b in Figure 1.47), and these pressures
are impressed without change through the boundary layer right down to the surface
(point a). The preceding statements are reasonable for thin boundary layers that
remain attached to the body surface; they do not hold for regions of separated
flow such as those sketched in Figure 1.43. Such separated flows are discussed in
Sections 4.12 and 4.13.

Looking more closely at the boundary layer, Figure 1.48 illustrates the
velocity profile through the boundary layer. The velocity starts out at zero at
the surface and increases continuously to its value of Vb at the outer edge. Let
us set up coordinate axes x and y such that x is parallel to the surface and y is
normal to the surface, as shown in Figure 1.48. By definition, a velocity pro-
file gives the variation of velocity in the boundary layer as a function of y. In
general, the velocity profiles at different x stations are different. Similarly, the
temperature profile through the boundary layer is shown in Figure 1.49. The gas
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Figure 1.48 Velocity profile through a boundary layer.
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Figure 1.49 Temperature profile through a boundary layer.

temperature at the wall (which is the same as the surface temperature of the wall
itself—a kind of “no slip” condition on temperature) is Tw, and the temperature
at the outer edge of the boundary layer is Tb. As before, the value of Tb is the
same as the gas temperature at the surface calculated from an inviscid flow anal-
ysis. By definition, a temperature profile gives the variation of temperature in the
boundary layer as a function of y. In general, the temperature profiles at different
x stations are different. The temperature inside the boundary layer is governed
by the combined mechanisms of thermal conduction and frictional dissipation.
Thermal conduction is the transfer of heat from a hotter region to a colder region
by random molecular motion. Frictional dissipation, in a very simplistic sense, is
the local heating of the gas due to one streamline rubbing over another, somewhat
analogous to warming your hands by vigorously rubbing them together. A bet-
ter explanation of frictional dissipation is that, as a fluid element moves along a
streamline inside the boundary layer, it slows down due to frictional shear stress
acting on it, and some of the original kinetic energy it had before it entered the
boundary layer is converted to internal energy inside the boundary layer, hence
increasing the gas temperature inside the boundary layer.

The slope of the velocity profile at the wall is of particular importance because
it governs the wall shear stress. Let (dV/dy)y=0 be defined as the velocity gradient
at the wall. Then the shear stress at the wall is given by

τw = μ

(
dV

dy

)
y=0

(1.59)

where μ is the absolute viscosity coefficient (or simply the viscosity) of the gas.
The viscosity coefficient has dimensions of mass/(length)(time), as can be verified
from Equation (1.59) combined with Newton’s second law. It is a physical property
of the fluid; μ is different for different gases and liquids. Also, μ varies with T .
For liquids, μ decreases as T increases (we all know that oil gets “thinner”
when the temperature is increased). But for gases, μ increases as T increases (air
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Figure 1.50 Variation of viscosity coefficient with temperature.

gets “thicker” when the temperature is increased). For air at standard sea-level
temperature,

μ = 1.7894 × 10−5kg/(m)(s) = 3.7373 × 10−7slug/(ft)(s)

The temperature variation of μ for air over a small range of interest is given in
Figure 1.50.

Similarly, the slope of the temperature profile at the wall is very important; it
dictates the aerodynamic heating to or from the wall. Let (dT/dy)y=0 be defined
as the temperature gradient at the wall. Then the aerodynamic heating rate (energy
per second per unit area) at the wall is given by

•
qw = −k

(
dT

dy

)
y=0

(1.60)

where k is the thermal conductivity of the gas, and the minus sign connotes that
heat is conducted from a warm region to a cooler region, in the opposite direction
as the temperature gradient. That is, if the temperature gradient in Equation (1.60)
is positive (temperature increases in the direction above the wall), the heat transfer
is from the gas into the wall, opposite to the direction of increasing temperature.
If the temperature gradient is negative (temperature decreases in the direction
above the wall), the heat transfer is away from the wall into the gas, again opposite
to the direction of increasing temperature. Frequently, the heating or cooling of
a wall by a flow over the wall is called “convective heat transfer,” although from
Equation (1.60) the actual mechanism by which heat is transferred between the
gas and the wall is thermal conduction. In this book, we will label the heat transfer
taking place between the boundary layer and the wall as aerodynamic heating.
Aerodynamic heating is important in high-speed flows, particularly supersonic
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flows, and it becomes absolutely dominant in hypersonic flows. Finally, we note
that k in Equation (1.60), like μ in Equation (1.59), is a physical property of the
fluid, and is a function of temperature. For air at standard sea-level temperature,

k = 2.53 × 10−2J/(m)(s)(K) = 3.16 × 10−3lb/(s)(◦R)

Thermal conductivity is essentially proportional to the viscosity coefficient (i.e,
k = (constant) × μ), so the temperature variation of k is proportional to that
shown in Figure 1.49 for μ.

Sections 1.7 and 1.8 introduced the Reynolds number as an important simi-
larity parameter. Consider the development of a boundary layer on a surface, such
as the flat plate sketched in Figure 1.51. Let x be measured from the leading edge,
that is, from the tip of the plate. Let V∞ be the flow velocity far upstream of the
plate. The local Reynolds number at a local distance x from the leading edge is
defined as

Rex = ρ∞V∞x

μ∞
(1.61)

where the subscript ∞ is used to denote conditions in the freestream ahead of the
plate. The local values of τw and δ are functions of Rex ; this is shown in Chapter 4,
and in more detail in Part 4 of this book. The Reynolds number has a powerful in-
fluence over the properties of a boundary layer, and it governs the nature of viscous
flows in general. We will encounter the Reynolds number frequently in this book.

Up to this point in our discussion, we have considered flow streamlines to be
smooth and regular curves in space. However, in a viscous flow, and particularly
in boundary layers, life is not quite so simple. There are two basic types of viscous
flow:

1. Laminar flow, in which the streamlines are smooth and regular and a fluid
element moves smoothly along a streamline.

2. Turbulent flow, in which the streamlines break up and a fluid element moves
in a random, irregular, and tortuous fashion.

If you observe smoke rising from a lit cigarette, as sketched in Figure 1.52,
you see first a region of smooth flow—laminar flow—and then a transition to
irregular, mixed-up flow—turbulent flow. The differences between laminar and
turbulent flow are dramatic, and they have a major impact on aerodynamics. For
example, consider the velocity profiles through a boundary layer, as sketched in
Figure 1.53. The profiles are different, depending on whether the flow is laminar
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or turbulent. The turbulent profile is “fatter,” or fuller, than the laminar profile. For
the turbulent profile, from the outer edge to a point near the surface, the velocity
remains reasonably close to the freestream velocity; it then rapidly decreases to
zero at the surface. In contrast, the laminar velocity profile gradually decreases
to zero from the outer edge to the surface. Now consider the velocity gradient at
the wall, (dV/dy)y=0, which is the reciprocal of the slope of the curves shown in
Figure 1.52 evaluated at y = 0. From Figure 1.53, it is clear that(

dV

dy

)
y=0

for laminar flow <

(
dV

dy

)
y=0

for turbulent flow

Recalling Equation (1.59) for τw leads us to the fundamental and highly important
fact that laminar shear stress is less than turbulent shear stress:

(τw)laminar < (τw)turbulent

This obviously implies that the skin friction exerted on an airplane wing or body
will depend on whether the boundary layer on the surface is laminar or turbulent,
with laminar flow yielding the smaller skin friction drag.

The same trends hold for aerodynamic heating. We have for the temperature
gradients at the wall:(

dT

dy

)
y=0

for laminar flow <

(
dT

dy

)
y=0

for turbulent flow

Recalling Equation (1.60) for qw, we see that turbulent aerodynamic heating
is larger than laminar aerodynamic heating, sometimes considerably larger. At
hypersonic speeds, turbulent heat transfer rates can be almost a factor of 10
larger than laminar heat transfer rates—a showstopper in some hypersonic vehicle
designs. We will have a lot to say about the effects of turbulent versus laminar
flows in subsequent sections of this book.

In summary, in this section we have presented some introductory thoughts
about friction, viscous flows, and boundary layers, in keeping with the intro-
ductory nature of this chapter. In subsequent chapters we will expand on these
thoughts, including discussions on how to calculate some of the important prac-
tical quantities such as τw, qw, and δ.

1.12 APPLIED AERODYNAMICS: THE
AERODYNAMIC COEFFICIENTS—THEIR
MAGNITUDES AND VARIATIONS

With the present section, we begin a series of special sections in this book under
the general heading of “applied aerodynamics.” The main thrust of this book is
to present the fundamentals of aerodynamics, as is reflected in the book’s title.
However, applications of these fundamentals are liberally sprinkled throughout
the book, in the text material, in the worked examples, and in the homework
problems. The term applied aerodynamics normally implies the application of
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aerodynamics to the practical evaluation of the aerodynamic characteristics of
real configurations such as airplanes, missiles, and space vehicles moving through
an atmosphere (the earth’s, or that of another planet). Therefore, to enhance the
reader’s appreciation of such applications, sections on applied aerodynamics will
appear near the end of many of the chapters. To be specific, in this section,
we address the matter of the aerodynamic coefficients defined in Section 1.5; in
particular, we focus on lift, drag, and moment coefficients. These nondimensional
coefficients are the primary language of applications in external aerodynamics (the
distinction between external and internal aerodynamics was made in Section 1.2).
It is important for you to obtain a feeling for typical values of the aerodynamic
coefficients. (For example, do you expect a drag coefficient to be as low as 10−5, or
maybe as high as 1000—does this make sense?) The purpose of this section is to
begin to provide you with such a feeling, at least for some common aerodynamic
body shapes. As you progress through the remainder of this book, make every
effort to note the typical magnitudes of the aerodynamic coefficients that are
discussed in various sections. Having a realistic feel for these magnitudes is part
of your technical maturity.

Question: What are some typical drag coefficients for various aerodynamic
configurations? Some basic values are shown in Figure 1.54. The dimensional
analysis described in Section 1.7 proved that CD = f (M, Re). In Figure 1.54,
the drag-coefficient values are for low speeds, essentially incompressible flow;
therefore, the Mach number does not come into the picture. (For all practical
purposes, for an incompressible flow, the Mach number is theoretically zero,
not because the velocity goes to zero, but rather because the speed of sound is
infinitely large. This will be made clear in Section 8.3.) Thus, for a low-speed flow,
the aerodynamic coefficients for a fixed shape at a fixed orientation to the flow
are functions of just the Reynolds number. In Figure 1.54, the Reynolds numbers
are listed at the left and the drag-coefficient values at the right. In Figure 1.54a,
a flat plate is oriented perpendicular to the flow; this configuration produces
the largest possible drag coefficient of any conventional configuration, namely,
CD = D′/q∞S = 2.0, where S is the frontal area per unit span, i.e., S = (d)(1),
where d is the height of the plate. The Reynolds number is based on the height
d; that is, Re = ρ∞V∞d/μ∞ = 105. Figure 1.54b illustrates flow over a circular
cylinder of diameter d; here, CD = 1.2, considerably smaller than the vertical
plate value in Figure 1.54a. The drag coefficient can be reduced dramatically
by streamlining the body, as shown in Figure 1.54c. Here, CD = 0.12; this is
an order of magnitude smaller than the circular cylinder in Figure 1.54b. The
Reynolds numbers for Figure 1.54a, b, and c are all the same value, based on d
(diameter). The drag coefficients are all defined the same, based on a reference
area per unit span of (d)(1). Note that the flow fields over the configurations in
Figure 1.54a, b, and c show a wake downstream of the body; the wake is caused by
the flow separating from the body surface, with a low-energy, recirculating flow
inside the wake. The phenomenon of flow separation will be discussed in detail in
Part 4 of this book, dealing with viscous flows. However, it is clear that the wakes
diminish in size as we progressively go from Figure 1.54a, b, and c. The fact that
CD also diminishes progressively from Figure 1.54a, b, and c is no accident—it
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Figure 1.54 Drag coefficients for various aerodynamic shapes. (Source: Talay,
T. A., Introduction to the Aerodynamics of Flight, NASA SP-367, 1975).

is a direct result of the regions of separated flow becoming progressively smaller.
Why is this so? Simply consider this as one of the many interesting questions in
aerodynamics—a question that will be answered in due time in this book. Note,
in particular that the physical effect of the streamlining in Figure 1.54c results in
a very small wake, hence a small value for the drag coefficient.

Consider Figure 1.54d , where once again a circular cylinder is shown, but
of much smaller diameter. Since the diameter here is 0.1d , the Reynolds number
is now 104 (based on the same freestream V∞, ρ∞, and μ∞ as Figure 1.54a, b,
and c). It will be shown in Chapter 3 that CD for a circular cylinder is relatively
independent of Re between Re = 104 and 105. Since the body shape is the same
between Figure 1.54d and b, namely, a circular cylinder, then CD is the same value
of 1.2 as shown in the figure. However, since the drag is given by D′ = q∞SCD ,
and S is one-tenth smaller in Figure 1.54d , then the drag force on the small
cylinder in Figure 1.54d is one-tenth smaller than that in Figure 1.54b.

Another comparison is illustrated in Figure 1.54c and d. Here we are com-
paring a large streamlined body of thickness d with a small circular cylinder of
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diameter 0.1d. For the large streamlined body in Figure 1.54c,

D′ = q∞SCD = 0.12q∞d

For the small circular cylinder in Figure 1.54d,

D′ = q∞SCD = q∞(0.1d)(1.2) = 0.12q∞d

The drag values are the same! Thus, Figure 1.54c and d illustrate that the drag on
a circular cylinder is the same as that on the streamlined body which is 10 times
thicker—another way of stating the aerodynamic value of streamlining.

As a final note in regard to Figure 1.54, the flow over a circular cylinder
is again shown in Figure 1.54e. However, now the Reynolds number has been
increased to 107, and the cylinder drag coefficient has decreased to 0.6—a dra-
matic factor of two less than in Figure 1.54b and d. Why has CD decreased so
precipitously at the higher Reynolds number? The answer must somehow be con-
nected with the smaller wake behind the cylinder in Figure 1.54e compared to
Figure 1.54b. What is going on here? This is one of the fascinating questions
we will answer as we progress through our discussions of aerodynamics in this
book—an answer that will begin with Section 3.18 and culminate in Part 4 dealing
with viscous flow.

At this stage, pause for a moment and note the values of CD for the aero-
dynamic shapes in Figure 1.54. With CD based on the frontal projected area
(S = d(1) per unit span), the values of CD range from a maximum of 2 to
numbers as low as 0.12. These are typical values of CD for aerodynamic bodies.

Also, note the values of Reynolds number given in Figure 1.54. Consider
a circular cylinder of diameter 1 m in a flow at standard sea level conditions
(ρ∞ = 1.23 kg/m3 and μ∞ = 1.789 × 10−5 kg/m · s) with a velocity of 45 m/s
(close to 100 mi/h). For this case,

Re = ρ∞V∞d

μ∞
= (1.23)(45)(1)

1.789 × 10−5
= 3.09 × 106

Note that the Reynolds number is over 3 million; values of Re in the millions are
typical of practical applications in aerodynamics. Therefore, the large numbers
given for Re in Figure 1.54 are appropriate.

Let us examine more closely the nature of the drag exerted on the various
bodies in Figure 1.54. Since these bodies are at zero angle of attack, the drag is
equal to the axial force. Hence, from Equation (1.8) the drag per unit span can be
written as

D′ =
∫ TE

LE
−pu sin θ dsu +

∫ TE

LE
pl sin θ dsl

pressure drag

(1.62)

+
∫ TE

LE
τu cos θ dsu +

∫ TE

LE
τl cos θ dsl

skin friction drag
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Figure 1.55 The relative comparison between skin friction drag and pressure drag for
various aerodynamic shapes. (Source: Talay, T. A., Introduction to the Aerodynamics of
Flight, NASA SP-367, 1975).

That is, the drag on any aerodynamic body is composed of pressure drag and skin
friction drag; this is totally consistent with our discussion in Section 1.5, where
it is emphasized that the only two basic sources of aerodynamic force on a body
are the pressure and shear stress distributions exerted on the body surface. The
division of total drag onto its components of pressure and skin friction drag is
frequently useful in analyzing aerodynamic phenomena. For example, Figure 1.55
illustrates the comparison of skin friction drag and pressure drag for the cases
shown in Figure 1.54. In Figure 1.55, the bar charts at the right of the figure give
the relative drag force on each body; the cross-hatched region denotes the amount
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of skin friction drag, and the blank region is the amount of pressure drag. The
freestream density and viscosity are the same for Figure 1.55a to e; however, the
freestream velocity V∞ is varied by the necessary amount to achieve the Reynolds
numbers shown. That is, comparing Figure 1.55b and e, the value of V∞ is much
larger for Figure 1.55e. Since the drag force is given by

D′ = 1
2ρ∞V 2

∞SCD

then the drag for Figure 1.55e is much larger than for Figure 1.55b. Also shown
in the bar chart is the equal drag between the streamlined body of thickness d
and the circular cylinder of diameter 0.1d—a comparison discussed earlier in
conjunction with Figure 1.54. Of most importance in Figure 1.55, however, is the
relative amounts of skin friction and pressure drag for each body. Note that the
drag of the vertical flat plate and the circular cylinders is dominated by pressure
drag, whereas, in contrast, most of the drag of the streamlined body is due to skin
friction. Indeed, this type of comparison leads to the definition of two generic
body shapes in aerodynamics, as follows:

Blunt body = a body where most of the drag is pressure drag

Streamlined body = a body where most of the drag is skin friction drag

In Figures 1.54 and 1.55, the vertical flat plate and the circular cylinder are clearly
blunt bodies.

The large pressure drag of blunt bodies is due to the massive regions of flow
separation which can be seen in Figures 1.54 and 1.55. The reason why flow
separation causes drag will become clear as we progress through our subsequent
discussions. Hence, the pressure drag shown in Figure 1.55 is more precisely
denoted as “pressure drag due to flow separation”; this drag is frequently called
form drag. (For an elementary discussion of form drag and its physical nature,
see Reference 2.)

Let us now examine the drag on a flat plate at zero angle of attack, as sketched
in Figure 1.56. Here, the drag is completely due to shear stress; there is no pressure
force in the drag direction. The skin friction drag coefficient is defined as

C f = D′

q∞S
= D′

q∞c(1)

where the reference area is the planform area per unit span, that is, the surface area
as seen by looking down on the plate from above. C f will be discussed further in
Chapters 4 and 16. However, the purpose of Figure 1.56 is to demonstrate that:

1. C f is a strong function of Re, where Re is based on the chord length of the
plate, Re = ρ∞V∞c/μ∞. Note that C f decreases as Re increases.

2. The value of C f depends on whether the flow over the plate surface is
laminar or turbulent, with the turbulent C f being higher than the laminar
C f at the same Re. What is going on here? What is laminar flow? What is
turbulent flow? Why does it affect C f ? The answers to these questions will
be addressed in Chapters 4, 15, 17, and 18.
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Figure 1.56 Variation of laminar and turbulent skin friction coefficient for a flat plate as
a function of Reynolds number based on the chord length of the plate. The intermediate
dashed curves are associated with various transition paths from laminar flow to turbulent
flow.

Figure 1.57 Variation of section drag coefficient for an
NACA 63-210 airfoil. Re = 3 × 106.

3. The magnitudes of C f range typically from 0.001 to 0.01 over a large range
of Re. These numbers are considerably smaller than the drag coefficients
listed in Figure 1.54. This is mainly due to the different reference areas
used. In Figure 1.54, the reference area is a cross-sectional area normal to
the flow; in Figure 1.56, the reference area is the planform area.

A flat plate is not a very practical aerodynamic body—it simply has no
volume. Let us now consider a body with thickness, namely, an airfoil section.
An NACA 63-210 airfoil section is one such example. The variation of the drag
coefficient, cd , with angle of attack is shown in Figure 1.57. Here, as usual, cd is
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defined as

cd = D′

q∞c

where D′ is the drag per unit span. Note that the lowest value of cd is about 0.0045.
The NACA 63-210 airfoil is classified as a “laminar-flow airfoil” because it is
designed to promote such a flow at small α. This is the reason for the bucketlike
appearance of the cd curve at low α; at higher α, transition to turbulent flow
occurs over the airfoil surface, causing a sharp increase in cd . Hence, the value of
cd = 0.0045 occurs in a laminar flow. Note that the Reynolds number is 3 million.
Once again, a reminder is given that the various aspects of laminar and turbulent
flows will be discussed in Part 4. The main point here is to demonstrate that
typical airfoil drag-coefficient values are on the order of 0.004 to 0.006. As in
the case of the streamlined body in Figures 1.54 and 1.55, most of this drag is
due to skin friction. However, at higher values of α, flow separation over the top
surface of the airfoil begins to appear and pressure drag due to flow separation
(form drag) begins to increase. This is why cd increases with increasing α in
Figure 1.57.

Let us now consider a complete airplane. In Chapter 3, Figure 3.2 is a photo-
graph of the Seversky P-35, a typical fighter aircraft of the late 1930s. Figure 1.58
is a detailed drag breakdown for this type of aircraft. Configuration 1 in Figure 1.58
is the stripped-down, aerodynamically cleanest version of this aircraft; its drag
coefficient (measured at an angle of attack corresponding to a lift coefficient of
CL = 0.15) is CD = 0.0166. Here, CD is defined as

CD = D

q∞S

where D is the airplane drag and S is the planform area of the wing. For config-
urations 2 through 18, various changes are progressively made in order to bring
the aircraft to its conventional, operational configuration. The incremental drag
increases due to each one of these additions are tabulated in Figure 1.58. Note
that the drag coefficient is increased by more than 65 percent by these additions;
the value of CD for the aircraft in full operational condition is 0.0275. This is a
typical airplane drag-coefficient value. The data shown in Figure 1.58 were ob-
tained in the full-scale wind tunnel at the NACA Langley Memorial Laboratory
just prior to World War II. (The full-scale wind tunnel has test-section dimen-
sions of 30 by 60 ft, which can accommodate a whole airplane—hence the name
“full-scale.”)

The values of drag coefficients discussed so far in this section have applied
to low-speed flows. In some cases, their variation with the Reynolds number has
been illustrated. Recall from the discussion of dimensional analysis in Section 1.7
that drag coefficient also varies with the Mach number. Question: What is the
effect of increasing the Mach number on the drag coefficient of an airplane?
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Figure 1.58 The breakdown of various sources of drag on a late 1930s airplane, the Seversky XP-41 (derived from
the Seversky P-35 shown in Figure 3.2). [Source: Experimental data from Coe, Paul J., “Review of Drag Cleanup
Tests in Langley Full-Scale Tunnel (From 1935 to 1945) Applicable to Current General Aviation Airplanes,” NASA
TN-D-8206, 1976].

Consider the answer to this question for a Northrop T-38A jet trainer, shown in
Figure 1.59. The drag coefficient for this airplane is given in Figure 1.60 as
a function of the Mach number ranging from low subsonic to supersonic. The
aircraft is at a small negative angle of attack such that the lift is zero, hence the
CD in Figure 1.60 is called the zero-lift drag coefficient. Note that the value of
CD is relatively constant from M = 0.1 to about 0.86. Why? At Mach numbers
of about 0.86, the CD rapidly increases. This large increase in CD near Mach one
is typical of all flight vehicles. Why? Stay tuned; the answers to these questions
will become clear in Part 3 dealing with compressible flow. Also, note in Fig-
ure 1.60 that at low subsonic speeds, CD is about 0.015. This is considerably
lower than the 1930s-type airplane illustrated in Figure 1.58; of course, the T-38
is a more modern, sleek, streamlined airplane, and its drag coefficient should be
smaller.

We now turn our attention to lift coefficient and examine some typical values.
As a complement to the drag data shown in Figure 1.57 for an NACA 63-210
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Figure 1.59 Three-view of the Northrop T-38 jet trainer (Courtesy of the U.S. Air Force).

Figure 1.60 Zero-lift drag coefficient variation with Mach number for
the T-38 (Courtesy of the U.S. Air Force).
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Figure 1.61 Variation of section lift coefficient for
an NACA 63-210 airfoil. Re = 3 × 106. No flap
deflection.

airfoil, the variation of lift coefficient versus angle of attack for the same airfoil is
shown in Figure 1.61. Here, we see cl increasing linearly with α until a maximum
value is obtained near α = 14◦, beyond which there is a precipitous drop in lift.
Why does cl vary with α in such a fashion—in particular, what causes the sudden
drop in cl beyond α = 14◦? An answer to this question will evolve over the
ensuing chapters. For our purpose in the present section, observe the values of cl ;
they vary from about −1.0 to a maximum of 1.5, covering a range of α from −12
to 14◦. Conclusion: For an airfoil, the magnitude of cl is about a factor of 100
larger than cd . A particularly important figure of merit in aerodynamics is the ratio
of lift to drag, the so-called L/D ratio; many aspects of the flight performance
of a vehicle are directly related to the L/D ratio (see, e.g., Reference 2). Other
things being equal, a higher L/D means better flight performance. For an airfoil—
a configuration whose primary function is to produce lift with as little drag as
possible—values of L/D are large. For example, from Figures 1.57 and 1.61, at
α = 4◦, cl = 0.6 and cd = 0.0046, yielding L/D = 0.6

0.0046 = 130. This value is
much larger than those for a complete airplane, as we will soon see.

To illustrate the lift coefficient for a complete airplane, Figure 1.62 shows the
variation of CL with α for the T-38 in Figure 1.59. Three curves are shown, each
for a different flap deflection angle. (Flaps are sections of the wing at the trailing
edge which, when deflected downward, increase the lift of the wing. See Section
5.17 of Reference 2 for a discussion of the aerodynamic properties of flaps.) Note
that at a given α, the deflection of the flaps increases CL . The values of CL shown
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Figure 1.62 Variation of lift coefficient with angle of attack for
the T-38. Three curves are shown corresponding to three different
flap deflections. Freestream Mach number is 0.4. (Courtesy of the
U.S. Air Force).

in Figure 1.62 are about the same as that for an airfoil—on the order of 1. On
the other hand, the maximum L/D ratio of the T-38 is about 10—considerably
smaller than that for an airfoil alone. Of course, an airplane has a fuselage, engine
nacelles, etc., which are elements with other functions than just producing lift,
and indeed produce only small amounts of lift while at the same time adding a lot
of drag to the vehicle. Thus, the L/D ratio for an airplane is expected to be much
less than that for an airfoil alone. Moreover, the wing on an airplane experiences a
much higher pressure drag than an airfoil due to the adverse aerodynamic effects
of the wing tips (a topic for Chapter 5). This additional pressure drag is called
induced drag, and for short, stubby wings, such as on the T-38, the induced drag
can be large. (We must wait until Chapter 5 to find out about the nature of induced
drag.) As a result, the L/D ratio of the T-38 is fairly small as most airplanes go.
For example, the maximum L/D ratio for the Boeing B-52 strategic bomber is
21.5 (see Reference 45). However, this value is still considerably smaller than
that for an airfoil alone.
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Figure 1.63 Variation of section moment coefficient
about the quarter chord for an NACA 63-210 airfoil.
Re = 3 × 106.

Finally, we turn our attention to the values of moment coefficients. Figure 1.63
illustrates the variation of cm,c/4 for the NACA 63-210 airfoil. Note that this is
a negative quantity; all conventional airfoils produce negative, or “pitch-down,”
moments. (Recall the sign convention for moments given in Section 1.5.) Also,
notice that its value is on the order of −0.035. This value is typical of a moment
coefficient—on the order of hundredths.

With this, we end our discussion of typical values of the aerodynamic coef-
ficients defined in Section 1.5. At this stage, you should reread this section, now
from the overall perspective provided by a first reading, and make certain to fix
in your mind the typical values discussed—it will provide a useful “calibration”
for our subsequent discussions.

EXAMPLE 1.12

Consider the Seversky P-35 shown in Figure 3.2. Assume that the drag breakdown given
in Figure 1.58 for the XP-41 applies also to the P-35. Note that the data given in Fig-
ure 1.58 apply for the specific condition where CL = 0.15. The wing planform area and
the gross weight of the P-35 are 220 ft2 and 5599 lb, respectively. Calculate the horse-
power required for the P-35 to fly in steady level flight with CL = 0.15 at standard sea
level.

■ Solution
From basic mechanics, if F is a force exerted on a body moving with a velocity V, the
power generated by this system is P = F · V. When F and V are in the same direction,
then the dot product becomes P = FV where F and V are the scalar magnitudes of force
and velocity, respectively. When the airplane is in steady level flight (no acceleration)
the thrust obtained from the engine exactly counteracts the drag, i.e., T = D. Hence the
power required for the airplane to fly at a given velocity V∞ is

P = T V∞ = DV∞ (E1.12.1)
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To obtain the power required for the P-35 to fly in steady level flight with CL = 0.15, at
standard sea level, we must first calculate both D and V∞ for this flight condition.

To obtain V∞, we note that in steady level flight the weight is exactly balanced by
the aerodynamic lift; i.e.,

W = L (E1.12.2)

From Section 1.5, we have

W = L = q∞SCL = 1/2ρ∞V 2
∞SCL (E1.12.3)

where S is the planform area of the wing. Solving Equation (E1.12.3) for V∞, we have

V∞ =
√

2W

ρ∞SCL
(E1.12.4)

At standard sea level, from Appendix E (using English engineering units, consistent with
the units used in this example), ρ∞ = 0.002377 slug/ft3. Also, for the P-35 in this example,
S = 220 ft2, W = 5599 lb, and CL = 0.15. Hence, from Equation (E1.12.3), we have

V∞ =
√

2(5599)

(0.002377)(220)(0.15)
= 377.8 ft/s

This is the flight velocity when the airplane is flying at standard sea level such that its lift
coefficient is 0.15. We note that to fly in steady level flight at any other velocity the lift
coefficient would have to be different; to fly slower CL must be larger and to fly faster CL

must be smaller. Recall that CL for a given airplane is a function of angle of attack, so our
flight condition in this example with CL = 0.15 corresponds to a specific angle of attack
of the airplane.

Noting that 88 ft/s = 60 mi/h, V∞ in miles per hour is (377.8)
(

60
88

) = 257.6 mi/h.
In the reference book The American Fighter by Enzo Angelucci and Peter Bowers, Orion
Books, New York, 1985, the cruising speed of the Seversky P-35 is given as 260 mi/h.
Thus, for all practical purposes, the value of CL = 0.15 pertains to cruise velocity at
sea level, and this explains why the drag data given in Figure 1.58 was given for a lift
coefficient of 0.15.

To complete the calculation of power required, we need the value of D. From Fig-
ure 1.58, the drag coefficient for the airplane in full configuration is CD = 0.0275. For
the calculated flight velocity, the dynamic pressure is

q∞ = 1/2ρ∞V 2
∞ = 1/2(0.002377)(377.8)2 = 169.6 lb/ft2

Thus,

D = q∞SCD = (169.6)(220)(0.0275) = 1026 lb

From Equation (E1.12.1),

P = DV∞ = (1026)(377.8) = 3.876 × 105 ft lb/s
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Note that 1 horsepower is 550 ft lb/s. Thus, in horsepower,

P = 3.876 × 105

550
= 704 hp

The P-35 was equipped with a Pratt & Whitney R-1830-45 engine rated at 1050 hp. The
power required at cruising velocity calculated here is 704 hp, consistent with this engine
throttled back for efficient cruise conditions.

The purpose of this worked example is to illustrate typical values of CL and CD for
a real airplane flying at real conditions, consistent with the subtitle of this section “Ap-
plied Aerodynamics: The Aerodynamic Coefficients—Their Magnitudes and Variations.”
Moreover, we have shown how these coefficients are used to calculate useful aerody-
namic performance characteristics for an airplane, such as cruising velocity and power
required for steady level flight. This example also underscores the importance and utility
of aerodynamic coefficients. We made these calculations for a given airplane knowing
only the values of the lift and drag coefficients, thus again reinforcing the importance of
the dimensional analysis given in Section 1.7 and the powerful concept of flow similarity
discussed in Section 1.8.

1.13 HISTORICAL NOTE: THE ILLUSIVE
CENTER OF PRESSURE

The center of pressure of an airfoil was an important matter during the devel-
opment of aeronautics. It was recognized in the nineteenth century that, for a
heavier-than-air machine to fly at stable, equilibrium conditions (e.g., straight-
and-level flight), the moment about the vehicle’s center of gravity must be zero
(see Chapter 7 of Reference 2). The wing lift acting at the center of pressure,
which is generally a distance away from the center of gravity, contributes sub-
stantially to this moment. Hence, the understanding and prediction of the center
of pressure was felt to be absolutely necessary in order to design a vehicle with
proper equilibrium. On the other hand, the early experimenters had difficulty
measuring the center of pressure, and much confusion reigned. Let us examine
this matter further.

The first experiments to investigate the center of pressure of a lifting surface
were conducted by the Englishman George Cayley (1773–1857) in 1808. Cayley
was the inventor of the modern concept of the airplane, namely, a vehicle with
fixed wings, a fuselage, and a tail. He was the first to separate conceptually the
functions of lift and propulsion; prior to Cayley, much thought had gone into
ornithopters—machines that flapped their wings for both lift and thrust. Cayley
rejected this idea, and in 1799, on a silver disk now in the collection of the Science
Museum in London, he inscribed a sketch of a rudimentary airplane with all the
basic elements we recognize today. Cayley was an active, inventive, and long-
lived man, who conducted numerous pioneering aerodynamic experiments and
fervently believed that powered, heavier-than-air, manned flight was inevitable.
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(See Chapter 1 of Reference 2 for an extensive discussion of Cayley’s contribu-
tions to aeronautics.)

In 1808, Cayley reported on experiments of a winged model which he tested
as a glider and as a kite. His comments on the center of pressure are as follows:

By an experiment made with a large kite formed of an hexagon with wings extended
from it, all so constructed as to present a hollow curve to the current, I found that
when loaded nearly to 1 lb to a foot and 1/2, it required the center of gravity to be
suspended so as to leave the anterior and posterior portions of the surface in the ratio
of 3 to 7. But as this included the tail operating with a double leverage behind, I
think such hollow surfaces relieve about an equal pressure on each part, when they
are divided in the ratio of 5 to 12, 5 being the anterior portion. It is really surprising
to find so great a difference, and it obliges the center of gravity of flying machines
to be much forwarder of the center of bulk (the centroid) than could be supposed a
priori.

Here, Cayley is saying that the center of pressure is 5 units from the leading edge
and 12 units from the trailing edge (i.e., xcp = 5/17c). Later, he states in addition:
“I tried a small square sail in one plane, with the weight nearly the same, and I
could not perceive that the center-of-resistance differed from the center of bulk.”
That is, Cayley is stating that the center of pressure in this case is 1/2c.

There is no indication from Cayley’s notes that he recognized that center of
pressure moves when the lift, or angle of attack, is changed. However, there is no
doubt that he was clearly concerned with the location of the center of pressure
and its effect on aircraft stability.

The center of pressure on a flat surface inclined at a small angle to the flow
was studied by Samuel P. Langley during the period 1887–1896. Langley was
the secretary of the Smithsonian at that time, and devoted virtually all his time
and much of the Smithsonian’s resources to the advancement of powered flight.
Langley was a highly respected physicist and astronomer, and he approached the
problem of powered flight with the systematic and structured mind of a scientist.
Using a whirling arm apparatus as well as scores of rubber-band powered models,
he collected a large bulk of aerodynamic information with which he subsequently
designed a full-scale aircraft. The efforts of Langley to build and fly a successful
airplane resulted in two dismal failures in which his machine fell into the Potomac
River—the last attempt being just 9 days before the Wright brothers’ historic first
flight on December 17, 1903. In spite of these failures, the work of Langley helped
in many ways to advance powered flight. (See Chapter 1 of Reference 2 for more
details.)

Langley’s observations on the center of pressure for a flat surface inclined
to the flow are found in the Langley Memoir on Mechanical Flight, Part I, 1887
to 1896, by Samuel P. Langley, and published by the Smithsonian Institution in
1911—5 years after Langley’s death. In this paper, Langley states:

The center-of-pressure in an advancing plane in soaring flight is always in advance of
the center of figure, and moves forward as the angle-of-inclination of the sustaining
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surfaces diminishes, and, to a less extent, as horizontal flight increases in velocity.
These facts furnish the elementary ideas necessary in discussing the problem of
equilibrium, whose solution is of the most vital importance to successful flight.

The solution would be comparatively simple if the position of the center-of-
pressure could be accurately known beforehand, but how difficult the solution is
may be realized from a consideration of one of the facts just stated, namely, that the
position of the center-of-pressure in horizontal flight shifts with velocity of the flight
itself.

Here, we see that Langley is fully aware that the center of pressure moves
over a lifting surface, but that its location is hard to pin down. Also, he notes the
correct variation for a flat plate, namely, xcp moves forward as the angle of attack
decreases. However, he is puzzled by the behavior of xcp for a curved (cambered)
airfoil. In his own words:

Later experiments conducted under my direction indicate that upon the curved sur-
faces I employed, the center-of-pressure moves forward with an increase in the angle
of elevation, and backward with a decrease, so that it may lie even behind the center
of the surface. Since for some surfaces the center-of-pressure moves backward, and
for others forward, it would seem that there might be some other surface for which it
will be fixed.

Here, Langley is noting the totally opposite behavior of the travel of the center
of pressure on a cambered airfoil in comparison to a flat surface, and is indicating
ever so slightly some of his frustration in not being able to explain his results in
a rational scientific way.

Three-hundred-fifty miles to the west of Langley, in Dayton, Ohio, Orville
and Wilbur Wright were also experimenting with airfoils. As described in Sec-
tion 1.1, the Wrights had constructed a small wind tunnel in their bicycle shop
with which they conducted aerodynamic tests on hundreds of different airfoil and
wing shapes during the fall, winter, and spring of 1901–1902. Clearly, the Wrights
had an appreciation of the center of pressure, and their successful airfoil design
used on the 1903 Wright Flyer is a testimonial to their mastery of the problem.
Interestingly enough, in the written correspondence of the Wright brothers, only
one set of results for the center of pressure can be found. This appears in Wilbur’s
notebook, dated July 25, 1905, in the form of a table and a graph. The graph is
shown in Figure 1.64—the original form as plotted by Wilbur. Here, the center
of pressure, given in terms of the percentage of distance from the leading edge, is
plotted versus angle of attack. The data for two airfoils are given, one with large
curvature (maximum height to chord ratio = 1/12) and one with more moderate
curvature (maximum height to chord ratio = 1/20). These results show the now
familiar travel of the center of pressure for a curved airfoil, namely, xcp moves
forward as the angle of attack is increased, at least for small to moderate values
of α. However, the most forward excursion of xcp in Figure 1.64 is 33 percent be-
hind the leading edge—the center of pressure is always behind the quarter-chord
point.
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Figure 1.64 Wright brothers’ measurements of the center of pressure as a function of angle of attack
for a curved (cambered) airfoil. Center of pressure is plotted on the ordinate in terms of percentage
distance along the chord from the leading edge. This figure shows the actual data as hand-plotted by
Wilbur Wright, which appears in Wilbur’s notebook dated July 25, 1905.

The first practical airfoil theory, valid for thin airfoils, was developed by
Ludwig Prandtl and his colleagues at Göttingen, Germany, during the period just
prior to and during World War I. This thin airfoil theory is described in detail in
Chapter 4. The result for the center of pressure for a curved (cambered) airfoil
is given by Equation (4.66), and shows that xcp moves forward as the angle of
attack (hence cl) increases, and that it is always behind the quarter-chord point
for finite, positive values of cl . This theory, in concert with more sophisticated
wind-tunnel measurements that were being made during the period 1915–1925,
finally brought the understanding and prediction of the location of the center of
pressure for a cambered airfoil well into focus.

Because xcp makes such a large excursion over the airfoil as the angle of attack
is varied, its importance as a basic and practical airfoil property has diminished.
Beginning in the early 1930s, the National Advisory Committee for Aeronautics
(NACA), at its Langley Memorial Aeronautical Laboratory in Virginia, measured
the properties of several systematically designed families of airfoils—airfoils
which became a standard in aeronautical engineering. These NACA airfoils are
discussed in Sections 4.2 and 4.3. Instead of giving the airfoil data in terms of lift,
drag, and center of pressure, the NACA chose the alternate systems of reporting
lift, drag, and moments about either the quarter-chord point or the aerodynamic
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center. These are totally appropriate alternative methods of defining the force-
and-moment system on an airfoil, as discussed in Section 1.6 and illustrated in
Figure 1.26. As a result, the center of pressure is rarely given as part of modern
airfoil data. On the other hand, for three-dimensional bodies, such as slender
projectiles and missiles, the location of the center of pressure still remains an
important quantity, and modern missile data frequently include xcp. Therefore, a
consideration of center of pressure still retains its importance when viewed over
the whole spectrum of flight vehicles.

1.14 HISTORICAL NOTE: AERODYNAMIC
COEFFICIENTS

In Section 1.5, we introduced the convention of expressing aerodynamic force in
terms of an aerodynamic coefficient, such as

L = 1
2ρ∞V 2

∞SCL

and D = 1
2ρ∞V 2

∞SCD

where L and D are lift and drag, respectively, and CL and CD are the lift coef-
ficient and drag coefficient, respectively. This convention, expressed in the form
shown above, dates from about 1920. But the use of some type of aerodynamic
coefficients goes back much further. In this section, let us briefly trace the geneal-
ogy of aerodynamic coefficients. For more details, see the author’s recent book,
A History of Aerodynamics and Its Impact on Flying Machines (Reference 58).

The first person to define and use aerodynamic force coefficients was Otto
Lilienthal, the famous German aviation pioneer at the end of the nineteenth cen-
tury. Interested in heavier-than-flight from his childhood, Lilienthal carried out the
first definitive series of aerodynamic force measurements on cambered (curved)
airfoil shapes using a whirling arm. His measurements were obtained over a pe-
riod of 23 years, culminating in the publication of his book Der Vogelflug als
Grundlage der Fliegekunst (Birdflight as the Basis of Aviation) in 1889. Many
of the graphs in his book are plotted in the form that today we identify as a drag
polar, that is, a plot of drag coefficient versus lift coefficient, with the different
data points being measured at angles of attack ranging from below zero to 90◦.
Lilienthal had a degree in Mechanical Engineering, and his work reflected a tech-
nical professionalism greater than most at that time. Beginning in 1891, he put
his research into practice by designing several gliders, and executing over 2000
successful glider flights before his untimely death in a crash on August 9, 1896. At
the time of his death, Lilienthal was working on the design of an engine to power
his machines. Had he lived, there is some conjecture that he would have beaten the
Wright brothers in the race for the first heavier-than-air, piloted, powered flight.

In his book, Lilienthal introduced the following equations for the normal
and axial forces, which he denoted by N and T , respectively (for normal and
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“tangential”)

N = 0.13ηFV 2 (1.63)

and T = 0.13θ FV 2 (1.64)

where, in Lilienthal’s notation, F was the reference planform area of the wing in
m2, V is the freestream velocity in m/s, and N and T are in units of kilogram force
(the force exerted on one kilogram of mass by gravity at sea level). The number
0.13 is Smeaton’s coefficient, a concept and quantity stemming from measure-
ments made in the eighteenth century on flat plates oriented perpendicular to the
flow. Smeaton’s coefficient is proportional to the density of the freestream; its
use is archaic, and it went out of favor at the beginning of the twentieth century.
By means of Equations (1.63) and (1.64) Lilienthal introduced the “normal” and
“tangential” coefficients, η and θ versus angle of attack. A copy of this table,
reproduced in a paper by Octave Chanute in 1897, is shown in Figure 1.65. This
became famous as the “Lilienthal Tables,” and was used by the Wright brothers
for the design of their early gliders. It is proven in Reference 58 that Lilienthal
did not use Equations (1.63) and (1.64) explicitly to reduce his experimental data
to coefficient form, but rather determined his experimental values for η and θ

by dividing the experimental measurements for N and T by his measured force
on the wing at 90◦ angle of attack. In so doing, he divided out the influence of
uncertainties in Smeaton’s coefficient and the velocity, the former being particu-
larly important because the classical value of Smeaton’s coefficient of 0.13 was in
error by almost 40 percent. (See Reference 58 for more details.) Nevertheless, we
have Otto Lilienthal to thank for the concept of aerodynamic force coefficients,
a tradition that has been followed in various modified forms to the present time.

Following on the heals of Lilienthal, Samuel Langley at the Smithsonian
Institution published whirling arm data for the resultant aerodynamic force R on
a flat plate as a function of angle of attack, using the following equation:

R = kSV 2 F(α) (1.65)

where S is the planform area, k is the more accurate value of Smeaton’s coef-
ficient (explicitly measured by Langley on his whirling arm), and F(α) was the
corresponding force coefficient, a function of angle of attack.

The Wright brothers preferred to deal in terms of lift and drag, and used ex-
pressions patterned after Lilienthal and Langley to define lift and drag coefficients:

L = kSV 2CL (1.66)

D = kSV 2CD (1.67)

The Wrights were among the last to use expressions written explicitly in terms of
Smeaton’s coefficient k. Gustave Eiffel in 1909 defined a “unit force coefficient”
Ki as

R = Ki SV 2 (1.68)



Figure 1.65 The Lilienthal Table of normal and axial force coefficients. This is a
facsimile of the actual table that was published by Octave Chanute in an article
entitled “Sailing Flight,” The Aeronautical Annual, 1897, which was subsequently
used by the Wright brothers.

95
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In Equation (1.68), Smeaton’s coefficient is nowhere to be seen; it is buried in the
direct measurement of Ki . (Eiffel, of Eiffel Tower fame, built a large wind tunnel
in 1909, and for the next 14 years reigned as France’s leading aerodynamicist until
his death in 1923.) After Eiffel’s work, Smeaton’s coefficient was never used in
the aerodynamic literature—it was totally passé.

Gorrell and Martin, in wind tunnel tests carried out in 1917 at MIT on various
airfoil shapes, adopted Eiffel’s approach, giving expressions for lift and drag:

L = Ky AV2 (1.69)

D = Kx AV2 (1.70)

where A denoted planform area and Ky and Kx were the lift and drag coefficients,
respectively. For a short period, the use of Ky and Kx became popular in the United
States.

However, also by 1917 the density ρ began to appear explicitly in expressions
for force coefficients. In NACA Technical Report No. 20, entitled “Aerodynamic
Coefficients and Transformation Tables,” we find the following expression:

F = CρSV 2

where F is the total force acting on the body, ρ is the freestream density, and
C is the force coefficient, which was described as “an abstract number, varying
for a given airfoil with its angle of incidence, independent of the choice of units,
provided these are consistently used for all four quantities (F , ρ, S, and V ).”

Finally, by the end of World War I, Ludwig Prandtl at Gottingen University
in Germany established the nomenclature that is accepted as standard today.
Prandtl was already famous by 1918 for his pioneering work on airfoil and wing
aerodynamics, and for his conception and development of boundary layer theory.
(See Section 5.8 for a biographical description of Prandtl.) Prandtl reasoned that
the dynamic pressure, 1

2ρ∞V 2
∞ (he called it “dynamical pressure”), was well

suited to describe aerodynamic force. In his 1921 English-language review of
works performed at Gottingen before and during World War I (Reference 59), he
wrote for the aerodynamic force,

W = cFq (1.71)

where W is the force, F is the area of the surface, q is the dynamic pressure, and
c is a “pure number” (i.e., the force coefficient). It was only a short, quick step to
express lift and drag as

L = q∞SCL (1.72)

and D = q∞SCD (1.73)

where CL and CD are the “pure numbers” referred to by Prandtl (i.e., the lift and
drag coefficients). And this is the way it has been ever since.
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1.15 SUMMARY
Refer again to the road map for Chapter 1 given in Figure 1.11. Read again each
block in this diagram as a reminder of the material we have covered. If you feel
uncomfortable about some of the concepts, or if your memory is slightly “foggy”
on certain points, go back and reread the pertinent sections until you have mastered
the material.

This chapter has been primarily qualitative, emphasizing definitions and ba-
sic concepts. However, some of the more important quantitative relations are
summarized below:

The normal, axial, lift, drag, and moment coefficients for an aerodynamic body
can be obtained by integrating the pressure and skin friction coefficients over
the body surface from the leading to the trailing edge. For a two-dimensional
body,

cn = 1

c

[∫ c

0
(Cp,l − Cp,u) dx +

∫ c

0

(
c f,u

dyu

dx
+ c f,l

dyl

dx

)
dx

]
(1.15)

ca = 1

c

[∫ c

0

(
Cp,u

dyu

dx
− Cp,l

dyl

dx

)
dx +

∫ c

0
(c f,u + c f,l) dx

]
(1.16)

cmLE = 1

c2

[∫ c

0
(Cp,u − Cp,l)x dx −

∫ c

0

(
c f,u

dyu

dx
+ c f,l

dyl

dx

)
x dx (1.17)

+
∫ c

0

(
Cp,u

dyu

dx
+ c f,u

)
yu dx +

∫ c

0

(
−Cp,l

dyl

dx
+ c f,l

)
yl dx

]

cl = cn cos α − ca sin α (1.18)

cd = cn sin α + ca cos α (1.19)

The center of pressure is obtained from

xcp = − M ′
LE

N ′ ≈ − M ′
LE

L ′ (1.20) and (1.21)

The criteria for two or more flows to be dynamically similar are:

1. The bodies and any other solid boundaries must be geometrically
similar.

2. The similarity parameters must be the same. Two important similarity
parameters are Mach number M = V/a and Reynolds number
Re = ρV c/μ.

If two or more flows are dynamically similar, then the force coefficients
CL , CD , etc., are the same.
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In fluid statics, the governing equation is the hydrostatic equation:

dp = −gρ dy (1.52)

For a constant density medium, this integrates to

p + ρgh = constant (1.54)

or p1 + ρgh1 = p2 + ρgh2

Such equations govern, among other things, the operation of a manometer, and
also lead to Archimedes’ principle that the buoyancy force on a body immersed
in a fluid is equal to the weight of the fluid displaced by the body.

1.16 INTEGRATED WORK CHALLENGE:
FORWARD-FACING AXIAL AERODYNAMIC
FORCE ON AN AIRFOIL—CAN IT HAPPEN
AND, IF SO, HOW?

Note: This section is the first of a number of “Integrated Work Challenges” that
appear at the end of a chapter. In contrast to the numerous worked examples that
appear at the end of specific sections and which bear on the material just in that
specific section, the concept of the “Integrated Work Challenge” is to provide an
extended worked example that bears on the chapter as a whole—that serves to
integrate and use material from many sections of the chapter.

Concept: Imagine that you place yourself on the chord line of an airfoil that is
oriented at a given angle of attack in a flow, such as shown in Figure 1.17. The
airfoil is feeling an aerodynamic force generated by the net pressure and shear
stress distributions exerted on every square centimeter of the exposed surface of
the airfoil (Figure 1.18). There is no propulsion device (no jet engine, rocket,
propeller, etc.) on the airfoil, so there is no source of a forward-facing thrust on
the airfoil (at least you do not think so). Looking forward along the chord line,
common sense (sometimes called “intuition”) tells you that the aerodynamic force
must always be in the opposite direction, i.e., always “dragging” you back.

Surprise: Your intuition is wrong. There is a situation where the net aerodynamic
force results in a forward-facing component along the chord line, i.e., a forward-
facing axial force acting on the airfoil. In Figure 1.17, such a forward-facing axial
force would be negative.

This situation was first noticed by the German engineer Otto Lilienthal during
his whirling arm experiments before 1889. (See Anderson, A History of Aerody-
namics, Cambridge University Press, 1998, pp. 138–164). In his book Birdflight
as the Basis of Aviation, page 69, he contrasts the aerodynamic force generated
on a cambered (curved) airfoil compared to that on a flat plate: “Under these con-
ditions the characteristic difference of curved surfaces against planes appears still
more striking; not only does the direction of the air pressures closely approach
that of the perpendicular to the surface, but for certain angles it actually passes
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beyond it to the other side, converting the usual restraining component into a pro-
pelling component.” Indeed, turning to Figure 1.65 in Section 1.14, you quickly
see negative “tangentials”‚ i.e., a negative forward-facing axial force, tabulated
for a wide range of angle of attack. This situation was treated as a “curiosity”;
such a forward-facing axial force is counterintuitive. It is real, however.

Challenge: Explain this forward-facing axial force, and find the conditions under
which it occurs.

Solution: The solution to this problem is based on geometry. It requires a close
examination of the aerodynamic force diagramed in Figure 1.17 and an under-
standing of the meaning and significance of resolving the resultant aerodynamic
force R into its components normal and parallel to the chord (the normal and
axial components N and A, respectively) and alternatively resolving R into its
components normal and parallel to the freestream velocity (the lift L and drag D,
respectively). Since we are interested in the case of a forward-facing axial force,
i.e., a negative value of A, let us first examine what Figure 1.17 would look like
if the axial force were zero. This special case is sketched in Figure 1.66a. Here,
because the axial force is zero, the normal force N is the resultant force R on
the airfoil. Since, by definition, N is perpendicular to the chord line, then R is
perpendicular to the chord line; i.e., the only way for the axial force to be zero is
for the resultant aerodynamic force to be perpendicular to the chord line. Since
the angle between the chord line and the freestream is, by definition, the angle of
attack α, then from Figure 1.66a, where L is perpendicular to the freestream and
R is perpendicular to the chord line, the angle between the lift L and the resultant
R is also equal to α. From the trigonometry of Figure 1.66,

D

L
= tan α

or,
L

D
= 1

tan α
= cot α

Consider the case when the drag D is actually smaller than that shown in Fig-
ure 1.66a, as sketched in Figure 1.66b. In this case, when R is resolved into its
normal and axial components, the axial component is facing forward, i.e., A is
now facing forward along the chord line. Because D in Figure 1.66b is smaller
than in Figure 1.66a,

D

L
< tan α

or,

L

D
> cot α

This is the answer. When the lift-to-drag ratio for the airfoil is larger than the
cotangent of the angle of attack, then there exists a forward-facing axial force on
the airfoil, the “propelling component,” in the words of Otto Lilienthal quoted
earlier.



100 PART 1 Fundamental Principles

D

�

�

L N, R

(a)

D

V�

L

A

N

(b)

R

V�

�

Chord line

Chord line

Figure 1.66 Illustration of the condition for a
forward-facing axial force. (a) Resultant force
along the normal. (b) Resultant force ahead of
the normal.

For example, take the case of a particular airfoil, the NACA 2412 airfoil,
with lift and drag data given in Figures 4.10 and 4.11, respectively. (The fact that
we are leaping ahead several chapters is irrelevant; we are just extracting some
experimental data for an airfoil.) At α = 6◦, from Figure 4.10 we see that the
airfoil lift coefficient is c� = 0.88, and from Figure 4.11 the drag coefficient is
cd = 0.008. The lift-to-drag ratio is

c�

cd
= 0.88

0.008
= 110

In comparison,

cot 6◦ = 9.52



CHAPTER 1 Aerodynamics: Some Introductory Thoughts 101

Hence, in this case the airfoil lift-to-drag ratio is much larger than the cot α, and
the condition

L

D
> cot α

is satisfied; the airfoil experiences a forward-facing axial force.
Note: The lift-to-drag ratios for airfoils can be much higher than the lift-

to-drag ratios for whole airplanes. Compare the value of 110 obtained here for
the NACA 2412 airfoil with the value of 14 for the executive jet transport in
Example 1.7. One of the reasons for this is that the whole airplane has a greater
surface area contributed by parts of the airplane that do not produce lift, with a
consequently much larger skin-friction drag.

Also note: As explained in Chapter 4, by convention, the lift and drag co-
efficients for an airfoil are expressed by lowercase letters, whereas those for a
three-dimensional body, such as the airplane in Example 1.7, are expressed by
uppercase letters. We have followed this convention in our present discussion.

Finally, return to the quote from Otto Lilienthal given at the beginning of
this section. He makes a distinction between “curved surfaces against planes,”
meaning that his measurements revealed a forward-facing axial force, i.e., a “pro-
pelling component,” only for the cambered (curved) airfoils, but not for flat plates
(“planes”). This begs the question: Can a forward-facing axial force occur on a
flat plate? Answering this question is the essence of Problem 1.20 at the end of
this chapter.

1.17 PROBLEMS
1.1 For most gases at standard or near standard conditions, the relationship

among pressure, density, and temperature is given by the perfect gas
equation of state: p = ρRT , where R is the specific gas constant. For air
at near standard conditions, R = 287 J/(kg · K) in the International
System of Units and R = 1716 ft · lb/(slug · ◦R) in the English
Engineering System of Units. (More details on the perfect gas equation of
state are given in Chapter 7.) Using the above information, consider the
following two cases:
a. At a given point on the wing of a Boeing 727, the pressure and

temperature of the air are 1.9 × 104 N/m2 and 203 K, respectively.
Calculate the density at this point.

b. At a point in the test section of a supersonic wind tunnel, the pressure
and density of the air are 1058 lb/ft2 and 1.23 × 10−3 slug/ft3,
respectively. Calculate the temperature at this point.

1.2 Starting with Equations (1.7), (1.8), and (1.11), derive in detail
Equations (1.15), (1.16), and (1.17).

1.3 Consider an infinitely thin flat plate of chord c at an angle of attack α in a
supersonic flow. The pressures on the upper and lower surfaces are
different but constant over each surface; that is, pu(s) = c1 and
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pl(s) = c2, where c1 and c2 are constants and c2 > c1. Ignoring the shear
stress, calculate the location of the center of pressure.

1.4 Consider an infinitely thin flat plate with a 1 m chord at an angle of attack
of 10◦ in a supersonic flow. The pressure and shear stress distributions on
the upper and lower surfaces are given by pu = 4 × 104(x − 1)2 +
5.4 × 104, pl = 2 × 104(x − 1)2 + 1.73 × 105, τu = 288x−0.2, and
τl = 731x−0.2, respectively, where x is the distance from the leading edge
in meters and p and τ are in newtons per square meter. Calculate the
normal and axial forces, the lift and drag, moments about the leading
edge, and moments about the quarter chord, all per unit span. Also,
calculate the location of the center of pressure.

1.5 Consider an airfoil at 12◦ angle of attack. The normal and axial force
coefficients are 1.2 and 0.03, respectively. Calculate the lift and drag
coefficients.

1.6 Consider an NACA 2412 airfoil (the meaning of the number designations
for standard NACA airfoil shapes is discussed in Chapter 4). The
following is a tabulation of the lift, drag, and moment coefficients about
the quarter chord for this airfoil, as a function of angle of attack.

α (degrees) cl cd cm,c/4

−2.0 0.05 0.006 −0.042
0 0.25 0.006 −0.040

2.0 0.44 0.006 −0.038
4.0 0.64 0.007 −0.036
6.0 0.85 0.0075 −0.036
8.0 1.08 0.0092 −0.036

10.0 1.26 0.0115 −0.034
12.0 1.43 0.0150 −0.030
14.0 1.56 0.0186 −0.025

From this table, plot on graph paper the variation of xcp/c as a function
of α.

1.7 The drag on the hull of a ship depends in part on the height of the water
waves produced by the hull. The potential energy associated with these
waves therefore depends on the acceleration of gravity g. Hence, we can
state that the wave drag on the hull is D = f (ρ∞, V∞, c, g) where c is a
length scale associated with the hull, say, the maximum width of the hull.
Define the drag coefficient as CD ≡ D/q∞c2. Also, define a similarity
parameter called the Froude number, Fr = V/

√
gc. Using Buckingham’s

pi theorem, prove that CD = f (Fr).
1.8 The shock waves on a vehicle in supersonic flight cause a component of

drag called supersonic wave drag Dw. Define the wave-drag coefficient as
CD,w = Dw/q∞S, where S is a suitable reference area for the body. In
supersonic flight, the flow is governed in part by its thermodynamic
properties, given by the specific heats at constant pressure cp and at
constant volume cv. Define the ratio cp/cv ≡ γ . Using Buckingham’s
pi theorem, show that CD,w = f (M∞, γ ). Neglect the influence of friction.
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1.9 Consider two different flows over geometrically similar airfoil shapes,
one airfoil being twice the size of the other. The flow over the smaller
airfoil has freestream properties given by T∞ = 200 K, ρ∞ = 1.23 kg/m3,
and V∞ = 100 m/s. The flow over the larger airfoil is described by
T∞ = 800 K, ρ∞ = 1.739 kg/m3, and V∞ = 200 m/s. Assume that
both μ and a are proportional to T 1/2. Are the two flows dynamically
similar?

1.10 Consider a Lear jet flying at a velocity of 250 m/s at an altitude of 10 km,
where the density and temperature are 0.414 kg/m3 and 223 K,
respectively. Consider also a one-fifth scale model of the Lear jet being
tested in a wind tunnel in the laboratory. The pressure in the test section of
the wind tunnel is 1 atm = 1.01 × 105 N/m2. Calculate the necessary
velocity, temperature, and density of the airflow in the wind-tunnel test
section such that the lift and drag coefficients are the same for the
wind-tunnel model and the actual airplane in flight. Note: The relation
among pressure, density, and temperature is given by the equation of state
described in Problem 1.1.

1.11 A U-tube mercury manometer is used to measure the pressure at a point
on the wing of a wind-tunnel model. One side of the manometer is
connected to the model, and the other side is open to the atmosphere.
Atmospheric pressure and the density of liquid mercury are
1.01 × 105 N/m2 and 1.36 × 104 kg/m3, respectively. When the
displacement of the two columns of mercury is 20 cm, with the high
column on the model side, what is the pressure on the wing?

1.12 The German Zeppelins of World War I were dirigibles with the following
typical characteristics: volume = 15,000 m3 and maximum diameter =
14.0 m. Consider a Zeppelin flying at a velocity of 30 m/s at a standard
altitude of 1000 m (look up the corresponding density in Appendix D).
The Zeppelin is at a small angle of attack such that its lift coefficient is
0.05 (based on the maximum cross-sectional area). The Zeppelin is flying
in straight-and-level flight with no acceleration. Calculate the total weight
of the Zeppelin.

1.13 Consider a circular cylinder in a hypersonic flow, with its axis
perpendicular to the flow. Let φ be the angle measured between radii
drawn to the leading edge (the stagnation point) and to any arbitrary point
on the cylinder. The pressure coefficient distribution along the cylindrical
surface is given by Cp = 2 cos2 φ for 0 ≤ φ ≤ π/2 and 3π/2 ≤ φ ≤ 2π

and Cp = 0 for π/2 ≤ φ ≤ 3π/2. Calculate the drag coefficient for the
cylinder, based on projected frontal area of the cylinder.

1.14 Derive Archimedes’ principle using a body of general shape.
1.15 Consider a light, single-engine, propeller-driven airplane similar to a

Cessna Skylane. The airplane weight is 2950 lb and the wing reference
area is 174 ft2. The drag coefficient of the airplane CD is a function of the
lift coefficient CL for reasons that are given in Chapter 5; this function for
the given airplane is CD = 0.025 + 0.054C2

L .
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a. For a steady level flight at sea level, where the ambient atmospheric
density is 0.002377 slug/ft3, plot on a graph the variation of CL , CD ,
and the lift-to-drag ratio L/D with flight velocity ranging between
70 ft/s and 250 ft/s.

b. Make some observations about the variation of these quantities with
velocity.

1.16 Consider a flat plate at zero angle of attack in a hypersonic flow at Mach
10 at standard sea level conditions. At a point 0.5 m downstream from the
leading edge, the local shear stress at the wall is 282 N/m2. The gas
temperature at the wall is equal to standard sea level temperature. At this
point, calculate the velocity gradient at the wall normal to the wall.

1.17 Consider the Space Shuttle during its atmospheric entry at the end of a
mission in space. At the altitude where the Shuttle has slowed to Mach 9,
the local heat transfer at a given point on the lower surface of the wing is
0.03 MW/m2. Calculate the normal temperature gradient in the air at this
point on the wall, assuming the gas temperature at the wall is equal to the
standard sea-level temperature.

1.18 The purpose of this problem is to give you a feel for the magnitude of
Reynolds number appropriate to real airplanes in actual flight.
a. Consider the DC-3 shown in Figure 1.1. The wing root chord length

(distance from the front to the back of the wing where the wing joins
the fuselage) is 14.25 ft. Consider the DC-3 flying at 200 miles per
hour at sea level. Calculate the Reynolds number for the flow over the
wing root chord. (This is an important number, because as we will see
later, it governs the skin-friction drag over that portion of the wing.)

b. Consider the F-22 shown in Figure 1.5, and also gracing the cover of
this book. The chord length where the wing joins the center body is
21.5 ft. Consider the airplane making a high-speed pass at a velocity
of 1320 ft/s at sea level (Mach 1.2). Calculate the Reynolds number at
the wing root.

1.19 For the design of their gliders in 1900 and 1901, the Wright brothers used
the Lilienthal Table given in Figure 1.65 for their aerodynamic data. Based
on these data, they chose a design angle of attack of 3 degrees, and made
all their calculations of size, weight, etc., based on this design angle of
attack. Why do you think they chose three degrees?

Hint: From the table, calculate the ratio of lift to drag, L/D, at 3 degrees angle
of attack, and compare this with the lift-to-drag ratio at other angles of attack.
You might want to review the design box at the end of Section 1.8, especially
Figure 1.36, for the importance of L/D.

1.20 Consider the existence of a forward-facing axial aerodynamic force on an
airfoil, as discussed in Section 1.16. Can a forward-facing axial force exist on
a flat plate at an angle of attack in a flow? Thoroughly explain your answer.



C H A P T E R 2
Aerodynamics: Some
Fundamental Principles
and Equations

There is so great a difference between a fluid and a collection of solid particles
that the laws of pressure and of equilibrium of fluids are very different from the
laws of the pressure and equilibrium of solids.

Jean Le Rond d’Alembert, 1768

The principle is most important, not the detail.
Theodore von Karman, 1954

PREVIEW BOX

Fundamental principles, equations, fundamental prin-
ciples, equations. More fundamental principles. More
equations. At first thought, studying fundamental
principles and equations may not seem very exciting.
But think again. Consider that you are participating
in the design and development of a new hypersonic
vehicle. Such a vehicle is shown in Figure 2.1, the
X-43A Hyper-X research vehicle. How do you go
about designing the aerodynamic shape of the new
vehicle? Answer: By using fundamental principles
and equations. Consider the new Boeing 787 jet trans-
port (Figure 2.2) specifically designed to obtain high
aerodynamic and propulsive efficiency. How did the

Figure 2.1 X-43A Hypersonic Experimental
Vehicle—Artist Concept in Flight (NASA).
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Figure 2.2 Boeing 787 jet airliner.

Boeing aerodynamicists first come up with possible
aerodynamic shapes for this airplane? Answer: By us-
ing fundamental principles and equations.

This chapter is all about fundamental principles
and equations in aerodynamics. The material dis-
cussed here is essential to the development of your un-
derstanding and appreciation of aerodynamics. Study
this material with an open mind. Although this chap-
ter is full of trees, see the forest as well. And this
will not be the only chapter in which you will be
studying fundamental concepts and equations; as we

progress through this book, we will be expanding our
inventory of fundamental concepts and equations as
necessary to deal with the exciting engineering ap-
plications presented in subsequent chapters. So view
your study of this chapter as building your foundation
in aerodynamics from which you can spring to a lot of
interesting applications later on. With this mind set, I
predict that you will find this chapter to be intellectu-
ally enjoyable.

Central to this chapter is the derivation and dis-
cussion of the three most important and fundamental
equations in aerodynamics: the continuity, momen-
tum, and energy equations. The continuity equation is
a mathematical statement of the fundamental princi-
ple that mass is conserved. The momentum equation is
a mathematical statement of Newton’s second law.
The energy equation is a mathematical statement of
energy conservation (i.e., the first law of thermody-
namics). Nothing in aerodynamics is more funda-
mental than these three physical principles, and no
equations in aerodynamics are more basic than the
continuity, momentum, and energy equations. Make
these three equations and fundamental principles
your constant companions as you travel through this
book—indeed, as you travel through all your study
and work in aerodynamics, however far that may be.

2.1 INTRODUCTION AND ROAD MAP
To be a good craftsperson, one must have good tools and must know how to use
them effectively. Similarly, a good aerodynamicist must have good aerodynamic
tools and must know how to use them for a variety of applications. The purpose
of this chapter is “tool-building”; we develop some of the concepts and equations
that are vital to the study of aerodynamic flows. However, please be cautioned:
A craftsperson usually derives his or her pleasure from the works of art created
with the use of the tools; the actual building of the tools themselves is sometimes
considered a mundane chore. You may derive a similar feeling here. As we proceed
to build our aerodynamic tools, you may wonder from time to time why such tools
are necessary and what possible value they may have in the solution of practical
problems. Rest assured, however, that every aerodynamic tool we develop in
this and subsequent chapters is important for the analysis and understanding of
practical problems to be discussed later. So, as we move through this chapter, do
not get lost or disoriented; rather, as we develop each tool, simply put it away in
the store box of your mind for future use.
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Figure 2.3 Road map for Chapter 2.

To help you keep track of our tool building, and to give you some orientation,
the road map in Figure 2.3 is provided for your reference. As we progress through
each section of this chapter, use Figure 2.3 to help you maintain a perspective of
our work. You will note that Figure 2.3 is full of strange-sounding terms, such as
“substantial derivative,” “circulation,” and “velocity potential.” However, when
you finish this chapter, and look back at Figure 2.3, all these terms will be second
nature to you.

2.2 REVIEW OF VECTOR RELATIONS
Aerodynamics is full of quantities that have both magnitude and direction, such
as force and velocity. These are vector quantities, and as such, the mathematics
of aerodynamics is most conveniently expressed in vector notation. The purpose
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of this section is to set forth the basic relations we need from vector algebra and
vector calculus. If you are familiar with vector analysis, this section will serve as
a concise review. If you are not conversant with vector analysis, this section will
help you establish some vector notation, and will serve as a skeleton from which
you can fill in more information from the many existing texts on vector analysis
(see, e.g., References 4 to 6).

2.2.1 Some Vector Algebra

Consider a vector quantity A; both its magnitude and direction are given by the
arrow labeled A in Figure 2.4. The absolute magnitude of A is |A|, and is a scalar
quantity. The unit vector n, defined by n = A/|A|, has a magnitude of unity and
a direction equal to that of A. Let B represent another vector. The vector addition
of A and B yields a third vector C,

A + B = C (2.1)

which is formed by connecting the tail of A with the head of B, as shown in
Figure 2.4. Now consider −B, which is equal in magnitude to B, but opposite in
direction. The vector subtraction of B and A yields vector D,

A − B = D (2.2)

which is formed by connecting the tail of A with the head of −B, as shown in
Figure 2.4.

There are two forms of vector multiplication. Consider two vectors A and
B at an angle θ to each other, as shown in Figure 2.4. The scalar product (dot
product) of the two vectors A and B is defined as

A · B ≡ |A||B| cos θ (2.3)

= magnitude of A × magnitude of the
component of B along the direction of A

Figure 2.4 Vector diagrams.
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Note that the scalar product of two vectors is a scalar. In contrast, the vector
product (cross product) of the two vectors A and B is defined as

A × B ≡ (|A||B| sin θ)e = G (2.4)

where G is perpendicular to the plane of A and B and in a direction which obeys
the “right-hand rule.” (Rotate A into B, as shown in Figure 2.4. Now curl the
fingers of your right hand in the direction of the rotation. Your right thumb will be
pointing in the direction of G.) In Equation (2.4), e is a unit vector in the direction
of G, as also shown in Figure 2.4. Note that the vector product of two vectors is
a vector.

2.2.2 Typical Orthogonal Coordinate Systems

To describe mathematically the flow of fluid through three-dimensional space, we
have to prescribe a three-dimensional coordinate system. The geometry of some
aerodynamic problems best fits a rectangular space, whereas others are mainly
cylindrical in nature, and yet others may have spherical properties. Therefore, we
have interest in the three most common orthogonal coordinate systems: cartesian,
cylindrical, and spherical. These systems are described below. (An orthogonal
coordinate system is one where all three coordinate directions are mutually per-
pendicular. It is interesting to note that some modern numerical solutions of
fluid flows utilize nonorthogonal coordinate spaces; moreover, for some numer-
ical problems the coordinate system is allowed to evolve and change during the
course of the solution. These so-called adaptive grid techniques are beyond the
scope of this book. See Reference 7 for details.)

A cartesian coordinate system is shown in Figure 2.5a. The x , y, and z axes
are mutually perpendicular, and i, j, and k are unit vectors in the x , y, and z
directions, respectively. An arbitrary point P in space is located by specifying the

Figure 2.5 Cartesian coordinates.
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Figure 2.6 Cylindrical coordinates.

three coordinates (x, y, z). The point can also be located by the position vector
r, where

r = x i + yj + zk

If A is a given vector in cartesian space, it can be expressed as

A = Ax i + Ayj + Azk

where Ax , Ay , and Az are the scalar components of A along the x , y, and z
directions, respectively, as shown in Figure 2.5b.

A cylindrical coordinate system is shown in Figure 2.6a. A “phantom” carte-
sian system is also shown with dashed lines to help visualize the figure. The
location of point P in space is given by three coordinates (r, θ, z), where r and θ

are measured in the xy plane shown in Figure 2.6a. The r coordinate direction is
the direction of increasing r , holding θ and z constant; er is the unit vector in the
r direction. The θ coordinate direction is the direction of increasing θ , holding r
and z constant; eθ is the unit vector in the θ direction. The z coordinate direction
is the direction of increasing z, holding r and θ constant; ez is the unit vector in
the z direction. If A is a given vector in cylindrical space, then

A = Ar er + Aθeθ + Azez

where Ar , Aθ , and Az are the scalar components of A along the r , θ , and z direc-
tions, respectively, as shown in Figure 2.6b. The relationship, or transformation,
between cartesian and cylindrical coordinates can be obtained from inspection of
Figure 2.6a, namely,

x = r cos θ

y = r sin θ (2.5)

z = z
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Figure 2.7 Spherical coordinates.

or inversely,

r =
√

x2 + y2

θ = arctan
y

x
(2.6)

z = z

A spherical coordinate system is shown in Figure 2.7a. Once again, a phantom
cartesian system is shown with dashed lines. (However, for clarity in the picture,
the z axis is drawn vertically, in contrast to Figures 2.5 and 2.6.) The location
of point P in space is given by the three coordinates (r, θ, �), where r is the
distance of P from the origin, θ is the angle measured from the z axis and is in
the r z plane, and � is the angle measured from the x axis and is in the xy plane.
The r coordinate direction is the direction of increasing r , holding θ and �

constant; er is the unit vector in the r direction. The θ coordinate direction is the
direction of increasing θ , holding r and � constant; eθ is the unit vector in the
θ direction. The � coordinate direction is the direction of increasing �, holding
r and θ constant; e� is the unit vector in the � direction. The unit vectors er ,
eθ , and e� are mutually perpendicular. If A is a given vector in spherical space,
then

A = Ar er + Aθeθ + A�e�

where Ar , Aθ , and A� are the scalar components of A along the r , θ , and �

directions, respectively, as shown in Figure 2.7b. The transformation between
cartesian and spherical coordinates is obtained from inspection of Figure 2.7a,
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namely,

x = r sin θ cos �

y = r sin θ sin � (2.7)

z = r cos θ

or inversely,

r =
√

x2 + y2 + z2

θ = arccos
z

r
= arccos

z√
x2 + y2 + z2

(2.8)

� = arccos
x√

x2 + y2

2.2.3 Scalar and Vector Fields

A scalar quantity given as a function of coordinate space and time t is called a
scalar field. For example, pressure, density, and temperature are scalar quantities,
and

p = p1(x, y, z, t) = p2(r, θ, z, t) = p3(r, θ, �, t)

ρ = ρ1(x, y, z, t) = ρ2(r, θ, z, t) = ρ3(r, θ, �, t)

T = T1(x, y, z, t) = T2(r, θ, z, t) = T3(r, θ, �, t)

are scalar fields for pressure, density, and temperature, respectively. Similarly, a
vector quantity given as a function of coordinate space and time is called a vector
field. For example, velocity is a vector quantity, and

V = Vx i + Vyj + Vzk

where Vx = Vx(x, y, z, t)

Vy = Vy(x, y, z, t)

Vz = Vz(x, y, z, t)

is the vector field for V in cartesian space. Analogous expressions can be written
for vector fields in cylindrical and spherical space. In many theoretical aero-
dynamic problems, the above scalar and vector fields are the unknowns to be
obtained in a solution for a flow with prescribed initial and boundary conditions.

2.2.4 Scalar and Vector Products

The scalar and vector products defined by Equations (2.3) and (2.4), respectively,
can be written in terms of the components of each vector as follows.

Cartesian Coordinates Let

A = Ax i + Ayj + Azk

and B = Bx i + Byj + Bzk
Then A · B = Ax Bx + Ay By + Az Bz (2.9)
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and

A× B =
⎡
⎣ i j k

Ax Ay Az

Bx By Bz

⎤
⎦= i(Ay Bz − Az By) + j(Az Bx − Ax Bz)

(2.10)+ k(Ax By − Ay Bx)

Cylindrical Coordinates Let

A = Ar er + Aθeθ + Azez

and B = Br er + Bθeθ + Bzez

Then A · B = Ar Br + Aθ Bθ + Az Bz (2.11)

and A × B =
∣∣∣∣∣∣

er eθ ez

Ar Aθ Az

Br Bθ Bz

∣∣∣∣∣∣ (2.12)

Spherical Coordinates Let

A = Ar er + Aθeθ + A�e�

and B = Br er + Bθeθ + B�e�

Then A · B = Ar Br + Aθ Bθ + A� B� (2.13)

and A × B =
∣∣∣∣∣∣

er eθ e�

Ar Aθ A�

Br Bθ B�

∣∣∣∣∣∣ (2.14)

2.2.5 Gradient of a Scalar Field

We now begin a review of some elements of vector calculus. Consider a scalar
field

p = p1(x, y, z) = p2(r, θ, z) = p3(r, θ, �)

The gradient of p, ∇ p, at a given point in space is defined as a vector such that:

1. Its magnitude is the maximum rate of change of p per unit length of the
coordinate space at the given point.

2. Its direction is that of the maximum rate of change of p at the given point.

For example, consider a two-dimensional pressure field in cartesian space as
sketched in Figure 2.8. The solid curves are lines of constant pressure (i.e., they
connect points in the pressure field which have the same value of p). Such lines
are called isolines. Consider an arbitrary point (x, y) in Figure 2.8. If we move
away from this point in an arbitrary direction, p will, in general, change because
we are moving to another location in space. Moreover, there will be some di-
rection from this point along which p changes the most over a unit length in
that direction. This defines the direction of the gradient of p and is identified in
Figure 2.8. The magnitude of ∇p is the rate of change of p per unit length in that
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Figure 2.8 Illustration of the gradient of a scalar field.

Figure 2.9 Sketch for the directional
derivative.

direction. Both the magnitude and direction of ∇p will change from one point
to another in the coordinate space. A line drawn in this space along which ∇p
is tangent at every point is defined as a gradient line, as sketched in Figure 2.8.
The gradient line and isoline through any given point in the coordinate space are
perpendicular.

Consider ∇p at a given point (x, y) as shown in Figure 2.9. Choose some
arbitrary direction s away from the point, as also shown in Figure 2.9. Let n be
a unit vector in the s direction. The rate of change of p per unit length in the s
direction is

dp

ds
= ∇ p · n (2.15)

In Equation (2.15), dp/ds is called the directional derivative in the s direction.
Note from Equation (2.15) that the rate of change of p in any arbitrary direction
is simply the component of ∇p in that direction.

Expressions for ∇p in the different coordinate systems are given below:

Cartesian: p = p(x, y, z)

∇ p = ∂p

∂x
i + ∂p

∂y
j + ∂p

∂z
k (2.16)
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Cylindrical: p = p(r, θ, z)

∇ p = ∂p

∂r
er + 1

r

∂p

∂θ
eθ + ∂p

∂z
ez (2.17)

Spherical: p = p(r, θ, �)

∇ p = ∂p

∂r
er + 1

r

∂p

∂θ
eθ + 1

r sin θ

∂p

∂�
e� (2.18)

2.2.6 Divergence of a Vector Field

Consider a vector field

V = V(x, y, z) = V(r, θ, z) = V(r, θ, �)

In the above, V can represent any vector quantity. However, for practical purposes,
and to aid in physical interpretation, consider V to be the flow velocity. Also,
visualize a small fluid element of fixed mass moving along a streamline with
velocity V. As the fluid element moves through space, its volume will, in general,
change. In Section 2.3, we prove that the time rate of change of the volume of
a moving fluid element of fixed mass, per unit volume of that element, is equal
to the divergence of V, denoted by ∇ · V. The divergence of a vector is a scalar
quantity; it is one of two ways that the derivative of a vector field can be defined.
In different coordinate systems, we have

Cartesian: V = V(x, y, z) = Vx i + Vyj + Vzk

∇ · V = ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
(2.19)

Cylindrical: V = V(r, θ, z) = Vr er + Vθeθ + Vzez

∇ · V = 1

r

∂

∂r
(r Vr ) + 1

r

∂Vθ

∂θ
+ ∂Vz

∂z
(2.20)

Spherical: V = V(r, θ, �) = Vr er + Vθeθ + V�e�

∇ · V = 1

r 2

∂

∂r
(r 2Vr ) + 1

r sin θ

∂

∂θ
(Vθ sin θ) + 1

r sin θ

∂V�

∂�
(2.21)
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2.2.7 Curl of a Vector Field

Consider a vector field

V = V(x, y, z) = V(r, θ, z) = V(r, θ, �)

Although V can be any vector quantity, again consider V to be the flow velocity.
Once again visualize a fluid element moving along a streamline. It is possible for
this fluid element to be rotating with an angular velocity ω as it translates along
the streamline. In Section 2.9, we prove that ω is equal to one-half of the curl of
V, where the curl of V is denoted by ∇×V. The curl of V is a vector quantity; it is
the alternate way that the derivative of a vector field can be defined, the first being
∇ · V (see Section 2.2.6, Divergence of a Vector Field). In different coordinate
systems, we have

Cartesian: V = Vx i + Vyj + Vzk

∇ × V =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
Vx Vy Vz

∣∣∣∣∣∣∣∣∣
= i

(
∂Vz

∂y
− ∂Vy

∂z

)
+ j

(
∂Vx

∂z
− ∂Vz

∂x

)

+ k
(

∂Vy

∂x
− ∂Vx

∂y

) (2.22)

Cylindrical: V = Vr er + Vθeθ + Vzez

∇×V = 1

r

∣∣∣∣∣∣∣∣∣
er reθ ez

∂

∂r

∂

∂θ

∂

∂z
Vr r Vθ Vz

∣∣∣∣∣∣∣∣∣
(2.23)

Spherical: V = Vr er + Vθeθ + V�e�

∇×V = 1

r 2 sin θ

∣∣∣∣∣∣∣∣∣
er reθ (r sin θ)e�

∂

∂r

∂

∂θ

∂

∂�

Vr r Vθ (r sin θ)V�

∣∣∣∣∣∣∣∣∣
(2.24)

2.2.8 Line Integrals

Consider a vector field

A = A(x, y, z) = A(r, θ, z) = A(r, θ, �)
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Figure 2.10 Sketch for line integrals.

P

C

S dS

n

Figure 2.11 Sketch for surface
integrals. The three-dimensional
surface area S is bounded by the
closed curve C.

Also, consider a curve C in space connecting two points a and b as shown on the
left side of Figure 2.10. Let ds be an elemental length of the curve, and n be a unit
vector tangent to the curve. Define the vector ds = n ds. Then, the line integral
of A along curve C from point a to point b is

C

∫ b

a
A · ds

If the curve C is closed, as shown at the right of Figure 2.10, then the line integral
is given by ∮

C
A · ds

where the counterclockwise direction around C is considered positive. (The pos-
itive direction around a closed curve is, by convention, that direction you would
move such that the area enclosed by C is always on your left.)

2.2.9 Surface Integrals

Consider an open surface S bounded by the closed curve C , as shown in
Figure 2.11. At point P on the surface, let d S be an elemental area of the surface
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Figure 2.12 Volume V enclosed by the closed
surface S.

and n be a unit vector normal to the surface. The orientation of n is in the direction
according to the right-hand rule for movement along C . (Curl the fingers of your
right hand in the direction of movement around C ; your thumb will then point in
the general direction of n.) Define a vector elemental area as dS = n d S. In terms
of dS, the surface integral over the surface S can be defined in three ways:∫ ∫

S

p dS = surface integral of a scalar p over the
open surface S (the result is a vector)∫ ∫

S

A · dS = surface integral of a vector A over the
open surface S (the result is a scalar)∫ ∫

S

A × dS = surface integral of a vector A over the
open surface S (the result is a vector)

If the surface S is closed (e.g., the surface of a sphere or a cube), n points out of
the surface, away from the enclosed volume, as shown in Figure 2.12. The surface
integrals over the closed surface are

.......................................................................
.........

∫∫
S

p dS .......................................................................
.........

∫∫
S

A · dS .......................................................................
.........

∫∫
S

A × dS

2.2.10 Volume Integrals

Consider a volume V in space. Let ρ be a scalar field in this space. The volume
integral over the volume V of the quantity ρ is written as

..........................................................................................................................
..............

∫∫∫
V

ρ dV = volume integral of a scalar ρ over the
volume V (the result is a scalar)

Let A be a vector field in space. The volume integral over the volume V of the
quantity A is written as

..........................................................................................................................
..............

∫∫∫
V

A dV = volume integral of a vector A over the
volume V (the result is a vector)
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2.2.11 Relations Between Line, Surface, and Volume Integrals

Consider again the open area S bounded by the closed curve C , as shown in
Figure 2.11. Let A be a vector field. The line integral of A over C is related to the
surface integral of A over S by Stokes’ theorem:

∮
C

A · ds =
∫ ∫

S

(∇ × A) · dS (2.25)

Consider again the volume V enclosed by the closed surface S, as shown in
Figure 2.12. The surface and volume integrals of the vector field A are related
through the divergence theorem:

.......................................................................
.........

∫∫
S

A · dS = ..........................................................................................................................
..............

∫∫∫
V

(∇ · A) dV (2.26)

If p represents a scalar field, a vector relationship analogous to Equation (2.26)
is given by the gradient theorem:

.......................................................................
.........

∫∫
S

p dS = ..........................................................................................................................
..............

∫∫∫
V

∇ p dV (2.27)

2.2.12 Summary

This section has provided a concise review of those elements of vector analysis
that we will use as tools in our subsequent discussions. Make certain to re-
view these tools until you feel comfortable with them, especially the relations
in boxes.

2.3 MODELS OF THE FLUID: CONTROL VOLUMES
AND FLUID ELEMENTS

Aerodynamics is a fundamental science, steeped in physical observation. As you
proceed through this book, make every effort to gradually develop a “physi-
cal feel” for the material. An important virtue of all successful aerodynamicists
(indeed, of all successful engineers and scientists) is that they have good “physical
intuition,” based on thought and experience, which allows them to make reason-
able judgments on difficult problems. Although this chapter is full of equations
and (seemingly) esoteric concepts, now is the time for you to start developing this
physical feel.

With this section, we begin to build the basic equations of aerodynamics.
There is a certain philosophical procedure involved with the development of
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these equations, as follows:

1. Invoke three fundamental physical principles that are deeply entrenched in
our macroscopic observations of nature, namely,
a. Mass is conserved (i.e., mass can be neither created nor destroyed).
b. Newton’s second law: force = mass × acceleration.
c. Energy is conserved; it can only change from one form to another.

2. Determine a suitable model of the fluid. Remember that a fluid is a squishy
substance, and therefore it is usually more difficult to describe than a
well-defined solid body. Hence, we have to adopt a reasonable model of the
fluid to which we can apply the fundamental principles stated in item 1.

3. Apply the fundamental physical principles listed in item 1 to the model of
the fluid determined in item 2 in order to obtain mathematical equations
which properly describe the physics of the flow. In turn, use these
fundamental equations to analyze any particular aerodynamic flow problem
of interest.

In this section, we concentrate on item 2; namely, we ask the question: What
is a suitable model of the fluid? How do we visualize this squishy substance in
order to apply the three fundamental physical principles to it? There is no single
answer to this question; rather, three different models have been used successfully
throughout the modern evolution of aerodynamics. They are (1) finite control
volume, (2) infinitesimal fluid element, and (3) molecular. Let us examine what
these models involve and how they are applied.

2.3.1 Finite Control Volume Approach

Consider a general flow field as represented by the streamlines in Figure 2.13. Let
us imagine a closed volume drawn within a finite region of the flow. This volume

Figure 2.13 Finite control volume approach.
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defines a control volumeV , and a control surface S is defined as the closed surface
which bounds the control volume. The control volume may be fixed in space with
the fluid moving through it, as shown at the left of Figure 2.13. Alternatively, the
control volume may be moving with the fluid such that the same fluid particles
are always inside it, as shown at the right of Figure 2.13. In either case, the control
volume is a reasonably large, finite region of the flow. The fundamental physical
principles are applied to the fluid inside the control volume, and to the fluid
crossing the control surface (if the control volume is fixed in space). Therefore,
instead of looking at the whole flow field at once, with the control volume model
we limit our attention to just the fluid in the finite region of the volume itself.

2.3.2 Infinitesimal Fluid Element Approach

Consider a general flow field as represented by the streamlines in Figure 2.14. Let
us imagine an infinitesimally small fluid element in the flow, with a differential
volume dV . The fluid element is infinitesimal in the same sense as differential
calculus; however, it is large enough to contain a huge number of molecules so that
it can be viewed as a continuous medium. The fluid element may be fixed in space
with the fluid moving through it, as shown at the left of Figure 2.14. Alternatively,
it may be moving along a streamline with velocity V equal to the flow velocity
at each point. Again, instead of looking at the whole flow field at once, the
fundamental physical principles are applied to just the fluid element itself.

2.3.3 Molecular Approach

In actuality, of course, the motion of a fluid is a ramification of the mean motion of
its atoms and molecules. Therefore, a third model of the flow can be a microscopic
approach wherein the fundamental laws of nature are applied directly to the atoms
and molecules, using suitable statistical averaging to define the resulting fluid
properties. This approach is in the purview of kinetic theory, which is a very

Figure 2.14 Infinitesimal fluid element approach.
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elegant method with many advantages in the long run. However, it is beyond the
scope of the present book.

In summary, although many variations on the theme can be found in different
texts for the derivation of the general equations of fluid flow, the flow model can
usually be categorized under one of the approaches described above.

2.3.4 Physical Meaning of the Divergence of Velocity

In the equations to follow, the divergence of velocity, ∇ · V, occurs frequently.
Before leaving this section, let us prove the statement made earlier (Section 2.2)
that ∇ · V is physically the time rate of change of the volume of a moving fluid
element of fixed mass per unit volume of that element. Consider a control volume
moving with the fluid (the case shown on the right of Figure 2.13). This control
volume is always made up of the same fluid particles as it moves with the flow;
hence, its mass is fixed, invariant with time. However, its volume V and control
surface S are changing with time as it moves to different regions of the flow
where different values of ρ exist. That is, this moving control volume of fixed
mass is constantly increasing or decreasing its volume and is changing its shape,
depending on the characteristics of the flow. This control volume is shown in
Figure 2.15 at some instant in time. Consider an infinitesimal element of the
surface d S moving at the local velocity V, as shown in Figure 2.15. The change
in the volume of the control volume �V , due to just the movement of d S over
a time increment �t , is, from Figure 2.15, equal to the volume of the long, thin
cylinder with base area d S and altitude (V�t) · n; that is,

�V = [(V�t) · n]d S = (V�t) · dS (2.28)

Over the time increment �t , the total change in volume of the whole control
volume is equal to the summation of Equation (2.28) over the total control
surface. In the limit as d S → 0, the sum becomes the surface integral

.......................................................................
.........

∫∫
S

(V�t) · dS

Figure 2.15 Moving control volume used for the
physical interpretation of the divergence of
velocity.
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If this integral is divided by �t , the result is physically the time rate of change of
the control volume, denoted by DV/Dt ; that is,

DV
Dt

= 1

�t
.......................................................................
.........

∫∫
S

(V�t) · dS = .......................................................................
.........

∫∫
S

V · dS (2.29)

(The significance of the notation D/Dt is revealed in Section 2.9.) Applying the
divergence theorem, Equation (2.26), to the right side of Equation (2.29), we have

DV
Dt

= ..........................................................................................................................
..............

∫∫∫
V

(∇ · V)dV (2.30)

Now let us imagine that the moving control volume in Figure 2.15 is shrunk
to a very small volume δV , essentially becoming an infinitesimal moving fluid
element as sketched on the right of Figure 2.14. Then Equation (2.30) can be
written as

D(δV)

Dt
= ..........................................................................................................................

..............

∫∫∫
δV

(∇ · V)dV (2.31)

Assume that δV is small enough such that ∇ · V is essentially the same value
throughout δV . Then the integral in Equation (2.31) can be approximated as
(∇ · V)δV . From Equation (2.31), we have

D(δV)

Dt
= (∇ · V)δV

or ∇ · V = 1

δV
D(δV)

Dt
(2.32)

Examine Equation (2.32). It states that ∇ · V is physically the time rate of change
of the volume of a moving fluid element, per unit volume. Hence, the interpretation
of ∇ · V, first given in Section 2.2.6, Divergence of a Vector Field, is now proved.

2.3.5 Specification of the Flow Field

In Section 2.2.3 we defined both scalar and vector fields. We now apply this con-
cept of a field more directly to an aerodynamic flow. One of the most straightfor-
ward ways of describing the details of an aerodynamic flow is simply to visualize
the flow in three-dimensional space, and to write the variation of the aerodynamic
properties as a function of space and time. For example, in cartesian coordinates
the equations

p = p(x, y, z, t) (2.33a)

ρ = ρ(x, y, z, t) (2.33b)

T = T (x, y, z, t) (2.33c)

and V = ui + vj + wk (2.34a)
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where u = u(x, y, z, t) (2.34b)

v = v(x, y, z, t) (2.34c)

w = w(x, y, z, t) (2.34d)

represent the flow field. Equations (2.33a–c) give the variation of the scalar flow
field variables pressure, density, and temperature, respectively. (In equilibrium
thermodynamics, the specification of two state variables, such as p andρ, uniquely
defines the values of all other state variables, such as T . In this case, one of
Equations (2.33) can be considered redundant.) Equations (2.34a–d) give the
variation of the vector flow field variable velocity V, where the scalar components
of V in the x , y, and z directions are u, v, and w, respectively.

Figure 2.16 illustrates a given fluid element moving in a flow field specified
by Equations (2.33) and (2.34). At the time t1, the fluid element is at point 1,
located at (x1, y1, z1) as shown in Figure 2.16.

At this instant, its velocity is V1 and its pressure is given by

p = p(x1, y1, z1, t1)

and similarly for its other flow variables.
By definition, an unsteady flow is one where the flow field variables at any

given point are changing with time. For example, if you lock your eyes on point 1
in Figure 2.16, and keep them fixed on point 1, if the flow is unsteady you will

y

y1

z1

x1

V1

x

z

Point 1

Flow Field
p = p (x, y, z , t)
� = � (x, y, z , t)
T = T (x, y, z , t)
V = ui + vj + wk
u = u (x, y, z , t)
v = v (x, y, z , t)
w = w (x, y, z , t)

Figure 2.16 A fluid element passing through
point 1 in a flow field.
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observe p, ρ, etc., fluctuating with time. Equations (2.33) and (2.34) describe an
unsteady flow field because time t is included as one of the independent variables.
In contrast, a steady flow is one where the flow field variables at any given point are
invariant with time, that is, if you lock your eyes on point 1 you will continuously
observe the same constant values for p, ρ, V, etc., for all time. A steady flow
field is specified by the relations

p = p(x, y, z)

ρ = ρ(x, y, z)

etc.

The concept of the flow field, and a specified fluid element moving through
it as illustrated in Figure 2.16, will be revisited in Section 2.9 where we define
and discuss the concept of the substantial derivative.

EXAMPLE 2.1

The subsonic compressible flow over a cosine-shaped (wavy) wall is illustrated in Fig-
ure 2.17. The wavelength and amplitude of the wall are l and h, respectively, as shown
in Figure 2.17. The streamlines exhibit the same qualitative shape as the wall, but with
diminishing amplitude as distance above the wall increases. Finally, as y → ∞, the

x

l

y

Streamline at � V
�

, M
�

2h

Figure 2.17 Subsonic compressible flow over a wavy wall; the streamline pattern.
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streamline becomes straight. Along this straight streamline, the freestream velocity and
Mach number are V∞ and M∞, respectively. The velocity field in cartesian coordinates
is given by

u = V∞
[

1 + h

β

2π




(
cos

2πx




)
e−2πβy/


]
(2.35)

and v = −V∞h
2π




(
sin

2πx




)
e−2πβy/
 (2.36)

where β ≡
√

1 − M2∞

Consider the particular flow that exists for the case where 
 = 1.0 m, h = 0.01 m, V∞ =
240 m/s, and M∞ = 0.7. Also, consider a fluid element of fixed mass moving along a
streamline in the flow field. The fluid element passes through the point (x/
, y/
) = ( 1

4 , 1).
At this point, calculate the time rate of change of the volume of the fluid element, per unit
volume.

■ Solution
From Section 2.3.4, we know that the time rate of change of the volume of a moving fluid
element of fixed mass, per unit volume, is given by the divergence of the velocity ∇ · V.
In cartesian coordinates, from Equation (2.19), we have

∇ · V = ∂u

∂x
+ ∂v

∂y
(2.37)

From Equation (2.35),

∂u

∂x
= −V∞

h

β

(
2π




)2 (
sin

2πx




)
e−2πβy/
 (2.38)

and from Equation (2.36),

∂v

∂y
= +V∞h

(
2π




)2

β

(
sin

2πx




)
e−2πβy/
 (2.39)

Substituting Equation (2.38) and (2.39) into (2.37), we have

∇ · V =
(

β − 1

β

)
V∞h

(
2π




)2 (
sin

2πx




)
e−2πβy/
 (2.40)

Evaluating Equation (2.40) at the point x/
 = 1
4 and y/
 = 1,

∇ · V =
(

β − 1

β

)
V∞h

(
2π




)2

e−2πβ (2.41)

Equation (2.41) gives the time rate of change of the volume of the fluid element, per unit
volume, as it passes through the point (x/
, y/
) = ( 1

4 , 1). Note that it is a finite (nonzero)
value; the volume of the fluid element is changing as it moves along the streamline. This
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is consistent with the definition of a compressible flow, where the density is a variable
and hence the volume of a fixed mass must also be variable. Note from Equation (2.40)
that ∇ · V = 0 only along vertical lines denoted by x/
 = 0, 1

2 , 1, 1 1
2 , . . . , where

the sin(2πx/
) goes to zero. This is a peculiarity associated with the cyclical nature
of the flow field over the cosine-shaped wall. For the particular flow considered here,
where 
 = 1.0 m, h = 0.01 m, V∞ = 240 m/s, and M∞ = 0.7, where

β =
√

1 − M2∞ =
√

1 − (0.7)2 = 0.714

Equation (2.41) yields

∇ · V =
(

0.714 − 1

0.714

)
(240)(0.01)

(
2π

1

)
e−2π(0.714) = −0.7327 s−1

The physical significance of this result is that, as the fluid element is passing through the
point ( 1

4 , 1) in the flow, it is experiencing a 73 percent rate of decrease of volume per
second (the negative quantity denotes a decrease in volume). That is, the density of the fluid
element is increasing. Hence, the point ( 1

4 , 1) is in a compression region of the flow, where
the fluid element will experience an increase in density. Expansion regions are defined by
values of x/
 which yield negative values of the sine function in Equation (2.40), which in
turn yields a positive value for ∇ · V. This gives an increase in volume of the fluid element,
hence a decrease in density. Clearly, as the fluid element continues its path through this
flow field, it experiences cyclical increases and decreases in density, as well as the other
flow field properties.

2.4 CONTINUITY EQUATION
In Section 2.3, we discussed several models which can be used to study the motion
of a fluid. Following the philosophy set forth at the beginning of Section 2.3, we
now apply the fundamental physical principles to such models. Unlike the above
derivation of the physical significance of ∇ · V wherein we used the model of a
moving finite control volume, we now employ the model of a fixed finite control
volume as sketched on the left side of Figure 2.13. Here, the control volume is
fixed in space, with the flow moving through it. Unlike our previous derivation,
the volume V and control surface S are now constant with time, and the mass of
fluid contained within the control volume can change as a function of time (due
to unsteady fluctuations of the flow field).

Before starting the derivation of the fundamental equations of aerodynamics,
we must examine a concept vital to those equations, namely, the concept of mass
flow. Consider a given area A arbitrarily oriented in a flow field as shown in
Figure 2.18. In Figure 2.18, we are looking at an edge view of area A. Let A
be small enough such that the flow velocity V is uniform across A. Consider the
fluid elements with velocity V that pass through A. In time dt after crossing A,
they have moved a distance V dt and have swept out the shaded volume shown
in Figure 2.18. This volume is equal to the base area A times the height of the
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V

V dt

V n d
t

A (edge view)

Figure 2.18 Sketch for discussion of mass flow
through area A in a flow field.

cylinder Vn dt , where Vn is the component of velocity normal to A; that is,

Volume = (Vn dt)A

The mass inside the shaded volume is therefore

Mass = ρ(Vn dt)A (2.42)

This is the mass that has swept past A in time dt . By definition, the mass flow
through A is the mass crossing A per second (e.g., kilograms per second, slugs
per second). Let ṁ denote mass flow. From Equation (2.42),

ṁ = ρ(Vn dt)A

dt

or ṁ = ρVn A (2.43)

Equation (2.43) demonstrates that mass flow through A is given by the product

Area × density × component of flow velocity normal to the area

A related concept is that of mass flux, defined as the mass flow per unit area.

Mass flux = ṁ

A
= ρVn (2.44)

Typical units of mass flux are kg/(s · m2) and slug/(s · ft2).
The concepts of mass flow and mass flux are important. Note from Equa-

tion (2.44) that mass flux across a surface is equal to the product of density times
the component of velocity perpendicular to the surface. Many of the equations of
aerodynamics involve products of density and velocity. For example, in cartesian
coordinates, V = Vx i + Vyj + Vzk = ui + vj + wk, where u, v, and w denote
the x , y, and z components of velocity, respectively. (The use of u, v, and w

rather than Vx , Vy , and Vz to symbolize the x , y, and z components of velocity
is quite common in aerodynamic literature; we henceforth adopt the u, v, and w

notation.) In many of the equations of aerodynamics, you will find the products
ρu, ρv, and ρw; always remember that these products are the mass fluxes in the
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Figure 2.19 Finite control volume fixed in space.

x , y, and z directions, respectively. In a more general sense, if V is the magnitude
of velocity in an arbitrary direction, the product ρV is physically the mass flux
(mass flow per unit area) across an area oriented perpendicular to the direction
of V .

We are now ready to apply our first physical principle to a finite control
volume fixed in space.

Physical principle Mass can be neither created nor destroyed.

Consider a flow field wherein all properties vary with spatial location and
time, for example, ρ = ρ(x, y, z, t). In this flow field, consider the fixed finite
control volume shown in Figure 2.19. At a point on the control surface, the flow
velocity is V and the vector elemental surface area is dS. Also dV is an elemental
volume inside the control volume. Applied to this control volume, the above
physical principle means

Net mass flow out of control time rate of decrease of=
volume through surface S mass inside control volume V (2.45a)

or B = C (2.45b)

where B and C are just convenient symbols for the left and right sides, respectively,
of Equation (2.45a). First, let us obtain an expression for B in terms of the
quantities shown in Figure 2.19. From Equation (2.43), the elemental mass flow
across the area d S is

ρVn d S = ρV · dS

Examining Figure 2.19, note that by convention, dS always points in a direction
out of the control volume. Hence, when V also points out of the control volume
(as shown in Figure 2.19), the product ρV · dS is positive. Moreover, when V
points out of the control volume, the mass flow is physically leaving the control
volume (i.e., it is an outflow). Hence, a positive ρV · dS denotes an outflow. In
turn, when V points into the control volume, ρV · dS is negative. Moreover, when
V points inward, the mass flow is physically entering the control volume (i.e.,
it is an inflow). Hence, a negative ρV · dS denotes an inflow. The net mass flow
out of the entire control surface S is the summation over S of the elemental mass
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flows. In the limit, this becomes a surface integral, which is physically the left
side of Equations (2.45a and b); that is,

B = .......................................................................
.........

∫∫
S

ρV · dS (2.46)

Now consider the right side of Equations (2.45a and b). The mass contained
within the elemental volume dV is

ρ dV
Hence, the total mass inside the control volume is

..........................................................................................................................
..............

∫∫∫
V

ρ dV

The time rate of increase of mass inside V is then
∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV

In turn, the time rate of decrease of mass inside V is the negative of the above;
that is

− ∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV = C (2.47)

Thus, substituting Equations (2.46) and (2.47) into (2.45b), we have

.......................................................................
.........

∫∫
S

ρV · dS = − ∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV

or
∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV + .......................................................................
.........

∫∫
S

ρV · dS = 0 (2.48)

Equation (2.48) is the final result of applying the physical principle of the con-
servation of mass to a finite control volume fixed in space. Equation (2.48) is
called the continuity equation. It is one of the most fundamental equations of
fluid dynamics.

Note that Equation (2.48) expresses the continuity equation in integral form.
We will have numerous opportunities to use this form; it has the advantage of
relating aerodynamic phenomena over a finite region of space without being
concerned about the details of precisely what is happening at a given distinct
point in the flow. On the other hand, there are many times when we are concerned
with the details of a flow and we want to have equations that relate flow properties
at a given point. In such a case, the integral form as expressed in Equation (2.48) is
not particularly useful. However, Equation (2.48) can be reduced to another form
that does relate flow properties at a given point, as follows. To begin with, since
the control volume used to obtain Equation (2.48) is fixed in space, the limits
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of integration are also fixed. Hence, the time derivative can be placed inside the
volume integral and Equation (2.48) can be written as

..........................................................................................................................
..............

∫∫∫
V

∂ρ

∂t
dV + .......................................................................

.........

∫∫
S

ρV · dS = 0 (2.49)

Applying the divergence theorem, Equation (2.26), we can express the right-hand
term of Equation (2.49) as

.......................................................................
.........

∫∫
S

(ρV) · dS = ..........................................................................................................................
..............

∫∫∫
V

∇ · (ρV) dV (2.50)

Substituting Equation (2.50) into (2.49), we obtain

..........................................................................................................................
..............

∫∫∫
V

∂ρ

∂t
dV + ..........................................................................................................................

..............

∫∫∫
V

∇ · (ρV) dV = 0

or ..........................................................................................................................
..............

∫∫∫
V

[
∂ρ

∂t
+ ∇ · (ρV)

]
dV = 0 (2.51)

Examine the integrand of Equation (2.51). If the integrand were a finite number,
then Equation (2.51) would require that the integral over part of the control volume
be equal and opposite in sign to the integral over the remainder of the control
volume, such that the net integration would be zero. However, the finite control
volume is arbitrarily drawn in space; there is no reason to expect cancellation of
one region by the other. Hence, the only way for the integral in Equation (2.51)
to be zero for an arbitrary control volume is for the integrand to be zero at all
points within the control volume. Thus, from Equation (2.51), we have

∂ρ

∂t
+ ∇ · (ρV) = 0 (2.52)

Equation (2.52) is the continuity equation in the form of a partial differential
equation. This equation relates the flow field variables at a point in the flow, as
opposed to Equation (2.48), which deals with a finite space.

It is important to keep in mind that Equations (2.48) and (2.52) are equally
valid statements of the physical principle of conservation of mass. They are math-
ematical representations, but always remember that they speak words—they say
that mass can be neither created nor destroyed.

Note that in the derivation of the above equations, the only assumption about
the nature of the fluid is that it is a continuum. Therefore, Equations (2.48) and
(2.52) hold in general for the three-dimensional, unsteady flow of any type of
fluid, inviscid or viscous, compressible or incompressible. (Note: It is important
to keep track of all assumptions that are used in the derivation of any equation
because they tell you the limitations on the final result, and therefore prevent you
from using an equation for a situation in which it is not valid. In all our future
derivations, develop the habit of noting all assumptions that go with the resulting
equations.)
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It is important to emphasize the difference between unsteady and steady
flows. In an unsteady flow, the flow-field variables are a function of both spatial
location and time, for example,

ρ = ρ(x, y, z, t)

This means that if you lock your eyes on one fixed point in space, the density
at that point will change with time. Such unsteady fluctuations can be caused
by time-varying boundaries (e.g., an airfoil pitching up and down with time or
the supply valves of a wind tunnel being turned off and on). Equations (2.48)
and (2.52) hold for such unsteady flows. On the other hand, the vast majority of
practical aerodynamic problems involve steady flow. Here, the flow-field variables
are a function of spatial location only, for example,

ρ = ρ(x, y, z)

This means that if you lock your eyes on a fixed point in space, the density at that
point will be a fixed value, invariant with time. For steady flow, ∂/∂t = 0, and
hence Equations (2.48) and (2.52) reduce to

.......................................................................
.........

∫∫
S

ρV · dS = 0 (2.53)

and ∇ · (ρV) = 0 (2.54)

2.5 MOMENTUM EQUATION
Newton’s second law is frequently written as

F = ma (2.55)

where F is the force exerted on a body of mass m and a is the acceleration.
However, a more general form of Equation (2.55) is

F = d

dt
(mV) (2.56)

which reduces to Equation (2.55) for a body of constant mass. In Equation (2.56),
mV is the momentum of a body of mass m. Equation (2.56) represents the second
fundamental principle upon which theoretical fluid dynamics is based.

Physical principle Force = time rate of change of momentum

We will apply this principle [in the form of Equation (2.56)] to the model of a
finite control volume fixed in space as sketched in Figure 2.19. Our objective is
to obtain expressions for both the left and right sides of Equation (2.56) in terms
of the familiar flow-field variables p, ρ, V, etc. First, let us concentrate on the left
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side of Equation (2.56) (i.e., obtain an expression for F, which is the force exerted
on the fluid as it flows through the control volume). This force comes from two
sources:

1. Body forces: gravity, electromagnetic forces, or any other forces which “act
at a distance” on the fluid inside V .

2. Surface forces: pressure and shear stress acting on the control surface S.

Let f represent the net body force per unit mass exerted on the fluid inside V . The
body force on the elemental volume dV in Figure 2.19 is therefore

ρf dV

and the total body force exerted on the fluid in the control volume is the summation
of the above over the volume V:

Body force = ..........................................................................................................................
..............

∫∫∫
V

ρf dV (2.57)

The elemental surface force due to pressure acting on the element of area d S is

−p dS

where the negative sign indicates that the force is in the direction opposite of dS.
That is, the control surface is experiencing a pressure force that is directed into
the control volume and which is due to the pressure from the surroundings, and
examination of Figure 2.19 shows that such an inward-directed force is in the
direction opposite of dS. The complete pressure force is the summation of the
elemental forces over the entire control surface:

Pressure force = − .......................................................................
.........

∫∫
S

p dS (2.58)

In a viscous flow, the shear and normal viscous stresses also exert a surface force.
A detailed evaluation of these viscous stresses is not warranted at this stage of
our discussion. Let us simply recognize this effect by letting Fviscous denote the
total viscous force exerted on the control surface. We are now ready to write an
expression for the left-hand side of Equation (2.56). The total force experienced
by the fluid as it is sweeping through the fixed control volume is given by the sum
of Equations (2.57) and (2.58) and Fviscous:

F = ..........................................................................................................................
..............

∫∫∫
V

ρf dV − .......................................................................
.........

∫∫
S

p dS + Fviscous (2.59)

Now consider the right side of Equation (2.56). The time rate of change of
momentum of the fluid as it sweeps through the fixed control volume is the sum
of two terms:

Net flow of momentum out ≡ G
of control volume across surface S

(2.60a)
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and

Time rate of change of momentum due to ≡ H
unsteady fluctuations of flow properties inside V (2.60b)

Consider the term denoted by G in Equation (2.60a). The flow has a certain
momentum as it enters the control volume in Figure 2.19, and, in general, it has a
different momentum as it leaves the control volume (due in part to the force F that
is exerted on the fluid as it is sweeping through V). The net flow of momentum
out of the control volume across the surface S is simply this outflow minus the
inflow of momentum across the control surface. This change in momentum is
denoted by G, as noted above. To obtain an expression for G, recall that the mass
flow across the elemental area dS is (ρV · dS); hence, the flow of momentum per
second across dS is

(ρV · dS)V

The net flow of momentum out of the control volume through S is the summation
of the above elemental contributions, namely,

G = .......................................................................
.........

∫∫
S

(ρV · dS)V (2.61)

In Equation (2.61), recall that positive values of (ρV · dS) represent mass flow out
of the control volume, and negative values represent mass flow into the control
volume. Hence, in Equation (2.61) the integral over the whole control surface is
a combination of positive contributions (outflow of momentum) and negative
contributions (inflow of momentum), with the resulting value of the integral
representing the net outflow of momentum. If G has a positive value, there is
more momentum flowing out of the control volume per second than flowing in;
conversely, if G has a negative value, there is more momentum flowing into the
control volume per second than flowing out.

Now consider H from Equation (2.60b). The momentum of the fluid in the
elemental volume dV shown in Figure 2.19 is

(ρ dV)V

The momentum contained at any instant inside the control volume is therefore

..........................................................................................................................
..............

∫∫∫
V

ρV dV

and its time rate of change due to unsteady flow fluctuations is

H = ∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρV dV (2.62)

Combining Equations (2.61) and (2.62), we obtain an expression for the total
time rate of change of momentum of the fluid as it sweeps through the fixed
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control volume, which in turn represents the right-hand side of Equation (2.56):

d

dt
(mV) = G + H = .......................................................................

.........

∫∫
S

(ρV · dS)V + ∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρV dV (2.63)

Hence, from Equations (2.59) and (2.63), Newton’s second law,

d

dt
(mV) = F

applied to a fluid flow is

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρV dV + .......................................................................
.........

∫∫
S

(ρV · dS)V = − .......................................................................
.........

∫∫
S

p dS + ..........................................................................................................................
..............

∫∫∫
V

ρf dV + Fviscous

(2.64)

Equation (2.64) is the momentum equation in integral form. Note that it is a
vector equation. Just as in the case of the integral form of the continuity equation,
Equation (2.64) has the advantage of relating aerodynamic phenomena over a
finite region of space without being concerned with the details of precisely what
is happening at a given distinct point in the flow. This advantage is illustrated in
Section 2.6.

From Equation (2.64), we now proceed to a partial differential equation which
relates flow-field properties at a point in space. Such an equation is a counterpart
to the differential form of the continuity equation given in Equation (2.52). Ap-
ply the gradient theorem, Equation (2.27), to the first term on the right side of
Equation (2.64):

− .......................................................................
.........

∫∫
S

p dS = − ..........................................................................................................................
..............

∫∫∫
V

∇ p dV (2.65)

Also, because the control volume is fixed, the time derivative in Equation (2.64)
can be placed inside the integral. Hence, Equation (2.64) can be written as

..........................................................................................................................
..............

∫∫∫
V

∂(ρV)

∂t
dV + .......................................................................

.........

∫∫
S

(ρV · dS)V = − ..........................................................................................................................
..............

∫∫∫
V

∇ p dV + ..........................................................................................................................
..............

∫∫∫
V

ρf dV + Fviscous

(2.66)

Recall that Equation (2.66) is a vector equation. It is convenient to write this
equation as three scalar equations. Using cartesian coordinates, where

V = ui + vj + wk

the x component of Equation (2.66) is

..........................................................................................................................
..............

∫∫∫
V

∂(ρu)

∂t
dV + .......................................................................

.........

∫∫
S

(ρV · dS)u =− ..........................................................................................................................
..............

∫∫∫
V

∂p

∂x
dV + ..........................................................................................................................

..............

∫∫∫
V

ρ fx dV + (Fx)viscous

(2.67)
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[Note: In Equation (2.67), the product (ρV · dS) is a scalar, and therefore has
no components.] Apply the divergence theorem, Equation (2.26), to the surface
integral on the left side of Equation (2.67):

.......................................................................
.........

∫∫
S

(ρV · dS)u = .......................................................................
.........

∫∫
S

(ρuV) · dS = ..........................................................................................................................
..............

∫∫∫
V

∇ · (ρuV) dV (2.68)

Substituting Equation (2.68) into Equation (2.67), we have

..........................................................................................................................
..............

∫∫∫
V

[
∂(ρu)

∂t
+ ∇ · (ρuV) + ∂p

∂x
− ρ fx − (Fx)viscous

]
dV = 0 (2.69)

where (Fx)viscous denotes the proper form of the x component of the viscous
shear stresses when placed inside the volume integral (this form will be ob-
tained explicitly in Chapter 15). For the same reasons as stated in Section 2.4,
the integrand in Equation (2.69) is identically zero at all points in the flow;
hence,

∂(ρu)

∂t
+ ∇ · (ρuV) = −∂p

∂x
+ ρ fx + (Fx)viscous (2.70a)

Equation (2.70a) is the x component of the momentum equation in differential
form. Returning to Equation (2.66), and writing the y and z components, we
obtain in a similar fashion

∂(ρv)

∂t
+ ∇ · (ρvV) = −∂p

∂y
+ ρ fy + (Fy)viscous (2.70b)

and

∂(ρw)

∂t
+ ∇ · (ρwV) = −∂p

∂z
+ ρ fz + (Fz)viscous (2.70c)

where the subscripts y and z on f and F denote the y and z components of the
body and viscous forces, respectively. Equations (2.70a to c) are the scalar x ,
y, and z components of the momentum equation, respectively; they are par-
tial differential equations that relate flow-field properties at any point in the
flow.

Note that Equations (2.64) and (2.70a to c) apply to the unsteady, three-
dimensional flow of any fluid, compressible or incompressible, viscous or invis-
cid. Specialized to a steady (∂/∂t ≡ 0), inviscid (Fviscous = 0) flow with no body
forces (f = 0), these equations become

.......................................................................
.........

∫∫
S

(ρV · dS)V = − .......................................................................
.........

∫∫
S

p dS (2.71)
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and

∇ · (ρuV) = −∂p

∂x

∇ · (ρvV) = −∂p

∂y

∇ · (ρwV) = −∂p

∂z

(2.72a)

(2.72b)

(2.72c)

Since most of the material in Chapters 3 through 14 assumes steady, inviscid
flow with no body forces, we will have frequent occasion to use the momentum
equation in the forms of Equations (2.71) and (2.72a to c).

The momentum equations for an inviscid flow [such as Equations (2.72a to c)]
are called the Euler equations. The momentum equations for a viscous flow
[such as Equations (2.70a to c)] are called the Navier-Stokes equations. We will
encounter this terminology in subsequent chapters.

2.6 AN APPLICATION OF THE MOMENTUM
EQUATION: DRAG OF A
TWO-DIMENSIONAL BODY

We briefly interrupt our orderly development of the fundamental equations of
fluid dynamics in order to examine an important application of the integral form
of the momentum equation. During the 1930s and 1940s, the National Advisory
Committee for Aeronautics (NACA) measured the lift and drag characteristics of
a series of systematically designed airfoil shapes (discussed in detail in Chapter 4).
These measurements were carried out in a specially designed wind tunnel where
the wing models spanned the entire test section (i.e., the wing tips were butted
against both sidewalls of the wind tunnel). This was done in order to establish two-
dimensional (rather than three-dimensional) flow over the wing, thus allowing the
properties of an airfoil (rather than a finite wing) to be measured. The distinction
between the aerodynamics of airfoils and that of finite wings is made in Chapters 4
and 5. The important point here is that because the wings were mounted against
both sidewalls of the wind tunnel, the NACA did not use a conventional force
balance to measure the lift and drag. Rather, the lift was obtained from the pressure
distributions on the ceiling and floor of the tunnel (above and below the wing),
and the drag was obtained from measurements of the flow velocity downstream
of the wing. These measurements may appear to be a strange way to measure the
aerodynamic force on a wing. Indeed, how are these measurements related to lift
and drag? What is going on here? The answers to these questions are addressed in
this section; they involve an application of the fundamental momentum equation
in integral form, and they illustrate a basic technique that is frequently used in
aerodynamics.

Consider a two-dimensional body in a flow, as sketched in Figure 2.20a.
A control volume is drawn around this body, as given by the dashed lines in



138 PART 1 Fundamental Principles
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Figure 2.20 (a) Control volume for obtaining drag on a two-dimensional body.
(b) Rendering of the velocity profiles downstream of an airfoil. The profiles are made
visible in water flow by pulsing a voltage through a straight wire perpendicular to the flow, thus
creating small bubbles of hydrogen that subsequently move downstream with the flow.
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Figure 2.20a. The control volume is bounded by:

1. The upper and lower streamlines far above and below the body (ab and hi ,
respectively).

2. Lines perpendicular to the flow velocity far ahead of and behind the body
(ai and bh, respectively).

3. A cut that surrounds and wraps the surface of the body (cdefg).

The entire control volume is abcdefghia. The width of the control volume in the
z direction (perpendicular to the page) is unity. Stations 1 and 2 are inflow and
outflow stations, respectively.

Assume that the contour abhi is far enough from the body such that the
pressure is everywhere the same on abhi and equal to the freestream pressure
p = p∞. Also, assume that the inflow velocity u1 is uniform across ai (as it would
be in a freestream, or a test section of a wind tunnel). The outflow velocity u2 is
not uniform across bh, because the presence of the body has created a wake at
the outflow station. However, assume that both u1 and u2 are in the x direction;
hence, u1 = constant and u2 = f (y).

An actual photograph of the velocity profiles in a wake downstream of an
airfoil is shown in Figure 2.20b.

Consider the surface forces on the control volume shown in Figure 2.20a.
They stem from two contributions:

1. The pressure distribution over the surface abhi,

−
∫ ∫
abhi

p dS

2. The surface force on def created by the presence of the body

In the above list, the surface shear stress on ab and hi has been neglected. Also,
note that in Figure 2.20a the cuts cd and f g are taken adjacent to each other;
hence, any shear stress or pressure distribution on one is equal and opposite to
that on the other (i.e., the surface forces on cd and fg cancel each other). Also,
note that the surface force on def is the equal and opposite reaction to the shear
stress and pressure distribution created by the flow over the surface of the body.
To see this more clearly, examine Figure 2.21. On the left is shown the flow over
the body. As explained in Section 1.5, the moving fluid exerts pressure and shear
stress distributions over the body surface which create a resultant aerodynamic
force per unit span R′ on the body. In turn, by Newton’s third law, the body exerts
equal and opposite pressure and shear stress distributions on the flow (i.e., on the
part of the control surface bounded by def ). Hence, the body exerts a force −R′

on the control surface, as shown on the right of Figure 2.21. With the above in
mind, the total surface force on the entire control volume is

Surface force = −
∫ ∫
abhi

p dS − R′ (2.73)



140 PART 1 Fundamental Principles

Figure 2.21 Equal and opposite reactions on a body and adjacent section
of control surface.

Moreover, this is the total force on the control volume shown in Figure 2.20a
because the volumetric body force is negligible.

Consider the integral form of the momentum equation as given by Equa-
tion (2.64). The right-hand side of this equation is physically the force on the
fluid moving through the control volume. For the control volume in Figure 2.20a,
this force is simply the expression given by Equation (2.73). Hence, using Equa-
tion (2.64), with the right-hand side given by Equation (2.73), we have

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρV dV + .......................................................................
.........

∫∫
S

(ρV · dS)V = −
∫ ∫
abhi

p dS − R′ (2.74)

Assuming steady flow, Equation (2.74) becomes

R′ = − .......................................................................
.........

∫∫
S

(ρV · dS)V −
∫ ∫
abhi

p dS (2.75)

Equation (2.75) is a vector equation. Consider again the control volume in Fig-
ure 2.20a. Take the x component of Equation (2.75), noting that the inflow and
outflow velocities u1 and u2 are in the x direction and the x component of R′ is
the aerodynamic drag per unit span D′:

D′ = − .......................................................................
.........

∫∫
S

(ρV · dS)u −
∫ ∫
abhi

(p d S)x (2.76)

In Equation (2.76), the last term is the component of the pressure force in the
x direction. [The expression (p d S)x is the x component of the pressure force
exerted on the elemental area d S of the control surface.] Recall that the boundaries
of the control volume abhi are chosen far enough from the body such that p is
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constant along these boundaries. For a constant pressure.∫ ∫
abhi

(p d S)x = 0 (2.77)

because, looking along the x direction in Figure 2.20a, the pressure force on abhi
pushing toward the right exactly balances the pressure force pushing toward the
left. This is true no matter what the shape of abhi is, as long as p is constant along
the surface (for proof of this statement, see Problem 2.1). Therefore, substituting
Equation (2.77) into (2.76), we obtain

D′ = − .......................................................................
.........

∫∫
S

(ρV · dS)u (2.78)

Evaluating the surface integral in Equation (2.78), we note from Figure 2.20a
that:

1. The sections ab, hi , and def are streamlines of the flow. Since by definition
V is parallel to the streamlines and dS is perpendicular to the control
surface, along these sections V and dS are perpendicular vectors, and hence
V · dS = 0. As a result, the contributions of ab, hi , and def to the integral in
Equation (2.78) are zero.

2. The cuts cd and f g are adjacent to each other. The mass flux out of one is
identically the mass flux into the other. Hence, the contributions of cd and
fg to the integral in Equation (2.78) cancel each other.

As a result, the only contributions to the integral in Equation (2.78) come from
sections ai and bh. These sections are oriented in the y direction. Also, the control
volume has unit depth in the z direction (perpendicular to the page). Hence, for
these sections, d S = dy(1). The integral in Equation (2.78) becomes

.......................................................................
.........

∫∫
S

(ρV · dS)u = −
∫ a

i
ρi u

2
1 dy +

∫ b

h
ρ2u2

2 dy (2.79)

Note that the minus sign in front of the first term on the right-hand side of
Equation (2.79) is due to V and dS being in opposite directions along ai (station 1
is an inflow boundary); in contrast, V and dS are in the same direction over hb
(station 2 is an outflow boundary), and hence the second term has a positive sign.

Before going further with Equation (2.79), consider the integral form of
the continuity equation for steady flow, Equation (2.53). Applied to the control
volume in Figure 2.20a, Equation (2.53) becomes

−
∫ a

i
ρ1u1 dy +

∫ b

h
ρ2u2 dy = 0

or
∫ a

i
ρ1u1 dy =

∫ b

h
ρ2u2 dy (2.80)
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Multiplying Equation (2.80) by u1, which is a constant, we obtain∫ a

i
ρ1u2

1 dy =
∫ b

h
ρ2u2u1 dy (2.81)

Substituting Equation (2.81) into Equation (2.79), we have

.......................................................................
.........

∫∫
S

(ρV · dS)u = −
∫ b

h
ρ2u2u1 dy +

∫ b

h
ρ2u2

2 dy

or .......................................................................
.........

∫∫
S

(ρV · dS)u = −
∫ b

h
ρ2u2(u1 − u2) dy (2.82)

Substituting Equation (2.82) into Equation (2.78) yields

D′ =
∫ b

h
ρ2u2(u1 − u2) dy (2.83)

Equation (2.83) is the desired result of this section; it expresses the drag of a
body in terms of the known freestream velocity u1 and the flow-field properties
ρ2 and u2, across a vertical station downstream of the body. These downstream
properties can be measured in a wind tunnel, and the drag per unit span of the
body D′ can be obtained by evaluating the integral in Equation (2.83) numerically,
using the measured data for ρ2 and u2 as a function of y.

Examine Equation (2.83) more closely. The quantity u1 − u2 is the velocity
decrement at a given y location. That is, because of the drag on the body, there is a
wake that trails downstream of the body. In this wake, there is a loss in flow velocity
u1 − u2. The quantity ρ2u2 is simply the mass flux; when multiplied by u1 − u2,
it gives the decrement in momentum. Therefore, the integral in Equation (2.83)
is physically the decrement in momentum flow that exists across the wake, and
from Equation (2.83), this wake momentum decrement is equal to the drag on the
body.

For incompressible flow, ρ = constant and is known. For this case, Equa-
tion (2.83) becomes

D′ = ρ

∫ b

h
u2(u1 − u2) dy (2.84)

Equation (2.84) is the answer to the questions posed at the beginning of this
section. It shows how a measurement of the velocity distribution across the wake
of a body can yield the drag. These velocity distributions are conventionally
measured with a Pitot rake, such as shown in Figure 2.22. This is nothing more than
a series of Pitot tubes attached to a common stem, which allows the simultaneous
measurement of velocity across the wake. (The principle of the Pitot tube as a
velocity-measuring instrument is discussed in Chapter 3. See also pages 188–210
of Reference 2 for an introductory discussion on Pitot tubes.)

The result embodied in Equation (2.84) illustrates the power of the integral
form of the momentum equation; it relates drag on a body located at some position
in the flow to the flow-field variables at a completely different location.
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Figure 2.22 A Pitot rake for wake surveys (Courtesy of the John Anderson
Collection and the University of Maryland Aerodynamic Laboratory).

At the beginning of this section, it was mentioned that lift on a two-
dimensional body can be obtained by measuring the pressures on the ceiling
and floor of a wind tunnel, above and below the body. This relation can be estab-
lished from the integral form of the momentum equation in a manner analogous
to that used to establish the drag relation; the derivation is left as a homework
problem.

EXAMPLE 2.2

Consider an incompressible flow, laminar boundary layer growing along the surface of a
flat plate, with chord length c, as sketched in Figure 2.23. The definition of a boundary
layer was discussed in Sections 1.10 and 1.11. For an incompressible, laminar, flat plate
boundary layer, the boundary-layer thickness δ at the trailing edge of the plate is

δ

c
= 5√

Rec

and the skin friction drag coefficient for the plate is

Cf ≡ D′

q∞c(1)
= 1.328√

Rec

where the Reynolds number is based on chord length

Rec = ρ∞V∞c

μ∞
[Note: Both δ/c and C f are functions of the Reynolds number—just another demonstra-
tion of the power of the similarity parameters. Since we are dealing with a low-speed,
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Figure 2.23 Sketch of a boundary layer and the velocity profile at x = c. The boundary-layer
thickness δ is exaggerated here for clarity.

incompressible flow, the Mach number is not a relevant parameter here.] Let us assume
that the velocity profile through the boundary layer is given by a power-law variation

u = V∞
( y

δ

)n

Calculate the value of n, consistent with the information given above.

■ Solution
From Equation (2.84)

Cf = D′

q∞c
= ρ∞

1
2ρ∞V 2∞c

∫ δ

0
u2(u1 − u2) dy

where the integral is evaluated at the trailing edge of the plate. Hence,

Cf = 2

∫ δ/c

0

u2

V∞

(
u1

V∞
− u2

V∞

)
d

( y

c

)
However, in Equation (2.84), applied to the control volume in Figure 2.23, u1 = V∞.
Thus

Cf = 2

∫ δ/c

0

u2

V∞

(
1 − u2

V∞

)
d

( y

c

)
Inserting the laminar boundary-layer result for Cf as well as the assumed variation of
velocity, both given above, we can write this integral as

1.328√
Rec

= 2

∫ δ/c

0

[(
y/c

δ/c

)n

−
(

y/c

δ/c

)2n
]

d
( y

c

)
Carrying out the integration, we obtain

1.328√
Rec

= 2

n + 1

(
δ

c

)
− 2

2n + 1

(
δ

c

)
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Figure 2.24 Comparison of the actual laminar boundary-layer
profile with those calculated from Example 2.2.

Since δ/c = 5/
√

Rec, then

1.328√
Rec

= 10

n + 1

(
1√
Rec

)
− 10

2n + 1

(
1√
Rec

)

or
1

n + 1
− 1

2n + 1
= 1.328

10

or 0.2656n2 − 0.6016n + 0.1328 = 0

Using the quadratic formula, we have

n = 2 or 0.25

By assuming a power-law velocity profile in the form of u/V∞ = (y/δ)n , we have found
two different velocity profiles that satisfy the momentum principle applied to a finite
control volume. Both of these profiles are shown in Figure 2.24 and are compared with
an exact velocity profile obtained by means of a solution of the incompressible, laminar
boundary-layer equations for a flat plate. (This boundary-layer solution is discussed in
Chapter 18.) Note that the result n = 2 gives a concave velocity profile that is essentially
nonphysical when compared to the convex profiles always observed in boundary layers.
The result n = 0.25 gives a convex velocity profile that is qualitatively physically correct.
However, this profile is quantitatively inaccurate, as can be seen in comparison to the exact
profile. Hence, our original assumption of a power-law velocity profile for the laminar
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boundary layer in the form of u/V∞ = (y/δ)n is not very good, in spite of the fact that
when n = 2 or 0.25, this assumed velocity profile does satisfy the momentum principle,
applied over a large, finite control volume.

2.6.1 Comment

In this section, we have applied the momentum principle (Newton’s second law)
to large, fixed control volumes in flows. On one hand, we demonstrated that, by
knowing the detailed flow properties along the control surface, this application
led to an accurate result for an overall quantity such as drag on a body, namely,
Equation (2.83) for a compressible flow and Equation (2.84) for an incompress-
ible flow. On the other hand, in Example 2.2, we have shown that, by knowing
an overall quantity such as the net drag on a flat plate, the finite control volume
concept by itself does not necessarily provide an accurate calculation of detailed
flow-field properties along the control surface (in this case, the velocity profile),
although the momentum principle is certainly satisfied in the aggregate. Exam-
ple 2.2 is designed specifically to demonstrate this fact. The weakness here is
the need to assume some form for the variation of flow properties over the con-
trol surface; in Example 2.2, the assumption of the particular power-law profile
proved to be unsatisfactory.

2.7 ENERGY EQUATION
For an incompressible flow, where ρ is constant, the primary flow-field variables
are p and V. The continuity and momentum equations obtained earlier are two
equations in terms of the two unknowns p and V. Hence, for a study of incom-
pressible flow, the continuity and momentum equations are sufficient tools to do
the job.

However, for a compressible flow, ρ is an additional variable, and therefore
we need an additional fundamental equation to complete the system. This funda-
mental relation is the energy equation, to be derived in this section. In the process,
two additional flow-field variables arise, namely, the internal energy e and tem-
perature T . Additional equations must also be introduced for these variables, as
will be mentioned later in this section.

The material discussed in this section is germane to the study of compressible
flow. For those readers interested only in the study of incompressible flow for the
time being, you may bypass this section and return to it at a later stage.

Physical principle Energy can be neither created nor destroyed; it can
only change in form.

This physical principle is embodied in the first law of thermodynamics. A brief
review of thermodynamics is given in Chapter 7. Thermodynamics is essential
to the study of compressible flow; however, at this stage, we will only introduce
the first law, and we defer any substantial discussion of thermodynamics until
Chapter 7, where we begin to concentrate on compressible flow.
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Consider a fixed amount of matter contained within a closed boundary. This
matter defines the system. Because the molecules and atoms within the system
are constantly in motion, the system contains a certain amount of energy. For
simplicity, let the system contain a unit mass; in turn, denote the internal energy
per unit mass by e.

The region outside the system defines the surroundings. Let an incremental
amount of heat δq be added to the system from the surroundings. Also, let δw be
the work done on the system by the surroundings. (The quantities δq and δw are
discussed in more detail in Chapter 7.) Both heat and work are forms of energy,
and when added to the system, they change the amount of internal energy in the
system. Denote this change of internal energy by de. From our physical principle
that energy is conserved, we have for the system

δq + δw = de (2.85)

Equation (2.85) is a statement of the first law of thermodynamics.
Let us apply the first law to the fluid flowing through the fixed control volume

shown in Figure 2.19. Let

B1 = rate of heat added to fluid inside control volume from surroundings
B2 = rate of work done on fluid inside control volume
B3 = rate of change of energy of fluid as it flows through control volume

From the first law,

B1 + B2 = B3 (2.86)

Note that each term in Equation (2.86) involves the time rate of energy change;
hence, Equation (2.86) is, strictly speaking, a power equation. However, because it
is a statement of the fundamental principle of conservation of energy, the equation
is conventionally termed the “energy equation.” We continue this convention here.

First, consider the rate of heat transferred to or from the fluid. This can be
visualized as volumetric heating of the fluid inside the control volume due to
absorption of radiation originating outside the system or the local emission of
radiation by the fluid itself, if the temperature inside the control volume is high
enough. In addition, there may be chemical combustion processes taking place
inside the control volume, such as fuel-air combustion in a jet engine. Let this
volumetric rate of heat addition per unit mass be denoted by q̇. Typical units for q̇
are J/s · kg or ft · lb/s · slug. Examining Figure 2.19, the mass contained within an
elemental volume is ρ dV; hence, the rate of heat addition to this mass is q̇(ρ dV).
Summing over the complete control volume, we obtain

Rate of volumetric heating = ..........................................................................................................................
..............

∫∫∫
V

q̇ρ dV (2.87)

In addition, if the flow is viscous, heat can be transferred into the control volume
by means of thermal conduction and mass diffusion across the control surface.
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Figure 2.25 Schematic for the rate of doing
work by a force F exerted on a moving body.

At this stage, a detailed development of these viscous heat-addition terms is not
warranted; they are considered in detail in Chapter 15. Rather, let us denote
the rate of heat addition to the control volume due to viscous effects simply by
Q̇viscous. Therefore, in Equation (2.86), the total rate of heat addition is given by
Equation (2.87) plus Q̇viscous:

B1 = ..........................................................................................................................
..............

∫∫∫
V

q̇ρ dV + Q̇viscous (2.88)

Before considering the rate of work done on the fluid inside the control volume,
consider a simpler case of a solid object in motion, with a force F being exerted
on the object, as sketched in Figure 2.25. The position of the object is measured
from a fixed origin by the radius vector r. In moving from position r1 to r2 over
an interval of time dt , the object is displaced through dr. By definition, the work
done on the object in time dt is F · dr. Hence, the time rate of doing work is simply
F · dr/dt . However, dr/dt = V, the velocity of the moving object. Hence, we
can state that

Rate of doing work on moving body = F · V

In words, the rate of work done on a moving body is equal to the product of its
velocity and the component of force in the direction of the velocity.

This result leads to an expression for B2, as follows. Consider the elemental
area d S of the control surface in Figure 2.19. The pressure force on this elemental
area is −p dS. From the above result, the rate of work done on the fluid passing
through d S with velocity V is (−p dS) · V. Hence, summing over the complete
control surface, we have

Rate of work done on fluid inside
V due to pressure force on S

= − .......................................................................
.........

∫∫
S

(p dS) · V (2.89)

In addition, consider an elemental volume dV inside the control volume, as shown
in Figure 2.19. Recalling that f is the body force per unit mass, the rate of work
done on the elemental volume due to the body force is (ρf dV) · V. Summing
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over the complete control volume, we obtain

Rate of work done on fluid
inside V due to body forces = ..........................................................................................................................

..............

∫∫∫
V

(ρf dV) · V (2.90)

If the flow is viscous, the shear stress on the control surface will also perform work
on the fluid as it passes across the surface. Once again, a detailed development of
this term is deferred until Chapter 15. Let us denote this contribution simply by
Ẇviscous. Then the total rate of work done on the fluid inside the control volume
is the sum of Equations (2.89) and (2.90) and Ẇviscous:

B2 = − .......................................................................
.........

∫∫
S

pV · dS + ..........................................................................................................................
..............

∫∫∫
V

ρ(f · V) dV + Ẇviscous (2.91)

To visualize the energy inside the control volume, recall that in the first law
of thermodynamics as stated in Equation (2.85), the internal energy e is due to the
random motion of the atoms and molecules inside the system. Equation (2.85) is
written for a stationary system. However, the fluid inside the control volume in
Figure 2.19 is not stationary; it is moving at the local velocity V with a consequent
kinetic energy per unit mass of V 2/2. Hence, the energy per unit mass of the
moving fluid is the sum of both internal and kinetic energies e + V 2/2. This sum
is called the total energy per unit mass.

We are now ready to obtain an expression for B3, the rate of change of total
energy of the fluid as it flows through the control volume. Keep in mind that mass
flows into the control volume of Figure 2.19 bringing with it a certain total energy;
at the same time mass flows out of the control volume taking with it a generally
different amount of total energy. The elemental mass flow across d S is ρV · dS,
and therefore the elemental flow of total energy across d S is (ρV · dS)(e+V 2/2).
Summing over the complete control surface, we obtain

Net rate of flow of total
energy across control surface = .......................................................................

.........

∫∫
S

(ρV · dS)

(
e + V 2

2

)
(2.92)

In addition, if the flow is unsteady, there is a time rate of change of total energy
inside the control volume due to the transient fluctuations of the flow-field vari-
ables. The total energy contained in the elemental volume dV is ρ(e + V 2/2) dV ,
and hence the total energy inside the complete control volume at any instant in
time is

..........................................................................................................................
..............

∫∫∫
V

ρ

(
e + V 2

2

)
dV

Therefore,

Time rate of change of total energy
inside V due to transient variations

of flow-field variables
= ∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ

(
e + V 2

2

)
dV (2.93)
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In turn, B3 is the sum of Equations (2.92) and (2.93):

B3 = ∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ

(
e + V 2

2

)
dV + .......................................................................

.........

∫∫
S

(ρV · dS)

(
e + V 2

2

)
(2.94)

Repeating the physical principle stated at the beginning of this section, the
rate of heat added to the fluid plus the rate of work done on the fluid is equal to the
rate of change of total energy of the fluid as it flows through the control volume
(i.e., energy is conserved). In turn, these words can be directly translated into an
equation by combining Equations (2.86), (2.88), (2.91), and (2.94):

..........................................................................................................................
..............

∫∫∫
V

q̇ρ dV + Q̇viscous − .......................................................................
.........

∫∫
S

pV · dS + ..........................................................................................................................
..............

∫∫∫
V

ρ(f · V) dV + Ẇviscous

= ∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ

(
e + V 2

2

)
dV + .......................................................................

.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS

(2.95)

Equation (2.95) is the energy equation in integral form; it is essentially the first
law of thermodynamics applied to a fluid flow.

For the sake of completeness, note that if a shaft penetrates the control surface
in Figure 2.19, driving some power machinery located inside the control volume
(say, a compressor of a jet engine), then the rate of work delivered by the shaft,
Ẇshaft, must be added to the left side of Equation (2.95). Also note that the potential
energy does not appear explicitly in Equation (2.95). Changes in potential energy
are contained in the body force term when the force of gravity is included in f.
For the aerodynamic problems considered in this book, shaft work is not treated,
and changes in potential energy are always negligible.

Following the approach established in Sections 2.4 and 2.5, we can obtain
a partial differential equation for total energy from the integral form given in
Equation (2.95). Applying the divergence theorem to the surface integrals in
Equation (2.95), collecting all terms inside the same volume integral, and setting
the integrand equal to zero, we obtain

∂

∂t

[
ρ

(
e + V 2

2

)]
+ ∇ ·

[
ρ

(
e + V 2

2

)
V

]
= ρq̇ − ∇ · (pV) + ρ(f · V)

+ Q̇ ′
viscous + Ẇ ′

viscous

(2.96)
where Q̇ ′

viscous and Ẇ ′
viscous represent the proper forms of the viscous terms, to be

obtained in Chapter 15. Equation (2.96) is a partial differential equation which
relates the flow-field variables at a given point in space.

If the flow is steady (∂/∂t = 0), inviscid (Q̇viscous = 0 and Ẇviscous = 0),
adiabatic (no heat addition, q̇ = 0), without body forces (f = 0), then Equa-
tions (2.95) and (2.96) reduce to

.......................................................................
.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS = − .......................................................................

.........

∫∫
S

pV · dS (2.97)



CHAPTER 2 Aerodynamics: Some Fundamental Principles and Equations 151

and

∇ ·
[
ρ

(
e + V 2

2

)
V

]
= −∇ · (pV) (2.98)

Equations (2.97) and (2.98) are discussed and applied at length beginning with
Chapter 7.

With the energy equation, we have introduced another unknown flow-field
variable e. We now have three equations, continuity, momentum, and energy,
which involve four dependent variables, ρ, p, V, and e. A fourth equation can be
obtained from a thermodynamic state relation for e (see Chapter 7). If the gas is
calorically perfect, then

e = cvT (2.99)

where cv is the specific heat at constant volume. Equation (2.99) introduces tem-
perature as yet another dependent variable. However, the system can be completed
by using the perfect gas equation of state

p = ρRT (2.100)

where R is the specific gas constant. Therefore, the continuity, momentum, and
energy equations, along with Equations (2.99) and (2.100) are five independent
equations for the five unknowns, ρ, p, V, e, and T . The matter of a perfect gas and
related equations of state are reviewed in detail in Chapter 7; Equations (2.99) and
(2.100) are presented here only to round out our development of the fundamental
equations of fluid flow.

2.8 INTERIM SUMMARY
At this stage, let us pause and think about the various equations we have developed.
Do not fall into the trap of seeing these equations as just a jumble of mathematical
symbols that, by now, might look all the same to you. Quite the contrary, these
equations speak words: for example, Equations (2.48), (2.52), (2.53), and (2.54)
all say that mass is conserved; Equations (2.64), (2.70a to c), (2.71), and (2.72a to
c) are statements of Newton’s second law applied to a fluid flow; Equations (2.95)
to (2.98) say that energy is conserved. It is very important to be able to see the
physical principles behind these equations. When you look at an equation, try to
develop the ability to see past a collection of mathematical symbols and, instead,
to read the physics that the equation represents.

The equations listed above are fundamental to all of aerodynamics. Take the
time to go back over them. Become familiar with the way they are developed,
and make yourself comfortable with their final forms. In this way, you will find
our subsequent aerodynamic applications that much easier to understand.

Also, note our location on the road map shown in Figure 2.3. We have finished
the items on the left branch of the map—we have obtained the basic flow equations
containing the fundamental physics of fluid flow. We now start with the branch
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on the right, which is a collection of useful concepts helpful in the application of
the basic flow equations.

2.9 SUBSTANTIAL DERIVATIVE
Consider a small fluid element moving through a flow field, as shown in Fig-
ure 2.26. This figure is basically an extension of Figure 2.16, in which we intro-
duced the concept of a fluid element moving through a specified flow field. The
velocity field is given by V = ui + vj + wk, where

u = u(x, y, z, t)

v = v(x, y, z, t)

w = w(x, y, z, t)

In addition, the density field is given by

ρ = ρ(x, y, z, t)

At time t1, the fluid element is located at point 1 in the flow (see Figure 2.26),
and its density is

ρ1 = ρ(x1, y1, z1, t1)

At a later time t2 the same fluid element has moved to a different location in
the flow field, such as point 2 in Figure 2.26. At this new time and location, the
density of the fluid element is

ρ2 = ρ(x2, y2, z2, t2)

Figure 2.26 Fluid element moving in a flow field—illustration for
the substantial derivative.



CHAPTER 2 Aerodynamics: Some Fundamental Principles and Equations 153

Since ρ = ρ(x, y, z, t), we can expand this function in a Taylor series about
point 1 as follows:

ρ2 = ρ1 +
(

∂ρ

∂x

)
1
(x2 − x1) +

(
∂ρ

∂y

)
1

(y2 − y1) +
(

∂ρ

∂z

)
1
(z2 − z1)

+
(

∂ρ

∂t

)
1
(t2 − t1) + higher-order terms

Dividing by t2 − t1, and ignoring the higher-order terms, we have

ρ2 − ρ1

t2 − t1
=

(
∂ρ

∂x

)
1

x2 − x1

t2 − t1
+

(
∂ρ

∂y

)
1

(
y2 − y1

t2 − t1

)
+

(
∂ρ

∂z

)
1

z2 − z1

t2 − t1
+

(
∂ρ

∂t

)
1

(2.101)

Consider the physical meaning of the left side of Equation (2.101). The term
(ρ2 − ρ1)/(t2 − t1) is the average time rate of change in density of the fluid
element as it moves from point 1 to point 2. In the limit, as t2 approaches t1, this
term becomes

lim
t2→t1

ρ2 − ρ1

t2 − t1
= Dρ

Dt

Here, Dρ/Dt is a symbol for the instantaneous time rate of change of density of
the fluid element as it moves through point 1. By definition, this symbol is called
the substantial derivative D/Dt . Note that Dρ/Dt is the time rate of change of
density of a given fluid element as it moves through space. Here, our eyes are
locked on the fluid element as it is moving, and we are watching the density of the
element change as it moves through point 1. This is different from (∂ρ/∂t)1, which
is physically the time rate of change of density at the fixed point 1. For (∂ρ/∂t)1,
we fix our eyes on the stationary point 1, and watch the density change due to
transient fluctuations in the flow field. Thus, Dρ/Dt and ∂ρ/∂t are physically
and numerically different quantities.

Returning to Equation (2.101), note that

lim
t2→t1

x2 − x1

t2 − t1
≡ u

lim
t2→t1

y2 − y1

t2 − t1
≡ v

lim
t2→t1

z2 − z1

t2 − t1
≡ w

Thus, taking the limit of Equation (2.101) as t2 → t1, we obtain

Dρ

Dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ∂ρ

∂t
(2.102)
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Examine Equation (2.102) closely. From it, we can obtain an expression for the
substantial derivative in cartesian coordinates:

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.103)

Furthermore, in cartesian coordinates, the vector operator ∇ is defined as

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
Hence, Equation (2.103) can be written as

D

Dt
≡ ∂

∂t
+ (V · ∇) (2.104)

Equation (2.104) represents a definition of the substantial derivative in vector
notation; thus, it is valid for any coordinate system.

Focusing on Equation (2.104), we once again emphasize that D/Dt is the
substantial derivative, which is physically the time rate of change following a
moving fluid element; ∂/∂t is called the local derivative, which is physically the
time rate of change at a fixed point; V · ∇ is called the convective derivative,
which is physically the time rate of change due to the movement of the fluid
element from one location to another in the flow field where the flow properties
are spatially different. The substantial derivative applies to any flow-field variable
(e.g., Dp/Dt , DT/Dt , Du/Dt). For example,

DT

Dt
≡ ∂T

∂t
+ (V · ∇)T ≡ ∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
(2.105)

local
derivative

convective
derivative

Again, Equation (2.105) states physically that the temperature of the fluid element
is changing as the element sweeps past a point in the flow because at that point the
flow-field temperature itself may be fluctuating with time (the local derivative)
and because the fluid element is simply on its way to another point in the flow
field where the temperature is different (the convective derivative).

Consider an example that will help to reinforce the physical meaning of the
substantial derivative. Imagine that you are hiking in the mountains, and you are
about to enter a cave. The temperature inside the cave is cooler than outside. Thus,
as you walk through the mouth of the cave, you feel a temperature decrease—this
is analogous to the convective derivative in Equation (2.105). However, imagine
that, at the same time, a friend throws a snowball at you such that the snowball hits
you just at the same instant you pass through the mouth of the cave. You will feel
an additional, but momentary, temperature drop when the snowball hits you—this
is analogous to the local derivative in Equation (2.105). The net temperature drop
you feel as you walk through the mouth of the cave is therefore a combination
of both the act of moving into the cave, where it is cooler, and being struck by
the snowball at the same instant—this net temperature drop is analogous to the
substantial derivative in Equation (2.105).
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EXAMPLE 2.3

Return to the subsonic compressible flow over a wavy wall treated in Example 2.1. In that
example we calculated the time rate of change of the volume of a fluid element per unit
volume at the point (x/
, y/
) = ( 1

4 , 1) to be −0.7327 s−1. That is, at the instant the fluid
element was passing through this point, its volume was experiencing a rate of decrease of
73 percent per second, a substantial instantaneous rate of change. Moreover, we noted in
Example 2.1 that, because the volume was decreasing and hence the density increasing,
the point ( 1

4 , 1) must be in a compression region. This would imply that the fluid element
is slowing down as it passes through point ( 1

4 , 1); i.e., it is experiencing a deceleration.
Calculate the value of the deceleration at this point.

■ Solution
Acceleration (or deceleration) is physically the time rate of change of velocity. The time
rate of change of velocity of a moving fluid element is, from the physical meaning of the
substantial derivative, the substantial derivative of the velocity. Let us deal in terms of
cartesian coordinates. For the two-dimensional flow considered in Example 2.1, the x and
y components of acceleration are denoted by ax and ay , respectively, where

ax = Du

Dt
= u

∂u

∂x
+ v

∂u

∂y
(E2.1)

and

ay = Dv

Dt
= u

∂v

∂x
+ v

∂v

∂y
(E2.2)

Equations for u and v are given in Example 2.1 as

u = V∞
[

1 + h

β

2π




(
cos

2πx




)
e−2πβy/


]
(2.35)

and

v = −V∞h
2π




(
sin

2πx




)
e−2πβy/
 (2.36)

where

β =
√

1 − M2∞

From Equation (2.35),

∂u

∂x
= − V∞h

β

(
2π




)2 (
sin

2πx




)
e−2πβy/
 (E2.3)

and

∂u

∂y
= −V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/
 (E2.4)
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From Equation (2.36),

∂v

∂x
= −V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/
 (E2.5)

and

∂v

∂y
= V∞h β

(
2π




)2 (
cos

2πx




)
e−2πβy/
 (E2.6)

For the wavy wall in Example 2.1, the wavelength is 
 = 1.0 m and the amplitude h =
0.01 m (see Figure 2.17). Also given in Example 2.1 is V∞ = 240 m/s and M∞ = 0.7. For
these conditions, and remembering that we are making the calculation for a fluid element
as it passes through (x, y) = ( 1

4 , 1),

2π



= 2π

1.0
= 6.283

β =
√

1 − M2∞ =
√

1 − (0.7)2 = 0.714

2πβy



= 6.283 (0.714)(1.0) = 4.486

e−2πβy/
 = e−4.486 = 0.01126

sin
2πx



= sin

2π

4
= sin

π

2
= 1

cos
2πx



= cos

π

2
= 0

From Equation (2.35),

u = V∞
[

1 + h

β

2π




(
cos

2πx




)
e−2πβy/


]

u = V∞ = 240 m/s

From Equation (2.36),

v = −V∞h
2π




(
sin

2πx




)
e−2πβy/


v = −(240)(0.01)(6.283)(1)(0.01126)

v = −0.1698 m/s

From Equation (E2.3),

∂u

∂x
= − V∞h

β

(
2π




)2 (
sin

2πx




)
e−2πβy/
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∂u

∂x
= − (240)(0.01)

0.714
(6.283)2(1)(0.01126)

∂u

∂x
= −1.494 s−1

From Equation (E2.4),

∂u

∂y
= −V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/


∂u

∂y
= 0

From Equation (E2.5),

∂v

∂x
= −V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/


∂v

∂x
= 0

From Equation (E2.6),

∂v

∂y
= V∞h β

(
2π




)2 (
sin

2πx




)
e−2πβy/


∂v

∂y
= (240)(0.01)(0.714)(6.283)2(1)(0.01126)

∂v

∂y
= 0.7617 s−1

Substituting the above values into Equation (E2.1), we have

ax = u
∂u

∂x
+ v

∂u

∂y
= (240)(−1.494) − (0.1698)(0)

ax = −358.56 m/s2

From Equation (E2.2),

ay = u
∂u

∂x
+ v

∂v

∂y

ay = (240)(0) − (0.1698)(0.7617) = −0.129 m/s2

The absolute magnitude of the acceleration is

|a| =
√

a2
x + a2

y =
√

(−358.56)2 + (−0.129)2

|a| = 358.6 m/s2



158 PART 1 Fundamental Principles

Note, however, that both ax and ay are negative, and hence the acceleration is negative,
i.e., the fluid element is decelerating as it passes through point ( 1

4 , 1), with a value of

Deceleration = 358.6 m/s2

Note also that, by far, the deceleration is greatest in the x direction, with the deceleration
in the y direction being very small.

The acceleration of gravity at sea level on earth is 9.8 m/s2. Observe that the fluid
element in this example is locally experiencing a deceleration with an absolute magnitude
that is 36.6 times that of the acceleration of gravity; i.e., the fluid element as it passes
through point ( 1

4 , 1) is experiencing a large deceleration of 36.6 g. This is totally consistent
with the result from Example 2.1 that the fluid element is simultaneously experiencing a
very rapid change in volume of 73 percent per second. (To relate to human experience, a
human being can tolerate only up to 10 g acceleration or deceleration, and that for only
a few seconds before life-threatening bodily injury.) The flow field shown in Figure 2.17
and treated here and in Example 2.1 is relatively benign; indeed, it is a flow involving only
small perturbations from a uniform flow. Subsonic small perturbation flows are treated in
Chapter 11. Yet, from this example we deduce that a given fluid element, even though it is
moving through a rather calm flow field, gets rather drastically pushed around. The force
that is pushing around the fluid element is supplied by the pressure gradients in the flow,
as discussed in Section 2.5.

2.10 FUNDAMENTAL EQUATIONS IN TERMS
OF THE SUBSTANTIAL DERIVATIVE

In this section, we express the continuity, momentum, and energy equations in
terms of the substantial derivative. In the process, we make use of the following
vector identity:

∇ · (ρV) ≡ ρ∇ · V + V · ∇ρ (2.106)

In words, this identity states that the divergence of a scalar times a vector is equal
to the scalar times the divergence of the vector plus the dot product of the vector
and the gradient of the scalar.

First, consider the continuity equation given in the form of Equation (2.52):

∂ρ

∂t
+ ∇ · (ρV) = 0 (2.52)

Using the vector identity given by Equation (2.106), Equation (2.52) becomes

∂ρ

∂t
+ V · ∇ρ + ρ∇ · V = 0 (2.107)



CHAPTER 2 Aerodynamics: Some Fundamental Principles and Equations 159

However, the sum of the first two terms of Equation (2.107) is the substantial
derivative of ρ [see Equation (2.104)]. Thus, from Equation (2.107),

Dρ

Dt
+ ρ∇ · V = 0 (2.108)

Equation (2.108) is the form of the continuity equation written in terms of the
substantial derivative.

Next, consider the x component of the momentum equation given in the form
of Equation (2.70a):

∂(ρu)

∂t
+ ∇ · (ρuV) = −∂p

∂x
+ ρ fx + (Fx)viscous (2.70a)

The first terms can be expanded as

∂(ρu)

∂t
= ρ

∂u

∂t
+ u

∂ρ

∂t
(2.109)

In the second term of Equation (2.70a), treat the scalar quantity as u and the
vector quantity as ρV. Then the term can be expanded using the vector identity
in Equation (2.106):

∇ · (ρuV) ≡ ∇ · [u(ρV)] = u∇ · (ρV) + (ρV) · ∇u (2.110)

Substituting Equations (2.109) and (2.110) into (2.70a), we obtain

ρ
∂u

∂t
+ u

∂ρ

∂t
+ u∇ · (ρV) + (ρV) · ∇u = −∂p

∂x
+ ρ fx + (Fx)viscous

or

ρ
∂u

∂t
+ u

[
∂ρ

∂t
+ ∇ · (ρV)

]
+ (ρV) · ∇u = −∂p

∂x
+ ρ fx + (Fx)viscous (2.111)

Examine the two terms inside the square brackets; they are precisely the left side of
the continuity equation, Equation (2.52). Since the right side of Equation (2.52) is
zero, the sum inside the square brackets is zero. Hence, Equation (2.111) becomes

ρ
∂u

∂t
+ ρV · ∇u = −∂p

∂x
+ ρ fx + (Fx)viscous

or

ρ

(
∂u

∂t
+ V · ∇u

)
= −∂p

∂x
+ ρ fx + (Fx)viscous (2.112)

Examine the two terms inside the parentheses in Equation (2.112); their sum is
precisely the substantial derivative Du/Dt . Hence, Equation (2.112) becomes

ρ
Du

Dt
= −∂p

∂x
+ ρ fx + (Fx)viscous (2.113a)
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In a similar manner, Equations (2.70b and c) yield

(2.113b)ρ
Dv

Dt
= −∂p

∂y
+ ρ fy + (Fy)viscous

ρ
Dw

Dt
= −∂p

∂z
+ ρ fz + (Fz)viscous

(2.113c)

Equations (2.113a to c) are the x , y, and z components of the momentum equa-
tion written in terms of the substantial derivative. Compare these equations with
Equations (2.70a to c). Note that the right sides of both sets of equations are
unchanged; only the left sides are different.

In an analogous fashion, the energy equation given in the form of Equa-
tion (2.96) can be expressed in terms of the substantial derivative. The derivation
is left as a homework problem; the result is

ρ
D(e + V 2/2)

Dt
= ρq̇ − ∇ · (pV) + ρ(f · V) + Q̇′

viscous + Ẇ ′
viscous (2.114)

Again, the right-hand sides of Equations (2.96) and (2.114) are the same; only
the form of the left sides is different.

In modern aerodynamics, it is conventional to call the form of Equa-
tions (2.52), (2.70a to c), and (2.96) the conservation form of the fundamental
equations (sometimes these equations are labeled as the divergence form because
of the divergence terms on the left side). In contrast, the form of Equations (2.108),
(2.113a to c), and (2.114), which deals with the substantial derivative on the left
side, is called the nonconservation form. Both forms are equally valid statements
of the fundamental principles, and in most cases, there is no particular reason to
choose one form over the other. The nonconservation form is frequently found
in textbooks and in aerodynamic theory. However, for the numerical solution of
some aerodynamic problems, the conservation form sometimes leads to more
accurate results. Hence, the distinction between the conservation form and the
nonconservation form has become important in the modern discipline of compu-
tational fluid dynamics. (See Reference 7 for more details.)

2.11 PATHLINES, STREAMLINES, AND
STREAKLINES OF A FLOW

In addition to knowing the density, pressure, temperature, and velocity fields, in
aerodynamics we like to draw pictures of “where the flow is going.” To accom-
plish this, we construct diagrams of pathlines and/or streamlines of the flow. The
distinction between pathlines and streamlines is described in this section.

Consider an unsteady flow with a velocity field given by V = V(x, y, z, t).
Also, consider an infinitesimal fluid element moving through the flow field, say,
element A as shown in Figure 2.27a. Element A passes through point 1. Let us
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Figure 2.27 Pathlines for two different fluid elements
passing through the same point in space: unsteady flow.

trace the path of element A as it moves downstream from point 1, as given by the
dashed line in Figure 2.27a. Such a path is defined as the pathline for element
A. Now, trace the path of another fluid element, say, element B as shown in
Figure 2.27b. Assume that element B also passes through point 1, but at some
different time from element A. The pathline of element B is given by the dashed
line in Figure 2.27b. Because the flow is unsteady, the velocity at point 1 (and at
all other points of the flow) changes with time. Hence, the pathlines of elements
A and B are different curves in Figure 2.27a and b. In general, for unsteady flow,
the pathlines for different fluid elements passing through the same point are not
the same.

In Section 1.4, the concept of a streamline was introduced in a somewhat
heuristic manner. Let us be more precise here. By definition, a streamline is a
curve whose tangent at any point is in the direction of the velocity vector at that
point. Streamlines are illustrated in Figure 2.28. The streamlines are drawn such
that their tangents at every point along the streamline are in the same direction as
the velocity vectors at those points. If the flow is unsteady, the streamline pattern
is different at different times because the velocity vectors are fluctuating with
time in both magnitude and direction.

In general, streamlines are different from pathlines. You can visualize a path-
line as a time-exposure photograph of a given fluid element, whereas a streamline
pattern is like a single frame of a motion picture of the flow. In an unsteady
flow, the streamline pattern changes; hence, each “frame” of the motion picture
is different.

However, for the case of steady flow (which applies to most of the applications
in this book), the magnitude and direction of the velocity vectors at all points are
fixed, invariant with time. Hence, the pathlines for different fluid elements going
through the same point are the same. Moreover, the pathlines and streamlines
are identical. Therefore, in steady flow, there is no distinction between pathlines
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Figure 2.28 Streamlines.

Figure 2.29 For steady flow, streamlines and pathlines are the same.

and streamlines; they are the same curves in space. This fact is reinforced in Fig-
ure 2.29, which illustrates the fixed, time-invariant streamline (pathline) through
point 1. In Figure 2.29, a given fluid element passing through point 1 traces a
pathline downstream. All subsequent fluid elements passing through point 1 at
later times trace the same pathline. Since the velocity vector is tangent to the path-
line at all points on the pathline for all times, the pathline is also a streamline. For
the remainder of this book, we deal mainly with the concept of streamlines rather
than pathlines; however, always keep in mind the distinction described above.

Question: Given the velocity field of a flow, how can we obtain the mathemat-
ical equation for a streamline? Obviously, the streamline illustrated in Figure 2.29
is a curve in space, and hence it can be described by the equation f (x, y, z) = 0.
How can we obtain this equation? To answer this question, let ds be a directed
element of the streamline, such as shown at point 2 in Figure 2.29. The velocity
at point 2 is V, and by definition of a streamline, V is parallel to ds. Hence, from
the definition of the vector cross product [see Equation (2.4)],

ds × V = 0 (2.115)

Equation (2.115) is a valid equation for a streamline. To put it in a more recog-
nizable form, expand Equation (2.115) in cartesian coordinates:

ds = dx i + dyj + dzk

V = ui + vj + wk
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ds × V =

∣∣∣∣∣∣∣
i j k

dx dy dz
u v w

∣∣∣∣∣∣∣
= i(w dy − v dz) + j(u dz − w dx) + k(v dx − u dy) = 0 (2.116)

Since the vector given by Equation (2.116) is zero, its components must each be
zero:

(2.117a)w dy − v dz = 0

u dz − w dx = 0

v dx − u dy = 0

(2.117b)

(2.117c)

Equations (2.117a to c) are differential equations for the streamline. Knowing u,
v, and w as functions of x , y, and z, Equations (2.117a to c) can be integrated to
yield the equation for the streamline: f (x, y, z) = 0.

To reinforce the physical meaning of Equations (2.117a to c), consider a
streamline in two dimensions, as sketched in Figure 2.30a. The equation of this
streamline is y = f (x). Hence, at point 1 on the streamline, the slope is dy/dx .
However, V with x and y components u and v, respectively, is tangent to the
streamline at point 1. Thus, the slope of the streamline is also given by v/u, as
shown in Figure 2.30. Therefore,

dy

dx
= v

u
(2.118)

Figure 2.30 (a) Equation of a stream in two-dimensional
cartesian space. (b) Sketch of a streamtube in three-dimensional
space.
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Equation (2.118) is a differential equation for a streamline in two dimensions.
From Equation (2.118),

v dx − u dy = 0

which is precisely Equation (2.117c). Therefore, Equations (2.117a to c) and
(2.118) simply state mathematically that the velocity vector is tangent to the
streamline.

A concept related to streamlines is that of a streamtube. Consider an arbitrary
closed curve C in three-dimensional space, as shown in Figure 2.30b. Consider
the streamlines which pass through all points on C . These streamlines form a
tube in space as sketched in Figure 2.30b; such a tube is called a streamtube. For
example, the walls of an ordinary garden hose form a streamtube for the water
flowing through the hose. For a steady flow, a direct application of the integral
form of the continuity equation [Equation (2.53)] proves that the mass flow across
all cross sections of a streamtube is constant. (Prove this yourself.)

EXAMPLE 2.4

Consider the velocity field given by u = y/(x2 + y2) and v = −x/(x2 + y2). Calculate
the equation of the streamline passing through the point (0, 5).

■ Solution
From Equation (2.118), dy/dx = v/u = −x/y, and

y dy = −x dx

Integrating, we obtain

y2 = −x2 + c

where c is a constant of integration.
For the streamline through (0, 5), we have

52 = 0 + c or c = 25

Thus, the equation of the streamline is

x2 + y2 = 25

Note that the streamline is a circle with its center at the origin and a radius of 5 units.
Streamlines are by far the most common method used to visualize a fluid flow. In an

unsteady flow it is also useful to track the path of a given fluid element as it moves through
the flow field (i.e., to trace out the pathline of the fluid element). However, separate from
the ideas of a streamline and a pathline is the concept of a streakline. Consider a fixed point
in a flow field, such as point 1 in Figure 2.31. Consider all the individual fluid elements
that have passed through point 1 over a given time interval t2 − t1. These fluid elements,
shown in Figure 2.31, are connected with each other, like a string of elephants con-
nected trunk-to-tail. Element A is the fluid element that passed through point 1 at time t1.
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Time = t2
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Figure 2.31 Illustration of a streakline through point 1.

Element B is the next element that passed through point 1, just behind element A. Ele-
ment C is the element that passed through point 1 just behind element B, and so forth.
Figure 2.31 is an illustration, made at time t2, which shows all the fluid elements that
have earlier passed through point 1 over the time interval (t2 − t1). The line that connects
all these fluid elements is, by definition, a streakline. We can more concisely define a
streakline as the locus of fluid elements that have earlier passed through a prescribed
point. To help further visualize the concept of a streakline, imagine that we are constantly
injecting dye into the flow field at point 1. The dye will flow downstream from point 1,
forming a curve in the x , y, z space in Figure 2.31. This curve is the streakline shown
in Figure 2.31. A photograph of a streakline in the flow of water over a circular cylinder
is shown in Figure 3.48. The white streakline is made visible by white particles that are
constantly formed by electrolysis near a small anode fixed on the cylinder surface. These
white particles subsequently flow downstream forming a streakline.

For a steady flow, pathlines, streamlines, and streaklines are all the same curves.
Only in an unsteady flow are they different. So for steady flow, which is the type of flow
mainly considered in this book, the concepts of a pathline, streamline, and streakline are
redundant.

2.12 ANGULAR VELOCITY, VORTICITY,
AND STRAIN

In several of our previous discussions, we made use of the concept of a fluid ele-
ment moving through the flow field. In this section, we examine this motion more
closely, paying particular attention to the orientation of the element and its change
in shape as it moves along a streamline. In the process, we introduce the concept
of vorticity, one of the most powerful quantities in theoretical aerodynamics.
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Figure 2.32 The motion of a fluid element along a streamline
is a combination of translation and rotation; in addition, the
shape of the element can become distorted.

Consider an infinitesimal fluid element moving in a flow field. As it translates
along a streamline, it may also rotate, and in addition its shape may become dis-
torted as sketched in Figure 2.32. The amount of rotation and distortion depends
on the velocity field; the purpose of this section is to quantify this dependency.

Consider a two-dimensional flow in the xy plane. Also, consider an infinitesi-
mal fluid element in this flow. Assume that at time t the shape of this fluid element
is rectangular, as shown at the left of Figure 2.33. Assume that the fluid element
is moving upward and to the right; its position and shape at time t + �t are
shown at the right in Figure 2.33. Note that during the time increment �t , the
sides AB and AC have rotated through the angular displacements −�θ1 and �θ2,
respectively. (Counterclockwise rotations by convention are considered positive;

Figure 2.33 Rotation and distortion of a fluid element.
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since line AB is shown with a clockwise rotation in Figure 2.33, the angular dis-
placement is negative, −�θ1.) At present, consider just the line AC . It has rotated
because during the time increment �t , point C has moved differently from point
A. Consider the velocity in the y direction. At point A at time t , this velocity is v,
as shown in Figure 2.33. Point C is a distance dx from point A; hence, at time t
the vertical component of velocity of point C is given by v + (∂v/∂x) dx . Hence,

Distance in y direction that A moves
during time increment �t

= v�t

Distance in y direction that C moves
during time increment �t

=
(

v + ∂v

∂x
dx

)
�t

Net displacement in y direction
of C relative to A

=
(

v + ∂v

∂x
dx

)
�t − v�t

=
(

∂v

∂x
dx

)
�t

This net displacement is shown at the right of Figure 2.33. From the geometry of
Figure 2.33,

tan �θ2 = [(∂v/∂x) dx] �t

dx
= ∂v

∂x
�t (2.119)

Since �θ2 is a small angle, tan �θ2 ≈ �θ2. Hence, Equation (2.119) reduces to

�θ2 = ∂v

∂x
�t (2.120)

Now consider line AB. The x component of the velocity at point A at time t
is u, as shown in Figure 2.33. Because point B is a distance dy from point A,
the horizontal component of velocity of point B at time t is u + (∂u/∂y) dy.
By reasoning similar to that above, the net displacement in the x direction of
B relative to A over the time increment �t is [(∂u/∂y) dy] �t , as shown in
Figure 2.33. Hence,

tan(−�θ1) = [(∂u/∂y) dy] �t

dy
= ∂u

∂y
�t (2.121)

Since −�θ1 is small, Equation (2.121) reduces to

�θ1 = −∂u

∂y
�t (2.122)

Consider the angular velocities of lines AB and AC , defined as dθ1/dt and dθ2/dt ,
respectively. From Equation (2.122), we have

dθ1

dt
= lim

�t→0

�θ1

�t
= −∂u

∂y
(2.123)
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From Equation (2.120), we have

dθ2

dt
= lim

�t→0

�θ2

�t
= ∂v

∂x
(2.124)

By definition, the angular velocity of the fluid element as seen in the xy plane
is the average of the angular velocities of lines AB and AC . Let ωz denote this
angular velocity. Therefore, by definition,

ωz = 1

2

(
dθ1

dt
+ dθ2

dt

)
(2.125)

Combining Equations (2.123) to (2.125) yields

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(2.126)

In the above discussion, we have considered motion in the xy plane only.
However, the fluid element is generally moving in three-dimensional space, and
its angular velocity is a vector ω that is oriented in some general direction, as
shown in Figure 2.34. In Equation (2.126), we have obtained only the component
of ω in the z direction; this explains the subscript z in Equations (2.125) and
(2.126). The x and y components of ω can be obtained in a similar fashion. The
resulting angular velocity of the fluid element in three-dimensional space is

ω = ωx i + ωyj + ωzk

ω = 1

2

[(
∂w

∂y
− ∂v

∂z

)
i +

(
∂u

∂z
− ∂w

∂x

)
j +

(
∂v

∂x
− ∂u

∂y

)
k
]

(2.127)

Equation (2.127) is the desired result; it expresses the angular velocity of the fluid
element in terms of the velocity field, or more precisely, in terms of derivatives
of the velocity field.

The angular velocity of a fluid element plays an important role in theoret-
ical aerodynamics, as we shall see soon. However, the expression 2ω appears

Figure 2.34 Angular velocity of a fluid
element in three-dimensional space.
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frequently, and therefore we define a new quantity, vorticity, which is simply
twice the angular velocity. Denote vorticity by the vector ξ :

ξ ≡ 2ω

Hence, from Equation (2.127),

ξ =
(

∂w

∂y
− ∂v

∂z

)
i +

(
∂u

∂z
− ∂w

∂x

)
j +

(
∂v

∂x
− ∂u

∂y

)
k (2.128)

Recall Equation (2.22) for ∇ × V in cartesian coordinates. Since u, v, and w

denote the x , y, and z components of velocity, respectively, note that the right
sides of Equations (2.22) and (2.128) are identical. Hence, we have the important
result that

ξ = ∇ × V (2.129)

In a velocity field, the curl of the velocity is equal to the vorticity.
The above leads to two important definitions:

1. If ∇ × V 	= 0 at every point in a flow, the flow is called rotational. This
implies that the fluid elements have a finite angular velocity.

2. If ∇ × V = 0 at every point in a flow, the flow is called irrotational. This
implies that the fluid elements have no angular velocity; rather, their motion
through space is a pure translation.

The case of rotational flow is illustrated in Figure 2.35. Here, fluid elements
moving along two different streamlines are shown in various modes of rotation.
In contrast, the case of irrotational flow is illustrated in Figure 2.36. Here, the
upper streamline shows a fluid element where the angular velocities of its sides are
zero. The lower streamline shows a fluid element where the angular velocities of
two intersecting sides are finite but equal and opposite to each other, and so their
sum is identically zero. In both cases, the angular velocity of the fluid element is
zero (i.e., the flow is irrotational).

Figure 2.35 Fluid elements in a rotational flow.
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Figure 2.36 Fluid elements in an irrotational flow.

If the flow is two-dimensional (say, in the xy plane), then from Equa-
tion (2.128),

ξ = ξzk =
(

∂v

∂x
− ∂u

∂y

)
k (2.130)

Also, if the flow is irrotational, ξ = 0. Hence, from Equation (2.130),

∂v

∂x
− ∂u

∂y
= 0 (2.131)

Equation (2.131) is the condition of irrotationality for two-dimensional flow. We
will have frequent occasion to use Equation (2.131).

Why is it so important to make a distinction between rotational and irrotational
flows? The answer becomes blatantly obvious as we progress in our study of aero-
dynamics; we find that irrotational flows are much easier to analyze than rotational
flows. However, irrotational flow may at first glance appear to be so special that
its applications are limited. Amazingly enough, such is not the case. There are a
large number of practical aerodynamic problems where the flow field is essentially
irrotational, for example, the subsonic flow over airfoils, the supersonic flow over
slender bodies at small angle of attack, and the subsonic-supersonic flow through
nozzles. For such cases, there is generally a thin boundary layer of viscous flow
immediately adjacent to the surface; in this viscous region the flow is highly ro-
tational. However, outside this boundary layer, the flow is frequently irrotational.
As a result, the study of irrotational flow is an important aspect of aerodynamics.

Return to the fluid element shown in Figure 2.33. Let the angle between sides
AB and AC be denoted by κ . As the fluid element moves through the flow field,
κ will change. In Figure 2.33, at time t , κ is initially 90◦. At time t + �t , κ has
changed by the amount �κ , where

�κ = −�θ2 − (−�θ1) (2.132)



CHAPTER 2 Aerodynamics: Some Fundamental Principles and Equations 171

By definition, the strain of the fluid element as seen in the xy plane is the change
in κ , where positive strain corresponds to a decreasing κ . Hence, from Equa-
tion (2.132),

Strain = −�κ = �θ2 − �θ1 (2.133)

In viscous flows (to be discussed in Chapters 15 to 20), the time rate of strain is
an important quantity. Denote the time rate of strain by εxy , where in conjunction
with Equation (2.133)

εxy ≡ −dκ

dt
= dθ2

dt
− dθ1

dt
(2.134)

Substituting Equations (2.123) and (2.124) into (2.134), we have

εxy = ∂v

∂x
+ ∂u

∂y
(2.135a)

In the yz and zx planes, by a similar derivation the strain is, respectively,

εyz = ∂w

∂y
+ ∂v

∂z
(2.135b)

and

εzx = ∂u

∂z
+ ∂w

∂x
(2.135c)

Note that angular velocity (hence, vorticity) and time rate of strain depend
solely on the velocity derivatives of the flow field. These derivatives can be dis-
played in a matrix as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The sum of the diagonal terms is simply equal to ∇ · V, which from Section 2.3 is
equal to the time rate of change of volume of a fluid element; hence, the diagonal
terms represent the dilatation of a fluid element. The off-diagonal terms are cross
derivatives which appear in Equations (2.127), (2.128), and (2.135a to c). Hence,
the off-diagonal terms are associated with rotation and strain of a fluid element.

In summary, in this section, we have examined the rotation and deformation
of a fluid element moving in a flow field. The angular velocity of a fluid element
and the corresponding vorticity at a point in the flow are concepts that are useful
in the analysis of both inviscid and viscous flows; in particular, the absence of
vorticity—irrotational flow—greatly simplifies the analysis of the flow, as we will
see. We take advantage of this simplification in much of our treatment of inviscid



172 PART 1 Fundamental Principles

flows in subsequent chapters. On the other hand, we do not make use of the time
rate of strain until Chapter 15.

EXAMPLE 2.5

For the velocity field given in Example 2.4, calculate the vorticity.

■ Solution

ξ = ∇ × V =

∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

u v w

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
y

x2 + y2

−x

x2 + y2 0

∣∣∣∣∣∣∣∣∣∣
= i[0 − 0] − j[0 − 0]

+ k

[
(x2 + y2)(−1) + x(2x)

(x2 + y2)2 − (x2 + y2) − y(2y)

(x2 + y2)2

]
= 0i + 0j + 0k = 0

The flow field is irrotational at every point except at the origin, where x2 + y2 = 0.

EXAMPLE 2.6

Consider the boundary-layer velocity profile used in Example 2.2, namely, u/V∞ =
(y/δ)0.25. Is this flow rotational or irrotational?

■ Solution
For a two-dimensional flow, the irrotationality condition is given by Equation (2.131),
namely

∂v

∂x
− ∂u

∂y
= 0.

Does this relation hold for the viscous boundary-layer flow in Example 2.2? Let us examine
this question. From the boundary-layer velocity profile given by

u

V∞
=

( y

δ

)0.25

we obtain

∂u

∂y
= 0.25

V∞
δ

( y

δ

)−0.75
(E2.7)

What can we say about ∂v/∂x? In Example 2.2, the flow was incompressible. From the
continuity equation for a steady flow given by Equation (2.54), repeated below,

∇ · (ρV) = ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0

we have for an incompressible flow, where ρ = constant,

∂u

∂x
+ ∂v

∂y
= 0 (E2.8)
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Equation (E2.8) will provide an expression for v as follows:

∂u

∂x
= ∂

∂x

[
V∞

( y

δ

)0.25
]

(E2.9)

However, from Example 2.2, we stated that

δ

c
= 5√

Rec

This equation holds at any x station along the plate, not just at x = c. Therefore, we can
write

δ

x
= 5√

Re, x

where Re, x = ρ∞V∞x

μ∞
Thus, δ is a function of x given by

δ = 5

√
μ∞x

ρ∞V∞

and dδ

dx
= 5

2

√
μ∞

ρ∞V∞
x−1/2

Substituting into Equation (E2.9), we have

∂u

∂x
= ∂

∂x

[
V∞

( y

δ

)0.25
]

= V∞y0.25(−0.25)δ−1.25 dδ

dx

= −V∞y0.25δ−1.25
(

5

8

)√
μ∞

ρ∞V∞
x−1/2

= −5

8
V∞y0.25

(
1

5

)1.25 (
μ∞

ρ∞V∞

)−1/8

x−9/8

Hence,
∂u

∂x
= −Cy1/4x−9/8

where C is a constant. Inserting this into Equation (E2.8), we have

∂v

∂y
= C1/4

y x−9/8

Integrating with respect to y, we have

v = C1 y5/4x−9/8 + C2 (E2.10)

where C1 is a constant and C2 can be a function of x . Evaluating Equation (E2.10) at the
wall, where v = 0 and y = 0, we obtain C2 = 0. Hence,

v = C1 y5/4x−9/8
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In turn, we obtain by differentiation

∂v

∂x
= C3 y5/4x−17/8 (E2.11)

(Note: v is finite inside a boundary layer; the streamlines within a boundary are deflected
upward. However, this “displacement” effect is usually small compared to the running
length in the x direction, and v is of small magnitude in comparison to u. Both of these
statements will be verified in Chapters 17 and 18.) Recasting Equation (E2.7) in the same
general form as Equation (E2.11), we have

∂u

∂y
= 0.25V∞y−0.75

(
1

δ

)0.25

= 0.25V∞y−0.75
(

1

5
√

μ∞x/ρ∞V∞

)0.25

Hence,
∂u

∂y
= C4 y−3/4x−1.8 (E2.12)

From Equations (E2.11) and (E2.12), we can write

∂v

∂x
− ∂u

∂y
= C3 y5/4x−17/8 − C4 y−3/4x−1/9 	= 0

Therefore, the irrotationality condition does not hold; the flow is rotational.

In Example 2.6, we demonstrated a basic result that holds in general for
viscous flows, namely, viscous flows are rotational. This is almost intuitive. For
example, consider an infinitesimally small fluid element moving along a stream-
line, as sketched in Figure 2.37. If this is a viscous flow, and assuming that the
velocity increases in the upward direction (i.e., the velocity is higher on the neigh-
boring streamline above and lower on the neighboring streamline below), then
the shear stresses on the upper and lower faces of the fluid element will be in the
directions shown. Such shear stresses will be discussed at length in Chapter 15.
Examining Figure 2.37, we see clearly that the shear stresses exert a rotational
moment about the center of the element, thus providing a mechanism for setting

Figure 2.37 Shear stress and the consequent rotation of a fluid
element.
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the fluid element into rotation. Although this picture is overly simplistic, it serves
to emphasize that viscous flows are rotational flows. On the other hand, as stated
earlier in this section, there are numerous inviscid flow problems that are irro-
tational, with the attendant simplifications to be explained later. Some inviscid
flows are rotational, but there exist such a large number of practical aerodynamic
problems described by inviscid, irrotational flows that the distinction between
rotational and irrotational flow is an important consideration.

EXAMPLE 2.7

Prove that the inviscid subsonic compressible flow over the wavy wall shown in Figure 2.17
and discussed in Example 2.1 is irrotational.

■ Solution
This flow is two-dimensional. From Equations (2.128) and (2.129),

∇ × V =
(

∂v

∂x
− ∂u

∂y

)
k

The velocity field is given by Equations (2.35) and (2.36) as

u = V∞
[

1 + h

β

2π




(
cos

2πx




)
e−2πβy/


]
(2.35)

and

v = −V∞h
2π




(
sin

2πx




)
e−2πβy/
 (2.36)

Differentiating Equation (2.36), we have

∂v

∂x
= −V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/


Differentiating Equation (2.35), we have

∂u

∂y
= V∞

h

β

2π




(
cos

2πx




)
e−2πβy/


(
−2πβ




)

= −V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/


Thus,

∂v

∂x
− ∂u

∂y
= −V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/


−
[
−V∞h

(
2π




)2 (
cos

2πx




)
e−2πβy/


]

= 0
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Hence,

∇ × V =
(

∂v

∂x
− ∂u

∂y

)
k = 0

Conclusion: The inviscid subsonic compression flow over a wavy wall is irrotational.

Example 2.7 demonstrates another basic result. Return to Figure 2.17 and
examine it closely. Here we have an inviscid flow where the freestream (shown
far above the wall) is a uniform flow with velocity V∞. In a uniform flow,
∂u/∂y = ∂v/∂x = 0. Therefore, a uniform flow is irrotational. We can view
the original source of the flow shown in Figure 2.17 to be the uniform flow shown
far above it, and this original flow is irrotational. Moreover, the whole flow field
is inviscid, that is, there is no internal friction and no shear stress at the wall to
introduce vorticity in the flow. The flow shown in Figure 2.17, on a physical ba-
sis, must therefore remain irrotational throughout. Of course, Example 2.7 proves
mathematically that the flow is irrotational throughout. However, this is just an
example of a broader concept: A flow field that is originally irrotational, without
any internal mechanisms such as frictional shear stress to generate vorticity, will
remain irrotational throughout. This makes sense, does it not?

2.13 CIRCULATION
You are reminded again that this is a tool-building chapter. Taken individually,
each aerodynamic tool we have developed so far may not be particularly exciting.
However, taken collectively, these tools allow us to obtain solutions for some very
practical and exciting aerodynamic problems.

In this section, we introduce a tool that is fundamental to the calculation
of aerodynamic lift, namely, circulation. This tool was used independently by
Frederick Lanchester (1878–1946) in England, Wilhelm Kutta (1867–1944) in
Germany, and Nikolai Joukowski (1847–1921) in Russia to create a breakthrough
in the theory of aerodynamic lift at the turn of the twentieth century. The rela-
tionship between circulation and lift and the historical circumstances surrounding
this breakthrough are discussed in Chapters 3 and 4. The purpose of this section
is only to define circulation and relate it to vorticity.

Consider a closed curve C in a flow field, as sketched in Figure 2.38. Let V
and ds be the velocity and directed line segment, respectively, at a point on C .
The circulation, denoted by �, is defined as

� ≡ −
∮

C
V · ds (2.136)

The circulation is simply the negative of the line integral of velocity around a
closed curve in the flow; it is a kinematic property depending only on the ve-
locity field and the choice of the curve C . As discussed in Section 2.2.8, Line
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Figure 2.38 Definition of circulation.

Integrals, by mathematical convention the positive sense of the line integral is
counterclockwise. However, in aerodynamics, it is convenient to consider a posi-
tive circulation as being clockwise. Hence, a minus sign appears in the definition
given by Equation (2.136) to account for the positive-counterclockwise sense of
the integral and the positive-clockwise sense of circulation.1

The use of the word circulation to label the integral in Equation (2.136) may
be somewhat misleading because it leaves a general impression of something
moving around in a loop. Indeed, according to the American Heritage Dictionary
of the English Language, the first definition given to the word “circulation” is
“movement in a circle or circuit.” However, in aerodynamics, circulation has a
very precise technical meaning, namely, Equation (2.136). It does not necessarily
mean that the fluid elements are moving around in circles within this flow field—a
common early misconception of new students of aerodynamics. Rather, when cir-
culation exists in a flow, it simply means that the line integral in Equation (2.136)
is finite. For example, if the airfoil in Figure 2.28 is generating lift, the circulation
taken around a closed curve enclosing the airfoil will be finite, although the fluid
elements are by no means executing circles around the airfoil (as clearly seen
from the streamlines sketched in Figure 2.28).

Circulation is also related to vorticity as follows. Refer back to Figure 2.11,
which shows an open surface bounded by the closed curve C . Assume that the
surface is in a flow field and the velocity at point P is V, where P is any point on the
surface (including any point on curve C). From Stokes’ theorem [Equation (2.25)],

� ≡ −
∮

C
V · ds = −

∫ ∫
S

(∇ × V) · dS (2.137)

Hence, the circulation about a curve C is equal to the vorticity integrated over any
open surface bounded by C . This leads to the immediate result that if the flow is

1 Some books do not use the minus sign in the definition of circulation. In such cases, the positive sense
of both the line integral and � is in the same direction. This causes no problem as long as the reader is
aware of the convention used in a particular book or paper.
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�d�

d�(� � V) · n � � 

� � V

C

P dS

dS
n

Figure 2.39 Relation between vorticity and
circulation.

irrotational everywhere within the contour of integration (i.e., if ∇ × V = 0 over
any surface bounded by C), then � = 0. A related result is obtained by letting the
curve C shrink to an infinitesimal size, and denoting the circulation around this
infinitesimally small curve by d�. Then, in the limit as C becomes infinitesimally
small, Equation (2.137) yields

d� = −(∇ × V) · dS = −(∇ × V) · n d S

or (∇ × V) · n = −d�

d S
(2.138)

where d S is the infinitesimal area enclosed by the infinitesimal curve C . Referring
to Figure 2.39, Equation (2.138) states that at a point P in a flow, the component
of vorticity normal to d S is equal to the negative of the “circulation per unit area,”
where the circulation is taken around the boundary of d S.

EXAMPLE 2.8

For the velocity field given in Example 2.4, calculate the circulation around a circular path
of radius 5 m. Assume that u and v given in Example 2.4 are in units of meters per second.

■ Solution
Since we are dealing with a circular path, it is easier to work this problem in polar
coordinates, where x = r cos θ , y = r sin θ , x2 + y2 = r2, Vr = u cos θ + v sin θ , and
Vθ = −u sin θ + v cos θ . Therefore,

u = y

x2 + y2 = r sin θ

r2 = sin θ

r

v = − x

x2 + y2 = −r cos θ

r2 = −cos θ

r

Vr = sin θ

r
cos θ +

(
−cos θ

r

)
sin θ = 0

Vθ = − sin θ

r
sin θ +

(
−cos θ

r

)
cos θ = −1

r
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V · ds = (Vr er + Vθ eθ ) · (dr er + r dθ eθ )

= Vr dr + r Vθ dθ = 0 + r

(
−1

r

)
dθ = −dθ

Hence, � = −
∮

C
V · ds = −

∫ 2π

0
−dθ = 2π m2/s

Note that we never used the 5-m diameter of the circular path; in this case, the value of �

is independent of the diameter of the path.

2.14 STREAM FUNCTION
In this section, we consider two-dimensional steady flow. Recall from Section 2.11
that the differential equation for a streamline in such a flow is given by Equa-
tion (2.118), repeated below

dy

dx
= v

u
(2.118)

If u and v are known functions of x and y, then Equation (2.118) can be integrated
to yield the algebraic equation for a streamline:

f (x, y) = c (2.139)

where c is an arbitrary constant of integration, with different values for different
streamlines. In Equation (2.139), denote the function of x and y by the symbol
ψ̄ . Hence, Equation (2.139) is written as

ψ̄(x, y) = c (2.140)

The function ψ̄(x, y) is called the stream function. From Equation (2.140) we
see that the equation for a streamline is given by setting the stream function equal
to a constant (i.e., c1, c2, c3, etc.). Two different streamlines are illustrated in
Figure 2.40; streamlines ab and cd are given by ψ̄ = c1 and ψ̄ = c2, respectively.

There is a certain arbitrariness in Equations (2.139) and (2.140) via the arbi-
trary constant of integration c. Let us define the stream function more precisely
in order to reduce this arbitrariness. Referring to Figure 2.40, let us define the

Figure 2.40 Different streamlines
are given by different values of the
stream function.
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numerical value of ψ̄ such that the difference �ψ̄ between ψ̄ = c2 for streamline
cd and ψ̄ = c1 for streamline ab is equal to the mass flow between the two
streamlines. Since Figure 2.40 is a two-dimensional flow, the mass flow between
two streamlines is defined per unit depth perpendicular to the page. That is, in
Figure 2.40 we are considering the mass flow inside a streamtube bounded by
streamlines ab and cd, with a rectangular cross-sectional area equal to �n times
a unit depth perpendicular to the page. Here, �n is the normal distance between
ab and cd, as shown in Figure 2.40. Hence, mass flow between streamlines ab
and cd per unit depth perpendicular to the page is

�ψ̄ = c2 − c1 (2.141)

The above definition does not completely remove the arbitrariness of the constant
of integration in Equations (2.139) and (2.140), but it does make things a bit more
precise. For example, consider a given two-dimensional flow field. Choose one
streamline of the flow, and give it an arbitrary value of the stream function, say,
ψ̄ = c1. Then, the value of the stream function for any other streamline in the
flow, say, ψ̄ = c2, is fixed by the definition given in Equation (2.141). Which
streamline you choose to designate as ψ̄ = c1 and what numerical value you
give c1 usually depend on the geometry of the given flow field, as we see in
Chapter 3.

The equivalence between ψ̄ = constant designating a streamline, and �ψ̄

equaling mass flow (per unit depth) between streamlines, is natural. For a steady
flow, the mass flow inside a given streamtube is constant along the tube; the mass
flow across any cross section of the tube is the same. Since by definition �ψ̄

is equal to this mass flow, then �ψ̄ itself is constant for a given streamtube. In
Figure 2.40, if ψ̄1 = c1 designates the streamline on the bottom of the streamtube,
then ψ̄2 = c2 = c1+�ψ̄ is also constant along the top of the streamtube. Since by
definition of a streamtube (see Section 2.11) the upper boundary of the streamtube
is a streamline itself, then ψ2 = c2 = constant must designate this streamline.

We have yet to develop the most important property of the stream function,
namely, derivatives of ψ̄ yield the flow-field velocities. To obtain this relationship,
consider again the streamlines ab and cd in Figure 2.40. Assume that these
streamlines are close together (i.e., assume�n is small), such that the flow velocity
V is a constant value across �n. The mass flow through the streamtube per unit
depth perpendicular to the page is

�ψ̄ ≡ ρV �n(1)

or
�ψ̄

�n
= ρV (2.142)

Consider the limit of Equation (2.142) as �n → 0:

ρV = lim
�n→0

�ψ̄

�n
≡ ∂ψ̄

∂n
(2.143)
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Figure 2.41 Mass flow through �n is the sum of
the mass flows through �y and −�x .

Equation (2.143) states that if we know ψ̄ , then we can obtain the product (ρV )

by differentiating ψ̄ in the direction normal to V . To obtain a practical form of
Equation (2.143) for cartesian coordinates, consider Figure 2.41. Notice that the
directed normal distance �n is equivalent first to moving upward in the y direction
by the amount �y and then to the left in the negative x direction by the amount
−�x . Due to conservation of mass, the mass flow through �n (per unit depth) is
equal to the sum of the mass flows through �y and −�x (per unit depth):

Mass flow = �ψ̄ = ρV �n = ρu �y + ρv(−�x) (2.144)

Letting cd approach ab, Equation (2.144) becomes in the limit

dψ̄ = ρu dy − ρv dx (2.145)

However, since ψ̄ = ψ̄(x, y), the chain rule of calculus states

dψ̄ = ∂ψ̄

∂x
dx + ∂ψ̄

∂y
dy (2.146)

Comparing Equations (2.145) and (2.146), we have

(2.147a)ρu = ∂ψ̄

∂y

ρv = −∂ψ̄

∂x
(2.147b)

Equations (2.147a and b) are important. If ψ̄(x, y) is known for a given flow
field, then at any point in the flow the products ρu and ρv can be obtained by
differentiating ψ̄ in the directions normal to u and v, respectively.
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If Figure 2.41 were to be redrawn in terms of polar coordinates, then a similar
derivation yields

(2.148a)
ρVr = 1

r

∂ψ̄

∂θ

ρVθ = −∂ψ̄

∂r
(2.148b)

Such a derivation is left as a homework problem.
Note that the dimensions of ψ̄ are equal to mass flow per unit depth perpen-

dicular to the page. That is, in SI units, ψ̄ is in terms of kilograms per second
per meter perpendicular to the page, or simply kg/(s · m).

The stream function ψ̄ defined above applies to both compressible and in-
compressible flow. Now consider the case of incompressible flow only, where
ρ = constant. Equation (2.143) can be written as

V = ∂(ψ̄/ρ)

∂n
(2.149)

We define a new stream function, for incompressible flow only, as ψ ≡ ψ̄/ρ.
Then Equation (2.149) becomes

V = ∂ψ

∂n
and Equations (2.147) and (2.148) become

(2.150a)u = ∂ψ

∂y

v = −∂ψ

∂x (2.150b)

and

(2.151a)Vr = 1

r

∂ψ

∂θ

Vθ = −∂ψ

∂r
(2.151b)

The incompressible stream function ψ has characteristics analogous to its more
general compressible counterpart ψ̄ . For example, since ψ̄(x, y) = c is the
equation of a streamline, and since ρ is a constant for incompressible flow, then
ψ(x, y) ≡ ψ̄/ρ = constant is also the equation for a streamline (for incompress-
ible flow only). In addition, since �ψ̄ is mass flow between two streamlines (per
unit depth perpendicular to the page), and since ρ is mass per unit volume, then
physically �ψ = �ψ̄/ρ represents the volume flow (per unit depth) between two
streamlines. In SI units, �ψ is expressed as cubic meters per second per meter
perpendicular to the page, or simply m2/s.
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In summary, the concept of the stream function is a powerful tool in aerody-
namics, for two primary reasons. Assuming that ψ̄(x, y) [or ψ(x, y)] is known
through the two-dimensional flow field, then:

1. ψ̄ = constant (or ψ = constant) gives the equation of a streamline.
2. The flow velocity can be obtained by differentiating ψ̄ (or ψ), as given by

Equations (2.147) and (2.148) for compressible flow and Equations (2.150)
and (2.151) for incompressible flow. We have not yet discussed how
ψ̄(x, y) [or ψ(x, y)] can be obtained in the first place; we are assuming that
it is known. The actual determination of the stream function for various
problems is discussed in Chapter 3.

2.15 VELOCITY POTENTIAL
Recall from Section 2.12 that an irrotational flow is defined as a flow where the
vorticity is zero at every point. From Equation (2.129), for an irrotational flow,

ξ = ∇ × V = 0 (2.152)

Consider the following vector identity: if φ is a scalar function, then

∇ × (∇φ) = 0 (2.153)

that is, the curl of the gradient of a scalar function is identically zero. Comparing
Equations (2.152) and (2.153), we see that

V = ∇φ (2.154)

Equation (2.154) states that for an irrotational flow, there exists a scalar function
φ such that the velocity is given by the gradient of φ. We denote φ as the velocity
potential. φ is a function of the spatial coordinates; that is, φ = φ(x, y, z), or
φ = φ(r, θ, z), or φ = φ(r, θ, �). From the definition of the gradient in cartesian
coordinates given by Equation (2.16), we have, from Equation (2.154),

ui + vj + wk = ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k (2.155)

The coefficients of like unit vectors must be the same on both sides of Equa-
tion (2.155). Thus, in cartesian coordinates,

u = ∂φ

∂x
v = ∂φ

∂y
w = ∂φ

∂z
(2.156)

In a similar fashion, from the definition of the gradient in cylindrical and spher-
ical coordinates given by Equations (2.17) and (2.18), we have, in cylindrical
coordinates,

Vr = ∂φ

∂r
Vθ = 1

r

∂φ

∂θ
Vz = ∂φ

∂z
(2.157)



184 PART 1 Fundamental Principles

and in spherical coordinates,

Vr = ∂φ

∂r
Vθ = 1

r

∂φ

∂θ
V� = 1

r sin θ

∂φ

∂�
(2.158)

The velocity potential is analogous to the stream function in the sense that
derivatives of φ yield the flow-field velocities. However, there are distinct differ-
ences between φ and ψ̄ (or ψ):

1. The flow-field velocities are obtained by differentiating φ in the same
direction as the velocities [see Equations (2.156) to (2.158)], whereas ψ̄

(or ψ) is differentiated normal to the velocity direction [see Equations
(2.147) and (2.148), or Equations (2.150) and (2.151)].

2. The velocity potential is defined for irrotational flow only. In contrast, the
stream function can be used in either rotational or irrotational flows.

3. The velocity potential applies to three-dimensional flows, whereas the
stream function is defined for two-dimensional flows only.2

When a flow field is irrotational, hence allowing a velocity potential to be
defined, there is a tremendous simplification. Instead of dealing with the veloc-
ity components (say, u, v, and w) as unknowns, hence requiring three equations
for these three unknowns, we can deal with the velocity potential as one un-
known, therefore requiring the solution of only one equation for the flow field.
Once φ is known for a given problem, the velocities are obtained directly from
Equations (2.156) to (2.158). This is why, in theoretical aerodynamics, we make
a distinction between irrotational and rotational flows and why the analysis of
irrotational flows is simpler than that of rotational flows.

Because irrotational flows can be described by the velocity potential φ, such
flows are called potential flows.

In this section, we have not yet discussed how φ can be obtained in the first
place; we are assuming that it is known. The actual determination of φ for various
problems is discussed in Chapters 3, 6, 11, and 12.

EXAMPLE 2.9

Calculate the velocity potential for the flow field over a wavy wall given in Example 2.1.

■ Solution
From Example 2.1, the equations for u and v are given by

u = V∞
[

1 + h

β

2π




(
cos

2πx




)
e−2πβy/


]
(2.35)

2 ψ̄ (or ψ) can be defined for axisymmetric flows, such as the flow over a cone at zero degrees angle
of attack. However, for such flows, only two spatial coordinates are needed to describe the flow field
(see Chapter 6).
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and

v = −V∞h
2π




(
sin

2πx




)
e−2πβy/
 (2.36)

From Equation (2.156),

u = ∂φ

∂x
and v = ∂φ

∂y

To find an expression for φ, we first integrate u with respect to x and then integrate v with
respect to y, as follows

φ =
∫

∂φ

∂x
dx =

∫
u dx (E2.13)

Substituting Equation (2.35) into (E2.13), we have

φ =
∫ [

V∞ + V∞h

β

2π




(
cos

2πx




)
e−2πβy/


]
dx

φ = V∞x + V∞h

β

2π




(
sin

2πx




)(
2π




)−1

e−2πβy/


φ = V∞x + V∞h

β

(
sin

2πx




)
e−2πβy/
 + f (y) (E2.14)

The function of f (y) is added to Equation (E2.14) in the spirit of a “constant of integra-
tion” since Equation (E2.13) is an integral just with respect to x . Indeed, since u = ∂φ

∂x ,
when Equation (E2.14) is differentiated with respect to x , the derivative of f (y) with
respect to x is zero, and we recover Equation (2.35) for u. Also, we have

φ =
∫

∂φ

∂y
dy =

∫
vdy (E2.15)

Substituting Equation (2.36) into (E2.15), we have

φ =
∫ [

−V∞h
2π




(
sin

2πx




)
e−2πβy/


]
dy

φ = −V∞h
2π




(
sin

2πx




)
e−2πβy/


(
− 


∂πβ

)

φ = V∞
h

β

(
sin

2πx




)
e−2πβy/
 + g(x) (E2.16)

where g(x) in Equation (E2.16) is again a “constant of integration” since Equation (E2.15)
is an integral just with respect to y. When Equation (E2.16) is differentiated with respect
to y, the derivative of g(x) with respect to y is zero, and we recover Equation (2.36) for v.

Compare Equations (E2.14) and (E2.16). These are two equations for the same veloc-
ity potential. Hence, in Equation (E2.14), f (y) = 0 and in Equation (E2.16), g(x) = V∞x .
Thus, the velocity potential for the flow over the wavy wall in Example 2.1 is

φ = V∞x + V∞h

β

(
sin

2πx




)
e−2πβy/
 (E2.17)
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Recall that a velocity potential exists for any irrotational flow. In Example 2.7 we proved
that the flow field over the wavy wall shown in Figure 2.17 as specified in Example 2.1 is
irrotational. Hence a velocity potential exists for that flow. Equation (E2.17) is the velocity
potential.

2.16 RELATIONSHIP BETWEEN THE STREAM
FUNCTION AND VELOCITY POTENTIAL

In Section 2.15, we demonstrated that for an irrotational flow V = ∇φ. At
this stage, take a moment and review some of the nomenclature introduced in
Section 2.2.5 for the gradient of a scalar field. We see that a line of constant
φ is an isoline of φ; since φ is the velocity potential, we give this isoline a
specific name, equipotential line. In addition, a line drawn in space such that ∇φ

is tangent at every point is defined as a gradient line; however, since ∇φ = V, this
gradient line is a streamline. In turn, from Section 2.14, a streamline is a line of
constant ψ̄ (for a two-dimensional flow). Because gradient lines and isolines are
perpendicular (see Section 2.2.5, Gradient of a Scalar Field), then equipotential
lines (φ = constant) and streamlines (ψ̄ = constant) are mutually perpendicular.

To illustrate this result more clearly, consider a two-dimensional, irrota-
tional, incompressible flow in cartesian coordinates. For a streamline, ψ(x, y) =
constant. Hence, the differential of ψ along the streamline is zero; that is,

dψ = ∂ψ

∂x
dx + ∂ψ

∂y
dy = 0 (2.159)

From Equations (2.150a and b), Equation (2.159) can be written as

dψ = −v dx + u dy = 0 (2.160)

Solve Equation (2.160) for dy/dx , which is the slope of the ψ = constant line,
that is, the slope of the streamline:(

dy

dx

)
ψ=const

= v

u
(2.161)

Similarly, for an equipotential line, φ(x, y) = constant. Along this line,

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy = 0 (2.162)

From Equation (2.156), Equation (2.162) can be written as

dφ = u dx + v dy = 0 (2.163)

Solving Equation (2.163) for dy/dx , which is the slope of the φ = constant line
(i.e., the slope of the equipotential line), we obtain(

dy

dx

)
φ=const

= −u

v
(2.164)
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Combining Equations (2.161) and (2.164), we have(
dy

dx

)
ψ=const

= − 1

(dy/dx)φ=const
(2.165)

Equation (2.165) shows that the slope of a ψ = constant line is the negative
reciprocal of the slope of a φ = constant line (i.e., streamlines and equipotential
lines are mutually perpendicular).

2.17 HOW DO WE SOLVE THE EQUATIONS?
This chapter is full of mathematical equations—equations that represent the basic
physical fundamentals that dictate the characteristics of aerodynamic flow fields.
For the most part, the equations are either in partial differential form or integral
form. These equations are powerful and by themselves represent a sophisticated
intellectual construct of our understanding of the fundamentals of a fluid flow.
However, the equations by themselves are not very practical. They must be solved
in order to obtain the actual flow fields over specific body shapes with specific
flow conditions. For example, if we are interested in calculating the flow field
around a Boeing 777 jet transport flying at a velocity of 800 ft/s at an altitude of
30,000 ft, we have to obtain a solution of the governing equations for this case—a
solution that will give us the results for the dependent flow-field variables p, ρ,
V, etc., as a function of the independent variables of spatial location and time.
Then we have to squeeze this solution for extra practical information, such as lift,
drag, and moments exerted on the vehicle. How do we do this? The purpose of
the present section is to discuss two philosophical answers to this question. As
for practical solutions to specific problems of interest, there are literally hundreds
of different answers to this question, many of which make up the content of the
rest of this book. However, all these solutions fall under one or the other of the
two philosophical approaches described next.

2.17.1 Theoretical (Analytical) Solutions

Students learning any field of physical science or engineering at the beginning
are usually introduced to nice, neat analytical solutions to physical problems that
are simplified to the extent that such solutions are possible. For example, when
Newton’s second law is applied to the motion of a simple, frictionless pendulum,
students in elementary physics classes are shown a closed-form analytical solution
for the time period of the pendulum’s oscillation, namely,

T = 2π
√


/g

where T is the period, 
 is the length of the pendulum, and g is the acceleration
of gravity. However, a vital assumption behind this equation is that of small
amplitude oscillations. Similarly, in studying the motion of a freely falling body
in a gravitational field, the distance y through which the body falls in time t after
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release is given by

y = 1
2 gt2

However, this result neglects any aerodynamic drag on the body as it falls through
the air. The above examples are given because they are familiar results from
elementary physics. They are examples of theoretical, closed-form solutions—
straightforward algebraic relations.

The governing equations of aerodynamics, such as the continuity, momen-
tum, and energy equations derived in Sections 2.4, 2.5, and 2.7, respectively, are
highly nonlinear, partial differential, or integral equations; to date, no general an-
alytical solution to these equations has been obtained. In lieu of this, two different
philosophies have been followed in obtaining useful solutions to these equations.
One of these is the theoretical, or analytical, approach, wherein the physical nature
of certain aerodynamic applications allows the governing equations to be sim-
plified to a sufficient extent that analytical solutions of the simplified equations
can be obtained. One such example is the analysis of the flow across a normal
shock wave, as discussed in Chapter 8. This flow is one-dimensional, that is, the
changes in flow properties across the shock take place only in the flow direction.
For this case, the y and z derivatives in the governing continuity, momentum, and
energy equations from Sections 2.4, 2.5, and 2.7 are identically zero, and the re-
sulting one-dimensional equations, which are still exact for the one-dimensional
case being considered, lend themselves to a direct analytical solution, which is
indeed an exact solution for the shock wave properties. Another example is the
compressible flow over an airfoil considered in Chapters 11 and 12. If the airfoil
is thin and at a small angle of attack, and if the freestream Mach number is not
near one (not transonic) nor above five (not hypersonic), then many of the terms
in the governing equations are small compared to others and can be neglected.
The resulting simplified equations are linear and can be solved analytically. This
is an example of an approximate solution, where certain simplifying assumptions
have been made in order to obtain a solution.

The history of the development of aerodynamic theory is in this category—
the simplification of the full governing equations apropos a given application
so that analytical solutions can be obtained. Of course this philosophy works for
only a limited number of aerodynamic problems. However, classical aerodynamic
theory is built on this approach and, as such, is discussed at some length in
this book. You can expect to see a lot of closed-form analytical solutions in the
subsequent chapters, along with detailed discussions of their limitations due to
the approximations necessary to obtain such solutions. In the modern world of
aerodynamics, such classical analytical solutions have three advantages:

1. The act of developing these solutions puts you in intimate contact with all
the physics involved in the problem.

2. The results, usually in closed form, give you direct information on what are
the important variables, and how the answers vary with increases or
decreases in these variables. For example, in Chapter 11 we will obtain a
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simple equation for the compressibility effects on lift coefficient for an
airfoil in high-speed subsonic flow. The equation, Equation (11.52), tells us
that the high-speed effect on lift coefficient is governed by just M∞ alone,
and that as M∞ increases, then the lift coefficient increases. Moreover, the
equation tells us in what way the lift coefficient increases, namely, inversely
with (1 − M2

∞)1/2. This is powerful information, albeit approximate.
3. Finally, the results in closed form provide simple tools for rapid

calculations, making possible the proverbial “back of the envelope
calculations” so important in the preliminary design process and in other
practical applications.

2.17.2 Numerical Solutions—Computational Fluid Dynamics (CFD)

The other general approach to the solution of the governing equations is numerical.
The advent of the modern high-speed digital computer in the last third of the
twentieth century has revolutionized the solution of aerodynamic problems and
has given rise to a whole new discipline—computational fluid dynamics. Recall
that the basic governing equations of continuity, momentum, and energy derived
in this chapter are either in integral or partial differential form. In Anderson,
Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill,
1995, computational fluid dynamics is defined as “the art of replacing the integrals
or the partial derivatives (as the case may be) in these equations with discretized
algebraic forms, which in turn are solved to obtain numbers for the flow field
values at discrete points in time and/or space.” The end product of computational
fluid dynamics (frequently identified by the acronym CFD) is indeed a collection
of numbers, in contrast to a closed-form analytical solution. However, in the long
run, the objective of most engineering analyses, closed form or otherwise, is a
quantitative description of the problem (i.e., numbers).

The beauty of CFD is that it can deal with the full nonlinear equations of con-
tinuity, momentum, and energy, in principle, without resorting to any geometrical
or physical approximations. Because of this, many complex aerodynamic flow
fields have been solved by means of CFD which had never been solved before. An
example of this is shown in Figure 2.42. Here we see the unsteady, viscous, turbu-
lent, compressible, separated flow field over an airfoil at high angle of attack (14◦

in the case shown), as obtained from Reference 53. The freestream Mach number
is 0.5, and the Reynolds number based on the airfoil chord length (distance from
the front to the back edges) is 300,000. An instantaneous streamline pattern that
exists at a certain instant in time is shown, reflecting the complex nature of the
separated, recirculating flow above the airfoil. This flow is obtained by means
of a CFD solution of the two-dimensional, unsteady continuity, momentum, and
energy equations, including the full effects of viscosity and thermal conduction,
as developed in Sections 2.4, 2.5, and 2.7, without any further geometrical or
physical simplifications. The equations with all the viscosity and thermal con-
duction terms explicitly shown are developed in Chapter 15; in this form, they are
frequently labeled as the Navier-Stokes equations. There is no analytical solution
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Figure 2.42 Calculated streamline pattern for separated flow over an airfoil. Re = 300,000,
M∞ = 0.5, angle of attack = 14◦.

for the flow shown in Figure 2.42; the solution can only be obtained by means
of CFD.

Let us explore the basic philosophy behind CFD. Again, keep in mind that
CFD solutions are completely numerical solutions, and a high-speed digital com-
puter must be used to carry them out. In a CFD solution, the flow field is divided
into a number of discrete points. Coordinate lines through these points generate
a grid, and the discrete points are called grid points. The grid used to solve the
flow field shown in Figure 2.42 is given in Figure 2.43; here, the grid is wrapped
around the airfoil, which is seen as the small white speck in the center-left of the
figure, and the grid extends a very large distance out from the airfoil. This large
extension of the grid into the main stream of the flow is necessary for a subsonic
flow, because disturbances in a subsonic flow physically feed out large distances
away from the body. We will learn why in subsequent chapters. The black region
near the airfoil is simply the computer graphics way of showing a very large
number of closely spaced grid points near the airfoil, for better definition of the
viscous flow near the airfoil. The flow field properties, such as p, ρ, u, v, etc.,
are calculated just at the discrete grid points, and nowhere else, by means of the
numerical solution of the governing flow equations. This is an inherent property
that distinguishes CFD solutions from closed-form analytical solutions. Analyti-
cal solutions, by their very nature, yield closed-form equations that describe the
flow as a function of continuous time and/or space. So we can pick any one of the
infinite number of points located in this continuous space, feed the coordinates
into the closed-form equations, and obtain the flow variables at that point. Not
so with CFD, where the flow-field variables are calculated only at discrete grid
points. For a CFD solution, the partial derivatives or the integrals, as the case may
be, in the governing flow equations are discretized, using the flow-field variables
at grid points only.
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Figure 2.43 The grid used for the numerical solution of the flow over the airfoil in
Figure 2.40. The airfoil is the small speck in the middle-left of the figure.
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Figure 2.44 An array of grid points in a
uniform, rectangular grid.

How is this discretization carried out? There are many answers to this equa-
tion. We will look at just a few examples, to convey the ideas.

Let us consider a partial derivative, such as ∂u/∂x . How do we discretize this
partial derivative? First, we choose a uniform rectangular array of grid points as
shown in Figure 2.44. The points are identified by the index i in the x direction,
and the index j in the y direction. Point P in Figure 2.44 is identified as point
(i, j). The value of the variable u at point j is denoted by ui, j . The value of u at
the point immediately to the right of P is denoted by ui+1, j and that immediately
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to the left of P by ui−1, j . The values of u at the points immediately above and
below point P are denoted by ui, j+1 and ui, j−1, respectively. And so forth. The grid
points in the x direction are separated by the increment �x , and the y direction by
the increment �y. The increments �x and �y must be uniform between the grid
points, but �x can be a different value than �y. To obtain a discretized expression
for ∂u/∂x evaluated at point P , we first write a Taylor series expansion for ui+1, j

expanded about point P as:

ui+1, j = ui, j +
(

∂u

∂x

)
i, j

�x +
(

∂2u

∂x2

)
i, j

(�x)2

2
+

(
∂3u

∂x3

)
i, j

(�x)3

6

+
(

∂4u

∂x4

)
i, j

(�x)4

24
+ · · ·

(2.166)

Solving Equation (2.166) (∂u/∂x)i, j , we have(
∂u

∂x

)
i, j

= ui+1, j − ui, j

�x︸ ︷︷ ︸
Forward difference

−
(

∂2u

∂x2

)
i, j

�x

2
−

(
∂3u

∂x3

)
i, j

(�x)2

6
+ · · ·︸ ︷︷ ︸

Truncation error

(2.167)

Equation (2.167) is still a mathematically exact relationship. However, if we
choose to represent (∂u/∂x)i, j just by the algebraic term on the right-hand side,
namely, (

∂u

∂x

)
i, j

= ui+1, j − ui, j

�x
Forward difference (2.168)

then Equation (2.168) represents an approximation for the partial derivative,
where the error introduced by this approximation is the truncation error, iden-
tified in Equation (2.167). Nevertheless, Equation (2.168) gives us an algebraic
expression for the partial derivative; the partial derivative has been discretized
because it is formed by the values ui+1, j and ui, j at discrete grid points. The
algebraic difference quotient in Equation (2.168) is called a forward difference,
because it uses information ahead of point (i, j), namely ui+1, j . Also, the for-
ward difference given by Equation (2.168) has first-order accuracy because the
leading term of the truncation error in Equation (2.167) has �x to the first
power.

Equation (2.168) is not the only discretized form for (∂u/∂x)i, j . For example,
let us write a Taylor series expansion for ui−1, j expanded about point P as

ui−1, j = ui, j +
(

∂u

∂x

)
i, j

(−�x) +
(

∂2u

∂x2

)
i, j

(−�x)2

2
(2.169)

+
(

∂3u

∂x3

)
i, j

(−�x)3

6
+ · · ·
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Solving Equation (2.169) for (∂u/∂x)i, j , we have(
∂u

∂x

)
i, j

= ui, j − ui−1, j

�x︸ ︷︷ ︸
Rearward difference

+
(

∂2u

∂x2

)
i, j

�x

2
−

(
∂3u

∂x3

)
i, j

(�x)2

6
+ · · ·︸ ︷︷ ︸

Truncation error

(2.170)

Hence, we can represent the partial derivative by the rearward difference shown
in Equation (2.170), namely,(

∂u

∂x

)
i, j

= ui, j − ui−1, j

�x
Rearward difference (2.171)

Equation (2.171) is an approximation for the partial derivative, where the error
is given by the truncation error labeled in Equation (2.170). The rearward dif-
ference given by Equation (2.171) has first-order accuracy because the leading
term in the truncation error in Equation (2.170) has �x to the first power. The
forward and rearward differences given by Equations (2.168) and (2.171), re-
spectively, are equally valid representations of (∂u/∂x)i, j , each with first-order
accuracy.

In most CFD solutions, first-order accuracy is not good enough; we need a
discretization of (∂u/∂x)i, j that has at least second-order accuracy. This can be
obtained by subtracting Equation (2.169) from Equation (2.166), yielding

ui+1, j − ui−1, j = 2
(

∂u

∂x

)
i, j

�x +
(

∂3u

∂x3

)
i, j

(�x)3

3
+ · · · (2.172)

Solving Equation (2.172) for (∂u/∂x)i, j , we have(
∂u

∂x

)
i, j

= ui+1, j − ui−1, j

2�x︸ ︷︷ ︸
Central difference

−
(

∂3u

∂x3

)
i, j

(�x)2

3
+ · · ·︸ ︷︷ ︸

Truncation error

(2.173)

Hence, we can represent the partial derivative by the central difference shown in
Equation (2.173), namely(

∂u

∂x

)
i, j

= ui+1, j − ui−1, j

2�x
Central difference (2.174)

Examining Equation (2.173), we see that the central difference expression given
in Equation (2.174) has second-order accuracy, because the leading term in the
truncation error in Equation (2.173) has (�x)2. For most CFD solutions, second-
order accuracy is sufficient.

So this is how it works—this is how the partial derivatives that appear in
the governing flow equations can be discretized. There are many other possible
discretized forms for the derivatives; the forward, rearward, and central differ-
ences obtained above are just a few. Note that Taylor series have been used to
obtain these discrete forms. Such Taylor series expressions are the basic foun-
dation of finite-difference solutions in CFD. In contrast, if the integral form of
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the governing flow equations are used, such as Equations (2.48) and (2.64), the
individual integrals terms can be discretized, leading again to algebraic equations
that are the basic foundation of finite-volume solutions in CFD.

EXAMPLE 2.10

Consider a one-dimensional, unsteady flow, where the flow-field variables such as ρ, u,
etc. are functions of distance x and time t . Consider the grid shown in Figure 2.45, where
grid points arrayed in the x direction are denoted by the index i . Two rows of grid points
are shown, one at time t and the other at the later time t + �t . In particular, we are
interested in calculating the unknown density at grid point i at time t + �t , denoted by
ρt+�t

i . Set up the calculation of this unknown density.

■ Solution
Note in Figure 2.45 that the dashed loop (called the computational module) contain the
grid points i − 1, i , and i + 1 at time t , where the flow field is known, and the grid
point i at time t + �t , where the flow field is unknown. From the continuity equation,
Equation (2.52), repeated below

∂ρ

∂t
+ ∇ · (ρV) = 0 (2.52)

written for unsteady, one-dimensional flow, we have

∂ρ

∂t
+ ∂(ρu)

∂x
= 0 (2.175)

Rearranging Equation (2.175),

∂ρ

∂t
= −∂(ρu)

∂x

or
∂ρ

∂t
= −ρ

∂u

∂x
− u

∂ρ

∂x
(2.176)

t

t + Δt

t 

x

Δt
Δx

i – 1 i i + 1

i – 1 i i + 1

unknown

known

Figure 2.45 Computational module. The calculation of
unknown properties at point i at time (t + �t) from
known properties at points i − 1, i , i + 1 at time t .
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In Equation (2.176), replace ∂ρ/∂t with a forward difference in time, and ∂u/∂x and
∂ρ/∂x with central differences in space, centered around grid point i

ρt+�t
i − ρt

i

�t
= −ρt

i

(
ut

i+1 − ut
i−1

2�x

)
− ut

i

(
ρt

i+1 − ρt
i−1

2�x

)
(2.177)

Equation (2.177) is called a difference equation; it is an approximate representation of
the original partial differential equation, Equation (2.176), where the error in the approx-
imation is given by the sum of the truncation errors associated with each of the finite
differences used to obtain Equation (2.177). Solving Equation (2.177) for ρt+�t

i

ρt+�t
i = ρt

i − �t

2�x

(
ρt

i ut
i+1 − ρt

i ut
i−1 + ut

iρ
t
i+1 − ut

iρ
t
i−1

)
(2.178)

In Equation (2.178), all quantities on the right-hand side are known values at time t .
Hence, Equation (2.178) allows the direct calculation of the unknown value, ρt+�t

i , at
time t + �t .

This example is a simple illustration of how a CFD solution to a given flow
can be set up, in this case for an unsteady, one-dimensional flow. Note that the un-
known velocity and internal energy at grid point i at time t +�t can be calculated
in the same manner, writing the appropriate difference equation representations
for the x component of the momentum equation, Equation (2.113a), and the
energy equation, Equation (2.114).

The above example looks very straightforward, and indeed it is. It is given
here only as an illustration of what is meant by a CFD technique. However,
do not be misled. Computational fluid dynamics is a sophisticated and complex
discipline. For example, we have said nothing here about the accuracy of the final
solutions, whether or not a certain computational technique will be stable (some
attempts at obtaining numerical solutions will go unstable—blow up—during
the course of the calculations), and how much computer time a given technique
will require to obtain the flow-field solution. Also, in our discussion we have
given examples of some relatively simple grids. The generation of an appropriate
grid for a given flow problem is frequently a challenge, and grid generation has
emerged as a subdiscipline in its own right within CFD. For these reasons, CFD
is usually taught only in graduate-level courses in most universities. However,
in an effort to introduce some of the basic ideas of CFD at the undergraduate
level, I have written a book, Reference 7, intended to present the subject at the
most elementary level. Reference 7 is intended to be read before students go on
to the more advanced books on CFD written at the graduate level. In the present
book, we will, from time to time, discuss some applications of CFD as part of
the overall fundamentals of aerodynamics. However, this book is not about CFD;
Reference 7 is.
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Pure experiment Pure theory

Computational
fluid dynamics

Figure 2.46 The three equal partners of modern
aerodynamics.

2.17.3 The Bigger Picture

The evolution of our intellectual understanding of aerodynamics is over 2500 years
old, going all the way back to ancient Greek science. The aerodynamics you are
studying in this book is the product of this evolution. (See Reference 68 for an in-
depth study of the history of aerodynamics.) Relevant to our current discussion is
the development of the experimental tradition in fluid dynamics, which took place
in the middle of the seventeenth century, principally in France, and the introduc-
tion of rational analysis in mechanics pioneered by Isaac Newton toward the end
of the same century. Since that time, up until the middle of the twentieth century,
the study and practice of fluid dynamics, including aerodynamics, has dealt with
pure experiment on one hand and pure theory on the other. If you were learning
aerodynamics as recently as, say 1960, you would have been operating in the
“two-approach world” of theory and experiment. However, computational fluid
dynamics has revolutionized the way we study and practice aerodynamics today.
As sketched in Figure 2.46, CFD is today an equal partner with pure theory and
pure experiment in the analysis and solution of aerodynamic problems. This is no
flash in the pan—CFD will continue to play this role indefinitely, for as long as our
advanced human civilization exists. Also, the double arrows in Figure 2.46 imply
that today each of the equal partners constantly interact with each other—they
do not stand alone, but rather help each other to continue to resolve and better
understand the “big picture” of aerodynamics.

2.18 SUMMARY
Return to the road map for this chapter, as given in Figure 2.3. We have now
covered both the left and right branches of this map and are ready to launch into
the solution of practical aerodynamic problems in subsequent chapters. Look at
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each block in Figure 2.3; let your mind flash over the important equations and
concepts represented by each block. If the flashes are dim, return to the appropriate
sections of this chapter and review the material until you feel comfortable with
these aerodynamic tools.

For your convenience, the most important results are summarized below:

Basic Flow Equations
Continuity equation

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV + .......................................................................
.........

∫∫
S

ρV · dS = 0 (2.48)

or ∂ρ

∂t
+ ∇ · (ρV) = 0 (2.52)

or Dρ

Dt
+ ρ∇ · V = 0 (2.108)

Momentum equation

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρV dV + .......................................................................
.........

∫∫
S

(ρV · dS)V = − .......................................................................
.........

∫∫
S

p dS + ..........................................................................................................................
..............

∫∫∫
V

ρf dV + Fviscous

(2.64)

or ∂(ρu)

∂t
+ ∇ · (ρuV) = −∂p

∂x
+ ρ fx + (Fx)viscous (2.70a)

∂(ρv)

∂t
+ ∇ · (ρvV) = −∂p

∂y
+ ρ fy + (Fy)viscous (2.70b)

∂(ρw)

∂t
+ ∇ · (ρwV) = −∂p

∂z
+ ρ fz + (Fz)viscous (2.70c)

or ρ
Du

Dt
= −∂p

∂x
+ ρ fx + (Fx)viscous (2.113a)

ρ
Dv

Dt
= −∂p

∂y
+ ρ fy + (Fy)viscous (2.113b)

ρ
Dw

Dt
= −∂p

∂z
+ ρ fz + (Fz)viscous (2.113c)

(continued)
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Energy equation

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ

(
e + V 2

2

)
dV + .......................................................................

.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS (2.95)

= ..........................................................................................................................
..............

∫∫∫
V

q̇ρ dV + Q̇viscous − .......................................................................
.........

∫∫
S

pV · dS

+ ..........................................................................................................................
..............

∫∫∫
V

ρ(f · V) dV + Ẇviscous

or
∂

∂t

[
ρ

(
e + V 2

2

)]
+ ∇ ·

[
ρ

(
e + V 2

2

)
V

]
= ρq̇ − ∇ · (pV) + ρ(f · V)

+ Q̇ ′
viscous + Ẇ ′

viscous (2.96)

or

ρ
D(e + V 2/2)

Dt
= ρq̇ − ∇ · (pV) + ρ(f · V) + Q̇′

viscous + Ẇ ′
viscous (2.114)

Substantial derivative
D

Dt
≡ ∂

∂t local
derivative

+ (V · ∇) convective
derivative

(2.109)

A streamline is a curve whose tangent at any point is in the direction of the
velocity vector at that point. The equation of a streamline is given by

ds × V = 0 (2.115)

or, in cartesian coordinates,

w dy − v dz = 0 (2.117a)

u dz − w dx = 0 (2.117b)

v dx − u dy = 0 (2.117c)

The vorticity ξ at any given point is equal to twice the angular velocity of a
fluid element ω, and both are related to the velocity field by

ξ = 2ω = ∇ × V (2.129)

When ∇ × V 	= 0, the flow is rotational. When ∇ × V = 0, the flow is
irrotational.
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Circulation � is related to lift and is defined as

� ≡ −
∮

C
V · ds (2.136)

Circulation is also related to vorticity via

� ≡ −
∮

C
V · ds = −

∫ ∫
S

(∇ × V) · dS (2.137)

or (∇ × V) · n = −d�

d S
(2.138)

The stream function ψ̄ is defined such that ψ̄(x, y) = constant is the equation
of a streamline, and the difference in the stream function between two stream-
lines �ψ̄ is equal to the mass flow between the streamlines. As a consequence
of this definition, in cartesian coordinates,

ρu = ∂ψ̄

∂y
(2.147a)

ρv = −∂ψ̄

∂x
(2.147b)

and in cylindrical coordinates,

ρVr = 1

r

∂ψ̄

∂θ
(2.148a)

ρVθ = −∂ψ̄

∂r
(2.148b)

For incompressible flow, ψ ≡ ψ̄/ρ is defined such that ψ(x, y) = constant
denotes a streamline and �ψ between two streamlines is equal to the vol-
ume flow between these streamlines. As a consequence of this definition, in
cartesian coordinates,

u = ∂ψ

∂y
(2.150a)

v = −∂ψ

∂x
(2.150b)

and in cylindrical coordinates,

Vr = 1

r

∂ψ

∂θ
(2.151a)

Vθ = −∂ψ

∂r
(2.151b)

The stream function is valid for both rotational and irrotational flows, but it is
restricted to two-dimensional flows only.
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The velocity potential φ is defined for irrotational flows only, such that

V = ∇φ (2.154)

In cartesian coordinates,

u = ∂φ

∂x
v = ∂φ

∂y
w = ∂φ

∂z
(2.156)

In cylindrical coordinates,

Vr = ∂φ

∂r
Vθ = 1

r

∂φ

∂θ
Vz = ∂φ

∂z
(2.157)

In spherical coordinates,

Vr = ∂φ

∂r
Vθ = 1

r

∂φ

∂θ
V� = 1

r sin θ

∂φ

∂�
(2.158)

An irrotational flow is called a potential flow.

A line of constant φ is an equipotential line. Equipotential lines are perpen-
dicular to streamlines (for two-dimensional irrotational flows).

2.19 PROBLEMS
2.1 Consider a body of arbitrary shape. If the pressure distribution over the

surface of the body is constant, prove that the resultant pressure force on
the body is zero. [Recall that this fact was used in Equation (2.77).]

2.2 Consider an airfoil in a wind tunnel (i.e., a wing that spans the entire test
section). Prove that the lift per unit span can be obtained from the pressure
distributions on the top and bottom walls of the wind tunnel (i.e., from the
pressure distributions on the walls above and below the airfoil).

2.3 Consider a velocity field where the x and y components of velocity are
given by u = cx/(x2 + y2) and v = cy/(x2 + y2) where c is a constant.
Obtain the equations of the streamlines.

2.4 Consider a velocity field where the x and y components of velocity are
given by u = cy/(x2 + y2) and v = −cx/(x2 + y2), where c is a constant.
Obtain the equations of the streamlines.

2.5 Consider a velocity field where the radial and tangential components of
velocity are Vr = 0 and Vθ = cr , respectively, where c is a constant.
Obtain the equations of the streamlines.

2.6 Consider a velocity field where the x and y components of velocity are
given by u = cx and v = −cy, where c is a constant. Obtain the equations
of the streamlines.
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2.7 The velocity field given in Problem 2.3 is called source flow, which will be
discussed in Chapter 3. For source flow, calculate:
a. The time rate of change of the volume of a fluid element per unit

volume.
b. The vorticity.
Hint: It is simpler to convert the velocity components to polar coordinates
and deal with a polar coordinate system.

2.8 The velocity field given in Problem 2.4 is called vortex flow, which will be
discussed in Chapter 3. For vortex flow, calculate:
a. The time rate of change of the volume of a fluid element per unit

volume.
b. The vorticity.
Hint: Again, for convenience use polar coordinates.

2.9 Is the flow field given in Problem 2.5 irrotational? Prove your answer.
2.10 Consider a flow field in polar coordinates, where the stream function is

given as ψ = ψ(r, θ). Starting with the concept of mass flow between
two streamlines, derive Equations (2.148a and b).

2.11 Assuming the velocity field given in Problem 2.6 pertains to an
incompressible flow, calculate the stream function and velocity potential.
Using your results, show that lines of constant φ are perpendicular to lines
of constant ψ .

2.12 Consider a length of pipe bent into a U-shape. The inside diameter of the
pipe is 0.5 m. Air enters one leg of the pipe at a mean velocity of 100 m/s
and exits the other leg at the same magnitude of velocity, but moving in
the opposite direction. The pressure of the flow at the inlet and exit is the
ambient pressure of the surroundings. Calculate the magnitude and
direction of the force exerted on the pipe by the airflow. The air density
is 1.23 kg/m3.

2.13 Consider the subsonic compressible flow over the wavy wall treated in
Example 2.1. Derive the equation for the velocity potential for this flow as
a function of x and y.

2.14 In Example 2.1, the statement is made that the streamline an infinite
distance above the wall is straight. Prove this statement.





P A R T 2
Inviscid, Incompressible Flow

In Part 2, we deal with the flow of a fluid that has constant density—
incompressible flow. This applies to the flow of liquids, such as water flow,
and to low-speed flow of gases. The material covered here is applicable to

low-speed flight through the atmosphere—flight at a Mach number of about 0.3
or less.
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C H A P T E R 3
Fundamentals of Inviscid,
Incompressible Flow

Theoretical fluid dynamics, being a difficult subject, is for convenience,
commonly divided into two branches, one treating of frictionless or perfect
fluids, the other treating of viscous or imperfect fluids. The frictionless fluid has
no existence in nature, but is hypothesized by mathematicians in order to
facilitate the investigation of important laws and principles that may be
approximately true of viscous or natural fluids.

Albert F. Zahm, 1912
(Professor of aeronautics, and
developer of the first aeronautical
laboratory in a U.S. university,
The Catholic University of America)

PREVIEW BOX

Here we go again—fundamentals, and yet more fun-
damentals. However, in this chapter we focus on the
fundamentals of a specific class of flow—inviscid,
incompressible flow. Actually, such flow is a myth
on two accounts. First, in real life there is always fric-
tion to some greater or lesser degree, so in nature there
is, strictly speaking, no inviscid flow. Second, every
flow is compressible to some greater or lesser degree,
so in nature there is, strictly speaking, no incompress-
ible flow. In engineering, however, if we were always
“strictly speaking” about everything, we would not

be able to analyze anything. As you progress in your
studies, you will find that virtually every engineering
analysis involves approximations about the physics
involved.

In regard to the material in this chapter, there are
a whole host of aerodynamic applications that are so
close to being inviscid and incompressible that we
readily make that assumption and obtain amazingly
accurate results. Here you will find out how low-speed
wind tunnels work. You will discover how to mea-
sure the velocity of a low-speed flow using a basic
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instrument called a Pitot tube. Pitot tubes are in-
stalled on virtually all airplanes to measure their flight
velocity—something as important and basic as having
the speedometer in your automobile. You will discover
why a baseball curves when the pitcher puts spin on
it, and why a golf ball will sometimes hook or slice
when a golfer hits it.

And there is a lot more. In the category of
fundamentals, you will be introduced to Bernoulli’s
equation, far and away the most famous equation
in fluid dynamics; it relates velocity and pressure

from one point to another in an inviscid, incom-
pressible flow. You will learn how to calculate the
flow over a circular body shape, and how to calcu-
late and plot the precise streamline shapes for this
flow—something that is kind of fun to do, and that
has importance further down the line in our study of
aerodynamics.

So this chapter is a mixture of fundamentals
and applications. Add these fundamentals to your
growing inventory of basic concepts, and enjoy the
applications.

3.1 INTRODUCTION AND ROAD MAP
The world of practical aviation was born on December 17, 1903, when, at
10:35 A.M., and in the face of cold, stiff, dangerous winds, Orville Wright
piloted the Wright Flyer on its historic 12-s, 120-ft first flight. Figure 3.1 shows
a photograph of the Wright Flyer at the instant of lift-off, with Wilbur Wright
running along the right side of the machine, supporting the wing tip so that it
will not drag the sand. This photograph is the most important picture in aviation
history; the event it depicts launched the profession of aeronautical engineering
into the mainstream of the twentieth century.1

The flight velocity of the Wright Flyer was about 30 mi/h. Over the ensuing
decades, the flight velocities of airplanes steadily increased. By means of more
powerful engines and attention to drag reduction, the flight velocities of airplanes
rose to approximately 300 mi/h just prior to World War II. Figure 3.2 shows a typ-
ical fighter airplane of the immediate pre-World War II era. From an aerodynamic
point of view, at air velocities between 0 and 300 mi/h the air density remains
essentially constant, varying by only a few percent. Hence, the aerodynamics of
the family of airplanes spanning the period between the two photographs shown
in Figures 3.1 and 3.2 could be described by incompressible flow. As a result,
a huge bulk of experimental and theoretical aerodynamic results was acquired
over the 40-year period beginning with the Wright Flyer—results that applied to
incompressible flow. Today, we are still very interested in incompressible aero-
dynamics because most modern general aviation aircraft still fly at speeds below
300 mi/h; a typical light general aviation airplane is shown in Figure 3.3. In addi-
tion to low-speed aeronautical applications, the principles of incompressible flow
apply to the flow of fluids, for example, water flow through pipes, the motion of
submarines and ships through the ocean, the design of wind turbines (the modern
term for windmills), and many other important applications.

1 See Reference 2 for historical details leading to the first flight by the Wright brothers.
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Figure 3.1 Historic photograph of the first successful heavier-than-air powered manned
flight, achieved by the Wright brothers on December 17, 1903. (NASA).

Figure 3.2 The Seversky P-35 (U.S. Air Force Photo).

For all the above reasons, the study of incompressible flow is as relevant
today as it was at the time of the Wright brothers. Therefore, Chapters 3 to 6 deal
exclusively with incompressible flow. Moreover, for the most part, we ignore any
effects of friction, thermal conduction, or diffusion; that is, we deal with inviscid
incompressible flow in these chapters.2 Looking at our spectrum of aerodynamic

2 An inviscid, incompressible fluid is sometimes called an ideal fluid, or perfect fluid. This terminology
will not be used here because of the confusion it sometimes causes with “ideal gases” or “perfect gases”
from thermodynamics. This author prefers to use the more precise descriptor “inviscid, incompressible
flow,” rather than ideal fluid or perfect fluid.
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Figure 3.3 Cessna 340 (© Getty Images/Digital Vision).

Figure 3.4 Road map for Chapter 3.
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flows as shown in Figure 1.44, the material contained in Chapters 3 to 6 falls
within the combined blocks D and E .

The purpose of this chapter is to establish some fundamental relations ap-
plicable to inviscid, incompressible flows and to discuss some simple but impor-
tant flow fields and applications. The material in this chapter is then used as a
launching pad for the airfoil theory of Chapter 4 and the finite wing theory of
Chapter 5.

A road map for this chapter is given in Figure 3.4. There are three main
avenues: (1) a development of Bernoulli’s equation, with some straightforward
applications; (2) a discussion of Laplace’s equation, which is the governing equa-
tion for inviscid, incompressible, irrotational flow; and (3) the presentation of
some elementary flow patterns, how they can be superimposed to synthesize both
the nonlifting and lifting flow over a circular cylinder, and how they form the
basis of a general numerical technique, called the panel technique, for the solu-
tion of flows over bodies of general shape. As you progress through this chapter,
occasionally refer to this road map so that you can maintain your orientation and
see how the various sections are related.

3.2 BERNOULLI’S EQUATION
As will be portrayed in Section 3.19, the early part of the eighteenth century saw
the flowering of theoretical fluid dynamics, paced by the work of Johann and
Daniel Bernoulli and, in particular, by Leonhard Euler. It was at this time that the
relation between pressure and velocity in an inviscid, incompressible flow was
first understood. The resulting equation is

p + 1
2ρV 2 = const

This equation is called Bernoulli’s equation, although it was first presented in the
above form by Euler (see Section 3.19). Bernoulli’s equation is probably the most
famous equation in fluid dynamics, and the purpose of this section is to derive it
from the general equations discussed in Chapter 2.

Consider the x component of the momentum equation given by Equa-
tion (2.113a). For an inviscid flow with no body forces, this equation becomes

ρ
Du

Dt
= −∂p

∂x

or ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= −∂p

∂x
(3.1)

For steady flow, ∂u/∂t = 0. Equation (3.1) is then written as

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
(3.2)
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Multiply Equation (3.2) by dx :

u
∂u

∂x
dx + v

∂u

∂y
dx + w

∂u

∂z
dx = − 1

ρ

∂p

∂x
dx (3.3)

Consider the flow along a streamline in three-dimensional space. The equation
of a streamline is given by Equations (2.117a to c). In particular, substituting

u dz − w dx = 0 (2.117b)

and v dx − u dy = 0 (2.117c)

into Equation (3.3), we have

u
∂u

∂x
dx + u

∂u

∂y
dy + u

∂u

∂z
dz = − 1

ρ

∂p

∂x
dx (3.4)

or u
(

∂u

∂x
dx + ∂u

∂y
dy + ∂u

∂z
dz

)
= − 1

ρ

∂p

∂x
dx (3.5)

Recall from calculus that given a function u = u(x, y, z), the differential of u is

du = ∂u

∂x
dx + ∂u

∂y
dy + ∂u

∂z
dz

This is exactly the term in parentheses in Equation (3.5). Hence, Equation (3.5)
is written as

u du = − 1

ρ

∂p

∂x
dx

or 1

2
d(u2) = − 1

ρ

∂p

∂x
dx (3.6)

In a similar fashion, starting from the y component of the momentum equation
given by Equation (2.113b), specializing to an inviscid, steady flow, and applying
the result to flow along a streamline, Equations (2.117a and c), we have

1

2
d(v2) = − 1

ρ

∂p

∂y
dy (3.7)

Similarly, from the z component of the momentum equation, Equation (2.113c),
we obtain

1

2
d(w2) = − 1

ρ

∂p

∂z
dz (3.8)

Adding Equations (3.6) through (3.8) yields

1

2
d(u2 + v2 + w2) = − 1

ρ

(
∂p

∂x
dx + ∂p

∂y
dy + ∂p

∂z
dz

)
(3.9)
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However,

u2 + v2 + w2 = V 2 (3.10)

and ∂p

∂x
dx + ∂p

∂y
dy + ∂p

∂z
dz = dp (3.11)

Substituting Equations (3.10) and (3.11) into Equation (3.9), we have

1

2
d(V 2) = −dp

ρ

or dp = −ρV dV (3.12)

Equation (3.12) is called Euler’s equation. It applies to an inviscid flow with no
body forces, and it relates the change in velocity along a streamline dV to the
change in pressure dp along the same streamline.

Equation (3.12) takes on a very special and important form for incompressible
flow. In such a case, ρ = constant, and Equation (3.12) can be easily integrated
between any two points 1 and 2 along a streamline. From Equation (3.12), with
ρ = constant, we have ∫ p2

p1

dp = −ρ

∫ V2

V1

V dV

or p2 − p1 = −ρ

(
V 2

2

2
− V 2

1

2

)

or p1 + 1
2ρV 2

1 = p2 + 1
2ρV 2

2 (3.13)

Equation (3.13) is Bernoulli’s equation, which relates p1 and V1 at point 1 on a
streamline to p2 and V2 at another point 2 on the same streamline. Equation (3.13)
can also be written as

p + 1
2ρV 2 = const along a streamline (3.14)

In the derivation of Equations (3.13) and (3.14), no stipulation has been made
as to whether the flow is rotational or irrotational—these equations hold along a
streamline in either case. For a general, rotational flow, the value of the constant
in Equation (3.14) will change from one streamline to the next. However, if the
flow is irrotational, then Bernoulli’s equation holds between any two points in
the flow, not necessarily just on the same streamline. For an irrotational flow, the
constant in Equation (3.14) is the same for all streamlines, and

p + 1
2ρV 2 = const throughout the flow (3.15)

The proof of this statement is given as Problem 3.1.
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The physical significance of Bernoulli’s equation is obvious from Equa-
tions (3.13) to (3.15); namely, when the velocity increases, the pressure decreases,
and when the velocity decreases, the pressure increases.

Note that Bernoulli’s equation was derived from the momentum equation;
hence, it is a statement of Newton’s second law for an inviscid, incompressible
flow with no body forces. However, note that the dimensions of Equations (3.13)
to (3.15) are energy per unit volume ( 1

2ρV 2 is the kinetic energy per unit vol-
ume). Hence, Bernoulli’s equation is also a relation for mechanical energy in an
incompressible flow; it states that the work done on a fluid by pressure forces is
equal to the change in kinetic energy of the flow. Indeed, Bernoulli’s equation
can be derived from the general energy equation, such as Equation (2.114). This
derivation is left to the reader. The fact that Bernoulli’s equation can be interpreted
as either Newton’s second law or an energy equation simply illustrates that the
energy equation is redundant for the analysis of inviscid, incompressible flow.
For such flows, the continuity and momentum equations suffice. (You may wish
to review the opening comments of Section 2.7 on this same subject.)

The strategy for solving most problems in inviscid, incompressible flow is as
follows:

1. Obtain the velocity field from the governing equations. These equations,
appropriate for an inviscid, incompressible flow, are discussed in detail in
Sections 3.6 and 3.7.

2. Once the velocity field is known, obtain the corresponding pressure field
from Bernoulli’s equation.

However, before treating the general approach to the solution of such flows
(Section 3.7), several applications of the continuity equation and Bernoulli’s
equation are made to flows in ducts (Section 3.3) and to the measurement of
airspeed using a Pitot tube (Section 3.4).

EXAMPLE 3.1

Consider an airfoil in a flow at standard sea level conditions with a freestream velocity
of 50 m/s. At a given point on the airfoil, the pressure is 0.9 × 105 N/m2. Calculate the
velocity at this point.

■ Solution
At standard sea level conditions, ρ∞ = 1.23 kg/m3 and p∞ = 1.01 × 105 N/m2. Hence,

p∞ + 1
2ρV 2∞ = p + 1

2ρV 2

V =
√

2(p∞ − p)

ρ
+ V 2

∞ =
√

2(1.01 − 0.9) × 105

1.23
+ (50)2

V = 142.8 m/s



CHAPTER 3 Fundamentals of Inviscid, Incompressible Flow 213

EXAMPLE 3.2

Consider the inviscid, incompressible flow of air along a streamline. The air density along
the streamline is 0.002377 slug/ft3, which is standard atmospheric density at sea level. At
point 1 on the streamline, the pressure and velocity are 2116 lb/ft2 and 10 ft/s, respectively.
Further downstream, at point 2 on the streamline, the velocity is 190 ft/s. Calculate the
pressure at point 2. What can you say about the relative change in pressure from point 1
to point 2 compared to the corresponding change in velocity?

■ Solution
From Equation (3.13),

p1 + 1
2ρV 2

1 = p2 + 1
2ρV 2

2

Hence,

p2 = p1 + 1
2ρ

(
V 2

1 − V 2
2

)
p2 = 2116 + 1

2 (0.002377)[(10)2 − (190)2]

= 2116 + 1
2 (0.002377)(100 − 36,100)

= 2116 − 42.8 = 2073.2 lb/ft2

Note: As the flow velocity increases from 10 ft/s to 190 ft/s along the streamline, the
pressure decreases from 2116 lb/ft2 to 2073.1 lb/ft2. This is a factor of 19 increase in
velocity, for only a factor of 42.8/2116, or 0.02 decrease in pressure. Stated another way,
only a 2 percent decrease in the pressure creates a 1900 percent increase in the flow
velocity. This is an example of a general characteristic of low-speed flows—only a small
change in pressure is required to obtain a large change in velocity. You can sense this in
the weather around you. Only a small barometric change from one location to another can
create a strong wind.

3.3 INCOMPRESSIBLE FLOW IN A DUCT: THE
VENTURI AND LOW-SPEED WIND TUNNEL

Consider the flow through a duct, such as that sketched in Figure 3.5. In general, the
duct will be a three-dimensional shape, such as a tube with elliptical or rectangular
cross sections which vary in area from one location to another. The flow through
such a duct is three-dimensional and, strictly speaking, should be analyzed by
means of the full three-dimensional conservation equations derived in Chapter 2.
However, in many applications, the variation of area A = A(x) is moderate, and
for such cases it is reasonable to assume that the flow-field properties are uniform
across any cross section, and hence vary only in the x direction. In Figure 3.5,
uniform flow is sketched at station 1, and another but different uniform flow is
shown at station 2. Such flow, where the area changes as a function of x and all
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A = A (x)

1 2

x

V1

A1

�1

V2

A2

�2

Figure 3.5 Quasi-one-dimensional flow in a duct.

the flow-field variables are assumed to be functions of x only, that is, A = A(x),

V = V (x), p = p(x), etc., is called quasi-one-dimensional flow. Although such
flow is only an approximation of the truly three-dimensional flow in ducts, the
results are sufficiently accurate for many aerodynamic applications. Such quasi-
one-dimensional flow calculations are frequently used in engineering. They are
the subject of this section.

Consider the integral form of the continuity equation written below:

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV + .......................................................................
.........

∫∫
S

ρV· dS = 0 (2.48)

For steady flow, this becomes

.......................................................................
.........

∫∫
S

pV · dS = 0 (3.16)

Apply Equation (3.16) to the duct shown in Figure 3.5, where the control volume
is bounded by A1 on the left, A2 on the right, and the upper and lower walls of
the duct. Hence, Equation (3.16) is∫ ∫

A1

ρV · dS +
∫ ∫
A2

ρV · dS +
∫ ∫
wall

ρV · dS = 0 (3.17)

Along the walls, the flow velocity is tangent to the wall. Since by definition dS is
perpendicular to the wall, then along the wall, V · dS = 0, and the integral over
the wall surface is zero; that is, in Equation (3.17),∫ ∫

wall

ρV · dS = 0 (3.18)

At station 1, the flow is uniform across A1. Noting that dS and V are in opposite
directions at station 1 (dS always points out of the control volume by definition),
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Convergent duct Divergent duct

V1

p1

�

�

V1

p1

V1

p1

V2 � V1V2

p2 �2 � p1p2

Figure 3.6 Incompressible flow in a duct.

we have in Equation (3.17)∫ ∫
A1

pV · dS = −ρ1 A1V1 (3.19)

At station 2, the flow is uniform across A2, and since dS and V are in the same
direction, we have, in Equation (3.17),∫ ∫

A2

ρV · dS = ρ2 A2V2 (3.20)

Substituting Equations (3.18) to (3.20) into (3.17), we obtain

−ρ1 A1V1 + ρ2 A2V2 + 0 = 0

or ρ1 A1V1 = ρ2 A2V2 (3.21)

Equation (3.21) is the quasi-one-dimensional continuity equation; it applies to
both compressible and incompressible flow.3 In physical terms, it states that the
mass flow through the duct is constant (i.e., what goes in must come out). Compare
Equation (3.21) with Equation (2.43) for mass flow.

Consider incompressible flow only, where ρ = constant. In Equation (3.21),
ρ1 = ρ2, and we have

A1V1 = A2V2 (3.22)

Equation (3.22) is the quasi-one-dimensional continuity equation for incompress-
ible flow. In physical terms, it states that the volume flow (cubic feet per second
or cubic meters per second) through the duct is constant. From Equation (3.22),
we see that if the area decreases along the flow (convergent duct), the velocity in-
creases; conversely, if the area increases (divergent duct), the velocity decreases.
These variations are shown in Figure 3.6; they are fundamental consequences of

3 For a simpler, more rudimentary derivation of Equation (3.21), see Chapter 4 of Reference 2. In the
present discussion, we have established a more rigorous derivation of Equation (3.21), consistent with the
general integral form of the continuity equation.
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Figure 3.7 Flow through a venturi.

the incompressible continuity equation, and you should fully understand them.
Moreover, from Bernoulli’s equation, Equation (3.15), we see that when the ve-
locity increases in a convergent duct, the pressure decreases; conversely, when
the velocity decreases in a divergent duct, the pressure increases. These pressure
variations are also shown in Figure 3.6.

Consider the incompressible flow through a convergent-divergent duct, shown
in Figure 3.7. The flow enters the duct with velocity V1 and pressure p1. The
velocity increases in the convergent portion of the duct, reaching a maximum
value V2 at the minimum area of the duct. This minimum area is called the
throat. Also, in the convergent section, the pressure decreases, as sketched in Fig-
ure 3.7. At the throat, the pressure reaches a minimum value p2. In the divergent
section downstream of the throat, the velocity decreases and the pressure in-
creases. The duct shown in Figure 3.7 is called a venturi; it is a device that finds
many applications in engineering, and its use dates back more than a century. Its
primary characteristic is that the pressure p2 is lower at the throat than the ambient
pressure p1 outside the venturi. This pressure difference p1 − p2 is used to ad-
vantage in several applications. For example, in the carburetor of an automobile
engine, there is a venturi through which the incoming air is mixed with fuel. The
fuel line opens into the venturi at the throat. Because p2 is less than the surround-
ing ambient pressure p1, the pressure difference p1 − p2 helps to force the fuel
into the airstream and mix it with the air downstream of the throat.

In an application closer to aerodynamics, a venturi can be used to measure
airspeeds. Consider a venturi with a given inlet-to-throat area ratio A1/A2, as
shown in Figure 3.7. Assume that the venturi is inserted into an airstream that
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has an unknown velocity V1. We wish to use the venturi to measure this velocity.
With regard to the venturi itself, the most direct quantity that can be measured
is the pressure difference p1 − p2. This can be accomplished by placing a small
hole (a pressure tap) in the wall of the venturi at both the inlet and the throat
and connecting the pressure leads (tubes) from these holes across a differential
pressure gage, or to both sides of a U-tube manometer (see Section 1.9). In such a
fashion, the pressure difference p1 − p2 can be obtained directly. This measured
pressure difference can be related to the unknown velocity V1 as follows. From
Bernoulli’s equation, Equation (3.13), we have

V 2
1 = 2

ρ
(p2 − p1) + V 2

2 (3.23)

From the continuity equation, Equation (3.22), we have

V2 = A1

A2
V1 (3.24)

Substituting Equation (3.24) into (3.23), we obtain

V 2
1 = 2

ρ
(p2 − p1) +

(
A1

A2

)2

V 2
1 (3.25)

Solving Equation (3.25) for V1, we obtain

V1 =
√

2(p1 − p2)

ρ[(A1/A2)2 − 1]
(3.26)

Equation (3.26) is the desired result; it gives the inlet air velocity V1 in terms
of the measured pressure difference p1 − p2 and the known density ρ and area
ratio A1/A2. In this fashion, a venturi can be used to measure airspeeds. Indeed,
historically the first practical airspeed indicator on an airplane was a venturi
used by the French Captain A. Eteve in January 1911, more than 7 years after
the Wright brothers’ first powered flight. Today, the most common airspeed-
measuring instrument is the Pitot tube (to be discussed in Section 3.4); however,
the venturi is still found on some general aviation airplanes, including home-built
and simple experimental aircraft.

Another application of incompressible flow in a duct is the low-speed wind
tunnel. The desire to build ground-based experimental facilities designed to pro-
duce flows of air in the laboratory which simulate actual flight in the atmosphere
dates back to 1871, when Francis Wenham in England built and used the first wind
tunnel in history.4 From that date to the mid-1930s, almost all wind tunnels were

4 For a discussion on the history of wind tunnels, see Chapter 4 of Reference 2.
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Figure 3.8 (a) Open-circuit tunnel. (b) Closed-circuit tunnel.

designed to produce airflows with velocities from 0 to 250 mi/h. Such low-speed
wind tunnels are still much in use today, along with a complement of transonic,
supersonic, and hypersonic tunnels. The principles developed in this section allow
us to examine the basic aspects of low-speed wind tunnels, as follows.

In essence, a low-speed wind tunnel is a large venturi where the airflow is
driven by a fan connected to some type of motor drive. The wind-tunnel fan blades
are similar to airplane propellers and are designed to draw the airflow through the
tunnel circuit. The wind tunnel may be open circuit, where the air is drawn in the
front directly from the atmosphere and exhausted out the back, again directly to
the atmosphere, as shown in Figure 3.8a; or the wind tunnel may be closed circuit,
where the air from the exhaust is returned directly to the front of the tunnel via
a closed duct forming a loop, as shown in Figure 3.8b. In either case, the airflow
with pressure p1 enters the nozzle at a low velocity V1, where the area is A1.

The nozzle converges to a smaller area A2 at the test section, where the velocity
has increased to V2 and the pressure has decreased to p2. After flowing over an
aerodynamic model (which may be a model of a complete airplane or part of an
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airplane such as a wing, tail, engine, or nacelle), the air passes into a diverging
duct called a diffuser, where the area increases to A3, the velocity decreases to V3,
and the pressure increases to p3. From the continuity equation, Equation (3.22),
the test-section air velocity is

V2 = A1

A2
V1 (3.27)

In turn, the velocity at the exit of the diffuser is

V3 = A2

A3
V2 (3.28)

The pressure at various locations in the wind tunnel is related to the velocity by
Bernoulli’s equation:

p1 + 1
2ρV 2

1 = p2 + 1
2ρV 2

2 = p3 + 1
2ρV 3

3 (3.29)

The basic factor that controls the air velocity in the test section of a given
low-speed wind tunnel is the pressure difference p1 − p2. To see this more clearly,
rewrite Equation (3.29) as

V 2
2 = 2

ρ
(p1 − p2) + V 2

1 (3.30)

From Equation (3.27), V1 = (A2/A1)V2. Substituting into the right-hand side of
Equation (3.30), we have

V 2
2 = 2

ρ
(p1 − p2) +

(
A2

A1

)2

V 2
2 (3.31)

Solving Equation (3.31) for V2, we obtain

V2 =
√

2(p1 − p2)

ρ[1 − (A2/A1)2]
(3.32)

The area ratio A2/A1 is a fixed quantity for a wind tunnel of given design. More-
over, the density is a known constant for incompressible flow. Therefore, Equa-
tion (3.32) demonstrates conclusively that the test-section velocity V2 is governed
by the pressure difference p1 − p2. The fan driving the wind-tunnel flow creates
this pressure difference by doing work on the air. When the wind-tunnel operator
turns the “control knob” of the wind tunnel and adjusts the power to the fan, he or
she is essentially adjusting the pressure difference p1 − p2 and, in turn, adjusting
the velocity via Equation (3.32).
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In low-speed wind tunnels, a method of measuring the pressure difference
p1 − p2, hence of measuring V2 via Equation (3.32), is by means of a manometer
as discussed in Section 1.9. In Equation (1.56), the density is the density of the
liquid in the manometer (not the density of the air in the tunnel). The product
of density and the acceleration of gravity g in Equation (1.56) is the weight per
unit volume of the manometer fluid. Denote this weight per unit volume by w.
Referring to Equation (1.56), if the side of the manometer associated with pa

is connected to a pressure tap in the settling chamber of the wind tunnel, where
the pressure is p1, and if the other side of the manometer (associated with pb)
is connected to a pressure tap in the test section, where the pressure is p2, then,
from Equation (1.56),

p1 − p2 = w�h

where �h is the difference in heights of the liquid between the two sides of the
manometer. In turn, Equation (3.32) can be expressed as

V2 =
√

2w�h

ρ[1 − (A2/A1)2]

The use of manometers is a straightforward mechanical means to measure
pressures. They are time-honored devices that date back to their invention by
the Italian mathematician Evangelista Torricelli in 1643. The French engineer
Gustave Eiffel used manometers to measure pressures on the surface of wing
models mounted in his wind tunnel in Paris in 1909, initiating the use of manome-
ters in wind tunnel work throughout much of the twentieth century. Today, in most
wind tunnels manometers have been replaced by an array of electronic pressure-
measuring instruments. We discuss manometers here because they are part of the
tradition of aerodynamics, and they are a good example of an application in fluid
statics.

In many low-speed wind tunnels, the test section is vented to the surrounding
atmosphere by means of slots in the wall; in others, the test section is not a duct at
all, but rather, an open area between the nozzle exit and the diffuser inlet. In both
cases, the pressure in the surrounding atmosphere is impressed on the test-section
flow; hence, p2 = 1 atm. (In subsonic flow, a jet that is dumped freely into the
surrounding air takes on the same pressure as the surroundings; in contrast, a
supersonic free jet may have completely different pressures than the surrounding
atmosphere, as we see in Chapter 10.)

Keep in mind that the basic equations used in this section have certain
limitations—we are assuming a quasi-one-dimensional inviscid flow. Such equa-
tions can sometimes lead to misleading results when the neglected phenomena
are in reality important. For example, if A3 = A1 (inlet area of the tunnel is equal
to the exit area), then Equations (3.27) and (3.28) yield V3 = V1. In turn, from
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(a)

Figure 3.9 (a) Test section of a large subsonic wind tunnel; (NASA).

Equation (3.29), p3 = p1; that is, there is no pressure difference across the entire
tunnel circuit. If this were true, the tunnel would run without the application of
any power—we would have a perpetual motion machine. In reality, there are
losses in the airflow due to friction at the tunnel walls and drag on the aerody-
namic model in the test section. Bernoulli’s equation, Equation (3.29), does not
take such losses into account. (Review the derivation of Bernoulli’s equation in
Section 3.2; note that viscous effects are neglected.) Thus, in an actual wind tun-
nel, there is a pressure loss due to viscous and drag effects, and p3 < p1. The
function of the wind-tunnel motor and fan is to add power to the airflow in order
to increase the pressure of the flow coming out of the diffuser so that it can be
exhausted into the atmosphere (Figure 3.8a) or returned to the inlet of the nozzle
at the higher pressure p1 (Figure 3.8b). Photographs of a typical subsonic wind
tunnel are shown in Figure 3.9a and b.
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(b)

Figure 3.9 (continued ) (b) The power fan drive section. (NASA).

EXAMPLE 3.3

Consider a venturi with a throat-to-inlet area ratio of 0.8 mounted in a flow at standard
sea level conditions. If the pressure difference between the inlet and the throat is 7 lb/ft2,
calculate the velocity of the flow at the inlet.

■ Solution
At standard sea level conditions, ρ = 0.002377 slug/ft3. Hence,

V1 =
√

2(p1 − p2)

ρ[(A1/A2)2 − 1]
=

√
2(7)

(0.002377)[( 1
0.8 )2 − 1]

= 102.3 ft/s

EXAMPLE 3.4

Consider a low-speed subsonic wind tunnel with a 12/1 contraction ratio for the nozzle.
If the flow in the test section is at standard sea level conditions with a velocity of 50 m/s,
calculate the height difference in a U-tube mercury manometer with one side connected
to the nozzle inlet and the other to the test section.
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■ Solution
At standard sea level, ρ = 1.23 kg/m3. From Equation (3.32),

p1 − p2 = 1

2
ρV 2

2

[
1 −

(
A2

A1

)2
]

= 1

2
(50)2(1.23)

[
1 −

(
1

12

)2
]

= 1527 N/m2

However, p1 − p2 = w�h. The density of liquid mercury is 1.36 × 104 kg/m3. Hence,

w = (1.36 × 104 kg/m3)(9.8 m/s2) = 1.33 × 105 N/m2

�h = p1 − p2

w
= 1527

1.33 × 105 = 0.01148 m

EXAMPLE 3.5

Consider a model of an airplane mounted in a subsonic wind tunnel, such as shown
in Figure 3.10. The wind-tunnel nozzle has a 12-to-1 contraction ratio. The maximum
lift coefficient of the airplane model is 1.3. The wing planform area of the model is
6 ft2. The lift is measured with a mechanical balance that is rated at a maximum force
of 1000 lb; that is, if the lift of the airplane model exceeds 1000 lb, the balance will
be damaged. During a given test of this airplane model, the plan is to rotate the model

Figure 3.10 Typical model installation in the test section of a large wind tunnel.
(Jeff Caplan/NASA).
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through its whole range of angle of attack, including up to that for maximum CL . Calculate
the maximum pressure difference allowable between the wind-tunnel settling chamber
and the test section, assuming standard sea level density in the test section (i.e., ρ∞ =
0.002377 slug/ft3).

■ Solution
Maximum lift occurs when the model is at its maximum lift coefficient. Since the maxi-
mum allowable lift force is 1000 lb, the freestream velocity at which this occurs is obtained
from

Lmax = 1
2ρ∞V 2∞SCL ,max

or V∞ =
√

2Lmax

ρ∞SCL ,max
=

√
(2)(1000)

(0.002377)(6)(1.3)
= 328.4 ft/s

From Equation (3.32),

p1 − p2 = 1

2
ρ∞V 2

∞

[
1 −

(
A2

A1

)2
]

= 1

2
(0.002377)(328.4)2

[
1 −

(
1

12

)2
]

= 127.3 lb/ft2

EXAMPLE 3.6

a. The flow velocity in the test section of a low-speed subsonic wind tunnel is
100 mph. The test section is vented to the atmosphere, where atmospheric pressure
is 1.01 × 105 N/m2. The air density in the flow is the standard sea level value of
1.23 kg/m3. The contraction ratio of the nozzle is 10-to-1. Calculate the reservoir
pressure in atmospheres.

b. By how much must the reservoir pressure be increased to achieve 200 mph in the
test section of this wind tunnel? Comment on the magnitude of this increase in
pressure relative to the increase in test-section velocity.

■ Solution
a. Miles per hour is not a consistent unit for velocity. To convert to m/s, we note that

1 mi = 1609 m, and 1 h = 3600 s. Hence,

1
mi

h
=

(
1

mi

h

)(
1609 m

1 mi

)(
1 h

3600 s

)
= 0.447 m/s



CHAPTER 3 Fundamentals of Inviscid, Incompressible Flow 225

(Note: This is the author’s iron-clad method for carrying out conversion from one set
of units to another. Take the original mile/hour, and multiply it by an equivalent
“unity.” Since 1609 m is the same distance as 1 mi, then the ratio (1609 m/1 mi) is
essentially “unity,” and since 1 h is the same time as 3600 s, then the ratio
(1 h/3600 s) is essentially “unity.” Multiplying (mi/h) by these two equivalent unity
ratios, the miles cancel, and the hours cancel, and we are left with the proper number
of meters per second.) Therefore,

V2 = 100 mph = (100)(0.447) = 44.7 m/s

From Equation (3.31),

p1 − p2 = ρ

2
V 2

2

[
1 −

(
A2

A1

)2
]

p1 − p2 = 1.23

2
(44.7)2

[
1 −

(
1

10

)2
]

= 0.01217 × 105N/m2

Thus,

p1 = p2 + 0.01217 × 105 = 1.01 × 105 + 0.01217 × 105

p1 = 1.022 × 105 N/m2

In atm, p1 = 1.022 × 105/1.01 × 105 = 1.01 atm

b. V2 = 200 mph = (200)(0.447) = 89.4 m/s

p1 − p2 = ρ

2
V 2

2

[
1 −

(
A2

A1

)2
]

= 1.23

2
(89.4)2(0.99) = 0.0487 × 105 N/m2

p1 = 1.01 × 105 + 0.0487 × 105 = 1.059 × 105 N/m2

In atm,

p1 = 1.059 × 105/1.01 × 105 = 1.048 atm

Comparing this result with part (a) above, we observe that to achieve a doubling of
the test-section flow velocity from 100 mph to 200 mph, the reservoir pressure
needed to be increased by only 0.038 atm (i.e., by 3.8 percent). This reinforces the
general trend noted in Example 3.2, namely, that in a low-speed flow, a small
pressure change results in a large velocity change.
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V1

Static pressure
measured here

Total pressure
measured here
    VB = 0

Static pressure orifice

Pitot tube

Pressure
gage
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p1

D
B

A

pB = p0

Figure 3.11 Pitot tube and a static pressure orifice.

3.4 PITOT TUBE: MEASUREMENT OF AIRSPEED
In 1732, the Frenchman Henri Pitot was busy trying to measure the flow velocity of
the Seine River in Paris. One of the instruments he used was his own invention—a
strange-looking tube bent into an L shape, as shown in Figure 3.11. Pitot oriented
one of the open ends of the tube so that it faced directly into the flow. In turn, he
used the pressure inside this tube to measure the water flow velocity. This was the
first time in history that a proper measurement of fluid velocity was made, and
Pitot’s invention has carried through to the present day as the Pitot tube—one of
the most common and frequently used instruments in any modern aerodynamic
laboratory. Moreover, a Pitot tube is the most common device for measuring
flight velocities of airplanes. The purpose of this section is to describe the basic
principle of the Pitot tube.5

Consider a flow with pressure p1 moving with velocity V1, as sketched at
the left of Figure 3.11. Let us consider the significance of the pressure p1 more
closely. In Section 1.4, the pressure is associated with the time rate of change
of momentum of the gas molecules impacting on or crossing a surface; that
is, pressure is clearly related to the motion of the molecules. This motion is
very random, with molecules moving in all directions with various velocities.
Now imagine that you hop on a fluid element of the flow and ride with it at the
velocity V1. The gas molecules, because of their random motion, will still bump

5 See Chapter 4 of Reference 2 for a detailed discussion of the history of the Pitot tube, how Pitot used it
to overturn a basic theory in civil engineering, how it created some controversy in engineering, and how
it finally found application in aeronautics.
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into you, and you will feel the pressure p1 of the gas. We now give this pressure
a specific name: the static pressure. Static pressure is a measure of the purely
random motion of molecules in the gas; it is the pressure you feel when you ride
along with the gas at the local flow velocity. All pressures used in this book so far
have been static pressures; the pressure p appearing in all our previous equations
has been the static pressure. In engineering, whenever a reference is made to
“pressure” without further qualification, that pressure is always interpreted as the
static pressure. Furthermore, consider a boundary of the flow, such as a wall,
where a small hole is drilled perpendicular to the surface. The plane of the hole is
parallel to the flow, as shown at point A in Figure 3.11. Because the flow moves
over the opening, the pressure felt at point A is due only to the random motion
of the molecules; that is, at point A, the static pressure is measured. Such a small
hole in the surface is called a static pressure orifice, or a static pressure tap.

In contrast, consider that a Pitot tube is now inserted into the flow, with an
open end facing directly into the flow. That is, the plane of the opening of the tube
is perpendicular to the flow, as shown at point B in Figure 3.11. The other end
of the Pitot tube is connected to a pressure gage, such as point C in Figure 3.11
(i.e., the Pitot tube is closed at point C). For the first few milliseconds after the Pitot
tube is inserted into the flow, the gas will rush into the open end and will fill the
tube. However, the tube is closed at point C ; there is no place for the gas to go, and
hence after a brief period of adjustment, the gas inside the tube will stagnate; that
is, the gas velocity inside the tube will go to zero. Indeed, the gas will eventually
pile up and stagnate everywhere inside the tube, including at the open mouth at
point B. As a result, the streamline of the flow that impinges directly at the open
face of the tube (streamline DB in Figure 3.11) sees this face as an obstruction to
the flow. The fluid elements along streamline DB slow down as they get closer to
the Pitot tube and go to zero velocity right at point B. Any point in a flow where
V = 0 is called a stagnation point of the flow; hence, point B at the open face of the
Pitot tube is a stagnation point, where VB = 0. In turn, from Bernoulli’s equation
we know the pressure increases as the velocity decreases. Hence, pB > p1. The
pressure at a stagnation point is called the stagnation pressure, or total pressure,
denoted by p0. Hence, at point B, pB = p0.

From the above discussion, we see that two types of pressure can be defined
for a given flow: static pressure, which is the pressure you feel by moving with
the flow at its local velocity V1, and total pressure, which is the pressure that
the flow achieves when the velocity is reduced to zero. In aerodynamics, the
distinction between total and static pressure is important; we have discussed this
distinction at some length, and you should make yourself comfortable with the
above paragraphs before proceeding further. (Further elaboration on the meaning
and significance of total and static pressure will be made in Chapter 7.)

How is the Pitot tube used to measure flow velocity? To answer this question,
first note that the total pressure p0 exerted by the flow at the tube inlet (point B) is
impressed throughout the tube (there is no flow inside the tube; hence, the pressure
everywhere inside the tube is p0). Therefore, the pressure gage at point C reads
p0. This measurement, in conjunction with a measurement of the static pressure
p1 at point A, yields the difference between total and static pressure, p0 − p1,
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V1

Total pressure
felt here
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Figure 3.12 Pitot-static probe.

and it is this pressure difference that allows the calculation of V1 via Bernoulli’s
equation. In particular, apply Bernoulli’s equation between point A, where the
pressure and velocity are p1 and V1, respectively, and point B, where the pressure
and velocity are p0 and V = 0, respectively:

pA + 1
2ρV 2

A = pB + 1
2ρV 2

B

or p1 + 1
2ρV 2

1 = p0 + 0 (3.33)

Solving Equation (3.33) for V1, we have

V1 =
√

2(p0 − p1)

ρ
(3.34)

Equation (3.34) allows the calculation of velocity simply from the measured
difference between total and static pressure. The total pressure p0 is obtained
from the Pitot tube, and the static pressure p1 is obtained from a suitably placed
static pressure tap.

It is possible to combine the measurement of both total and static pressure
in one instrument, a Pitot-static probe, as sketched in Figure 3.12. A Pitot-static
probe measures p0 at the nose of the probe and p1 at a suitably placed static
pressure tap on the probe surface downstream of the nose.

In Equation (3.33), the term 1
2ρV 2

1 is called the dynamic pressure and is
denoted by the symbol q1. The grouping 1

2ρV 2 is called the dynamic pressure by
definition and is used in all flows, incompressible to hypersonic:

q ≡ 1
2ρV 2

However, for incompressible flow, the dynamic pressure has special meaning;
it is precisely the difference between total and static pressure. Repeating Equa-
tion (3.33), we obtain

p1 + 1
2ρV 2

1 = p0

static dynamic total
pressure pressure pressure

or p1 + q1 = p0

or q1 = p0 − p1 (3.35)
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It is important to keep in mind that Equation (3.35) comes from Bernoulli’s equa-
tion, and thus holds for incompressible flow only. For compressible flow, where
Bernoulli’s equation is not valid, the pressure difference p0 − p1 is not equal to q1.

Moreover, Equation (3.34) is valid for incompressible flow only. The velocities of
compressible flows, both subsonic and supersonic, can be measured by means of a
Pitot tube, but the equations are different from Equation (3.34). (Velocity measure-
ments in subsonic and supersonic compressible flows are discussed in Chapter 8.)

At this stage, it is important to repeat that Bernoulli’s equation holds for
incompressible flow only, and therefore any result derived from Bernoulli’s equa-
tion also holds for incompressible flow only, such as Equations (3.26), (3.32),
and (3.34). Experience has shown that some students when first introduced to
aerodynamics seem to adopt Bernoulli’s equation as the gospel and tend to use
it for all applications, including many cases where it is not valid. Hopefully, the
repetitive warnings given above will squelch such tendencies.

EXAMPLE 3.7

An airplane is flying at standard sea level. The measurement obtained from a Pitot tube
mounted on the wing tip reads 2190 lb/ft2. What is the velocity of the airplane?

■ Solution
Standard sea level pressure is 2116 lb/ft2. From Equation (3.34), we have

V1 =
√

2(p0 − p1)

ρ
=

√
2(2190 − 2116)

0.002377
= 250 ft/s

EXAMPLE 3.8

In the wind-tunnel flow described in Example 3.5, a small Pitot tube is mounted in the
flow just upstream of the model. Calculate the pressure measured by the Pitot tube for the
same flow conditions as in Example 3.5.

■ Solution
From Equation (3.35),

p0 = p∞ + q∞ = p∞ + 1
2ρ∞V 2∞

= 2116 + 1
2 (0.002377)(328.4)2

= 2116 + 128.2 = 2244 lb/ft2

Note in this example that the dynamic pressure is 1
2ρ∞V 2

∞ = 128.2 lb/ft2.
This is less than 1 percent larger than the pressure difference (p1 − p2), calculated
in Example 3.5, that is required to produce the test-section velocity in the wind
tunnel. Why is (p1 − p2) so close to the test-section dynamic pressure? Answer:
Because the velocity in the settling chamber V1 is so small that p1 is close to the
total pressure of the flow. Indeed, from Equation (3.22),

V1 = A2

A1
V2 =

(
1

12

)
(328.4) = 27.3 ft/s
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Compared to the test-section velocity of 328.4 ft/s, V1 is seen to be small. In
regions of a flow where the velocity is finite but small, the local static pressure is
close to the total pressure. (Indeed, in the limiting case of a fluid with zero velocity,
the local static pressure is the same as the total pressure; here, the concepts of
static pressure and total pressure are redundant. For example, consider the air in
the room around you. Assuming the air is motionless, and assuming standard sea
level conditions, the pressure is 2116 lb/ft2, namely, 1 atm. Is this pressure a static
pressure or a total pressure? Answer: It is both. By the definition of total pressure
given in the present section, when the local flow velocity is itself zero, then the
local static pressure and the local total pressure are exactly the same.)

EXAMPLE 3.9

Consider the P-35 shown in Figure 3.2 cruising at a standard altitude of 4 km. The pressure
sensed by the Pitot tube on its right wing (as seen in Figure 3.2) is 6.7 × 104 N/m2. At
what velocity is the P-35 flying?

■ Solution
From Appendix D, at a standard altitude of 4 km, the freestream static pressure and density
are 6.166 × 104 N/m2 and 0.81935 kg/m3, respectively. The Pitot tube measures the total
pressure of 6.7 × 104 N/m2. From Equation (3.34),

V1 =
√

2(p0 − p1)

ρ
=

√
2(6.7 − 6.166) × 104

0.81935
= 114.2 m/s

Note: From the conversion factor between miles per hour and m/s obtained in Example 3.6,
we have

V1 = 114.2

0.447
= 255 mph

EXAMPLE 3.10

The P-35 in Example 3.9 experiences a certain dynamic pressure at its cruising speed of
114.2 m/s at an altitude of 4 km. Now assume the P-35 is flying at sea level. At what
velocity must it fly at sea level to experience the same dynamic pressure?

■ Solution
At V1 = 114.2 m/s and at a standard altitude of 4 km, where ρ = 0.81935 kg/m3,

q1 = 1
2ρV 2

1 = 1
2 (0.81935)(114.2)2 = 5.343 × 103 N/m2

For the airplane to experience the same dynamic pressure at sea level where ρ =
1.23 kg/m3, its new velocity, Ve, must satisfy

q1 = 1
2ρV 2

e

5.343 × 103 = 1
2 (1.23)V 2

e

or, Ve =
√

2(5.343 × 103)

1.23
= 93.2 m/s
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In Example 3.10, the velocity of 93.2 m/s is the equivalent airspeed, Ve,
of the airplane flying at an altitude of 4 km at a true airspeed of 114.2 m/s. The
general definition of equivalent airspeed is as follows. Consider an airplane flying
at some true airspeed at some altitude. Its equivalent airspeed at this condition
is defined as the velocity at which it would have to fly at standard sea level to
experience the same dynamic pressure. In Example 3.10, we have the P-35 flying
at an altitude of 4 km at a true airspeed of 114.2 m/s, and simultaneously at an
equivalent airspeed of 93.2 m/s.

DESIGN BOX

The configuration of the Pitot-static probe shown in
Figure 3.12 is a schematic only. The design of an actual
Pitot-static probe is an example of careful engineer-
ing, intended to provide as accurate an instrument as
possible. Let us examine some of the overall features
of Pitot-static probe design.

Above all, the probe should be a long, streamlined
shape such that the surface pressure over a substantial

Support
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Total pressure
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Static pressure taps arrayed
radially around tube
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�
 

C
p 
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– 
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(b)

Figure 3.13 (a) Pitot-static tube. (b) Schematic of the pressure distribution along
the outer surface of the tube.

portion of the probe is essentially equal to the
freestream static pressure. Such a shape is given in
Figure 3.13a. The head of the probe, the nose at which
the total pressure is measured, is usually a smooth
hemispherical shape in order to encourage smooth,
streamlined flow downstream of the nose. The di-
ameter of the tube is denoted by d. A number of
static pressure taps are arrayed radially around the
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Figure 3.14 Schematic of static pressure taps. (a) and (b) Poor design.
(c) Proper design.

circumference of the tube at a station that should be
from 8d to 16d downstream of the nose, and at least
16d ahead of the downstream support stem. The rea-
son for this is shown in Figure 3.13b, which gives the
axial distribution of the pressure coefficient along the
surface of the tube. From the definition of pressure
coefficient given in Section 1.5, and from Bernoulli’s
equation in the form of Equation (3.35), the pressure
coefficient at a stagnation point for incompressible
flow is given by

C p = p − p∞
q∞

= p0 − p∞
q∞

= q∞
q∞

= 1.0

Hence, in Figure 3.13b the C p distribution starts out
at the value of 1.0 at the nose, and rapidly drops as the
flow expands around the nose. The pressure decreases
below p∞, yielding a minimum value of C p ≈ −1.25
just downstream of the nose. Further downstream the
pressure tries to recover and approaches a value nearly
equal to p∞ at some distance (typically about 8d)
from the nose. There follows a region where the static
pressure along the surface of the tube is very close to
p∞, illustrated by the region where C p = 0 in Fig-
ure 3.13b. This is the region where the static pressure
taps should be located, because the surface pressure
measured at these taps will be essentially equal to the
freestream static pressure p∞. Further downstream,
as the flow approaches the support stem, the pressure
starts to increase above p∞. This starts at a distance of
about 16d ahead of the support stem. In Figure 3.13a,
the static pressure taps are shown at a station 14d
downstream of the nose and 20d ahead of the support
stem.

The design of the static pressure taps themselves
is critical. The surface around the taps should be
smooth to insure that the pressure sensed inside the
tap is indeed the surface pressure along the tube. Ex-
amples of poor design as well as the proper design
of the pressure taps are shown in Figure 3.14. In Fig-
ure 3.14a, the surface has a burr on the upstream side;
the local flow will expand around this burr, causing
the pressure sensed at point a inside the tap to be less
than p∞. In Figure 3.14b, the surface has a burr on the
downstream side; the local flow will be slowed in this
region, causing the pressure sensed at point b inside
the tap to be greater than p∞. The correct design is
shown in Figure 3.14c; here, the opening of the tap is
exactly flush with the surface, allowing the pressure
sensed at point c inside the tap to be equal to p∞.

When a Pitot-static tube is used to measure the
speed of an airplane, it should be located on the air-
plane in a position where it is essentially immersed in
the freestream flow, away from any major influence of
the local flow field around the airplane itself. An ex-
ample of this can be seen in Figure 3.2, where a Pitot-
static probe can be seen mounted near the right wing
tip of the P-35, extending into the freestream ahead of
the wing. A similar wing-mounted probe is shown in
the planview (top view) of the North American F-86
in Figure 3.15.

Today, many modern airplanes have a Pitot tube
mounted at some location on the fuselage, and the
measurement of p∞ is obtained independently from a
properly placed static pressure tap somewhere else
on the fuselage. Figure 3.16 illustrates a fuselage-
mounted Pitot tube in the nose region of the Boeing



CHAPTER 3 Fundamentals of Inviscid, Incompressible Flow 233

Figure 3.15 Three views of the North American F-86H. Note the
wing-mounted Pitot-static tube.
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STRATOLINER

Pitot tube

Figure 3.16 Nose-mounted Pitot tube on the Boeing Stratoliner.
(Stratoliner detail courtesy of Paul Matt, Alan and Drina Abel, and
Aviation Heritage, Inc., with permission).

Stratoliner, a 1940s vintage airliner. When only a
Pitot measurement is required, the probe can be much
shorter than a Pitot-static tube, as can be seen in Fig-
ure 3.16. In this type of arrangement, the location of
the static pressure tap on the surface of the fuselage is
critical; it must be located in a region where the sur-
face pressure on the fuselage is equal to p∞. We have
a pretty good idea where to locate the static pressure
taps on a Pitot-static tube, as shown in Figure 3.13a.
But the proper location on the fuselage of a given air-
plane must be found experimentally, and it is different
for different airplanes. However, the basic idea is illus-
trated in Figure 3.17, which shows the measured pres-
sure coefficient distribution over a streamlined body
at zero angle of attack. There are two axial stations
where C p = 0 (i.e., where the surface pressure on the
body equals p∞). If this body were an airplane fuse-
lage, the static pressure tap should be placed at one of
these two locations. In practice, the forward location,
near the nose, is usually chosen.

Finally, we must be aware that none of these
instruments, no matter where they are located, are
perfectly accurate. In particular, misalignment of the
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Figure 3.17 Experimentally measured pressure
coefficient distribution over a streamlined body with a
fineness ratio (length-to-diameter ratio) of 3. Zero angle
of attack. Low-speed flow.



CHAPTER 3 Fundamentals of Inviscid, Incompressible Flow 235

probe with respect to the freestream direction causes
an error which must be assessed for each particular
case. Fortunately, the measurement of the total pres-
sure by means of a Pitot tube is relatively insensi-
tive to misalignment. Pitot tubes with hemispherical
noses, such as shown in Figure 3.13a, are insensitive

to the mean flow direction up to a few degrees. Pitot
tubes with flat faces, such as illustrated in Figure 3.12,
are least sensitive. For these tubes, the total pressure
measurement varies only 1 percent for misalignment
as large as 20◦. For more details on this matter, see
Reference 61.

3.5 PRESSURE COEFFICIENT
Pressure, by itself, is a dimensional quantity (e.g., pounds per square foot, newtons
per square meter). However, in Sections 1.7 and 1.8, we established the usefulness
of certain dimensionless parameters such as M, Re, CL . It makes sense, therefore,
that a dimensionless pressure would also find use in aerodynamics. Such a quantity
is the pressure coefficient Cp, first introduced in Section 1.5 and defined as

Cp ≡ p − p∞
q∞

(3.36)

where q∞ = 1
2ρ∞V 2

∞

The definition given in Equation (3.36) is just that—a definition. It is used through-
out aerodynamics, from incompressible to hypersonic flow. In the aerodynamic
literature, it is very common to find pressures given in terms of Cp rather than
the pressure itself. Indeed, the pressure coefficient is another similarity parameter
that can be added to the list started in Sections 1.7 and 1.8.

For incompressible flow, C p can be expressed in terms of velocity only. Con-
sider the flow over an aerodynamic body immersed in a freestream with pressure
p∞ and velocity V∞. Pick an arbitrary point in the flow where the pressure and
velocity are p and V , respectively. From Bernoulli’s equation,

p∞ + 1
2ρV 2

∞ = p + 1
2ρV 2

or p − p∞ = 1
2ρ

(
V 2

∞ − V 2
)

(3.37)

Substituting Equation (3.37) into (3.36), we have

Cp = p − p∞
q∞

=
1
2ρ

(
V 2

∞ − V 2
)

1
2ρV 2∞

or Cp = 1 −
(

V

V∞

)2

(3.38)

Equation (3.38) is a useful expression for the pressure coefficient; however, note
that the form of Equation (3.38) holds for incompressible flow only.
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Note from Equation (3.38) that the pressure coefficient at a stagnation point
(where V = 0) in an incompressible flow is always equal to 1.0. This is the highest
allowable value of Cp anywhere in the flow field. (For compressible flows, C p

at a stagnation point is greater than 1.0, as shown in Chapter 14.) Also, keep in
mind that in regions of the flow where V > V∞ or p < p∞, C p will be a negative
value.

Another interesting property of the pressure coefficient can be seen by rear-
ranging the definition given by Equation (3.36), as follows:

p = p∞ + q∞Cp

Clearly, the value of Cp tells us how much p differs from p∞ in multiples of
the dynamic pressure. That is, if Cp = 1 (the value at a stagnation point in an
incompressible flow), then p = p∞ + q∞, or the local pressure is “one times”
the dynamic pressure above freestream static pressure. If Cp = −3, then p =
p∞ − 3q∞, or the local pressure is three times the dynamic pressure below
freestream static pressure.

EXAMPLE 3.11

Consider an airfoil in a flow with a freestream velocity of 150 ft/s. The velocity at a given
point on the airfoil is 225 ft/s. Calculate the pressure coefficient at this point.

■ Solution

C p = 1 −
(

V

V∞

)2

= 1 −
(

225

150

)2

= −1.25

EXAMPLE 3.12

Consider the airplane model in Example 3.4. When it is at a high angle of attack, slightly
less than that when CL becomes a maximum, the peak (negative) pressure coefficient which
occurs at a certain point on the airfoil surface is −5.3. Assuming inviscid, incompressible
flow, calculate the velocity at this point when (a) V∞ = 80 ft/s and (b) V∞ = 300 ft/s.

■ Solution
Using Equation (3.38), we have

a. V =
√

V 2∞(1 − C p) =
√

(80)2[1 − (−5.3)] = 200.8 ft/s

b. V =
√

V 2∞(1 − C p) =
√

(300)2[1 − (−5.3)] = 753 ft/s

The above example illustrates two aspects of such a flow, as follows:

1. Consider a given point on the airfoil surface. The Cp is given at this point
and, from the statement of the problem. Cp is obviously unchanged when
the velocity is increased from 80 to 300 ft/s. Why? The answer underscores
part of our discussion on dimensional analysis in Section 1.7, namely, Cp
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should depend only on the Mach number, Reynolds number, shape and
orientation of the body, and location on the body. For the low-speed inviscid
flow considered here, the Mach number and Reynolds number are not in the
picture. For this type of flow, the variation of Cp is a function only of
location on the surface of the body, and the body shape and orientation.
Hence, Cp will not change with V∞ or ρ∞ as long as the flow can be
considered inviscid and incompressible. For such a flow, once the Cp

distribution over the body has been determined by some means, the same
Cp distribution will exist for all freestream values of V∞ and ρ∞.

2. In part (b) of Example 3.12, the velocity at the point where Cp is a peak
(negative) value is a large value, namely, 753 ft/s. Is Equation (3.38) valid
for this case? The answer is essentially no. Equation (3.38) assumes
incompressible flow. The speed of sound at standard sea level is 1117 ft/s;
hence, the freestream Mach number is 300/1117 = 0.269. A flow where
the local Mach number is less than 0.3 can be assumed to be essentially
incompressible. Hence, the freestream Mach number satisfies this criterion.
On the other hand, the flow rapidly expands over the top surface of the
airfoil and accelerates to a velocity of 753 ft/s at the point of minimum
pressure (the point of peak negative Cp). In the expansion, the speed of
sound decreases. (We will find out why in Part 3.) Hence, at the point of
minimum pressure, the local Mach number is greater than 753

1117 = 0.674.

That is, the flow has expanded to such a high local Mach number that it is
no longer incompressible. Therefore, the answer given in part (b) of
Example 3.12 is not correct. (We will learn how to calculate the correct
value in Part 3.) There is an interesting point to be made here. Just because
a model is being tested in a low-speed, subsonic wind tunnel, it does not
mean that the assumption of incompressible flow will hold for all aspects of
the flow field. As we see here, in some regions of the flow field around a
body, the flow can achieve such high local Mach numbers that it must be
considered as compressible.

3.6 CONDITION ON VELOCITY FOR
INCOMPRESSIBLE FLOW

Consulting our chapter road map in Figure 3.4, we have completed the left branch
dealing with Bernoulli’s equation. We now begin a more general consideration of
incompressible flow, given by the center branch in Figure 3.4. However, before
introducing Laplace’s equation, it is important to establish a basic condition on
velocity in an incompressible flow, as follows.

First, consider the physical definition of incompressible flow, namely, ρ =
constant. Since ρ is the mass per unit volume and ρ is constant, then a fluid
element of fixed mass moving through an incompressible flow field must also
have a fixed, constant volume. Recall Equation (2.32), which shows that ∇ · V is
physically the time rate of change of the volume of a moving fluid element per
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unit volume. However, for an incompressible flow, we have just stated that the
volume of a fluid element is constant [e.g., in Equation (2.32), D(δV)/Dt ≡ 0].
Therefore, for an incompressible flow,

∇ · V = 0 (3.39)

The fact that the divergence of velocity is zero for an incompressible flow
can also be shown directly from the continuity equation, Equation (2.52):

∂ρ

∂t
+ ∇ · ρV = 0 (2.52)

For incompressible flow, ρ = constant. Hence, ∂ρ/∂t = 0 and ∇ · (ρV) =
ρ∇ · V. Equation (2.52) then becomes

0 + ρ∇ · V = 0

or ∇ · V = 0

which is precisely Equation (3.39).

3.7 GOVERNING EQUATION FOR IRROTATIONAL,
INCOMPRESSIBLE FLOW: LAPLACE’S
EQUATION

We have seen in Section 3.6 that the principle of mass conservation for an incom-
pressible flow can take the form of Equation (3.39):

∇ · V = 0 (3.39)

In addition, for an irrotational flow we have seen in Section 2.15 that a velocity
potential φ can be defined such that [from Equation (2.154)]

V = ∇φ (2.154)

Therefore, for a flow that is both incompressible and irrotational, Equations (3.39)
and (2.154) can be combined to yield

∇ · (∇φ) = 0

or ∇2φ = 0 (3.40)

Equation (3.40) is Laplace’s equation—one of the most famous and extensively
studied equations in mathematical physics. Solutions of Laplace’s equation are
called harmonic functions, for which there is a huge bulk of existing litera-
ture. Therefore, it is most fortuitous that incompressible, irrotational flow is
described by Laplace’s equation, for which numerous solutions exist and are
well understood.
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For convenience, Laplace’s equation is written below in terms of the three
common orthogonal coordinate systems employed in Section 2.2:

Cartesian coordinates: φ = φ(x, y, z)

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 (3.41)

Cylindrical coordinates: φ = φ(r, θ, z)

∇2φ = 1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r 2

∂2φ

∂θ2
+ ∂2φ

∂z2
= 0 (3.42)

Spherical coordinates: φ = φ(r, θ, �)

∇2φ = 1

r 2 sin θ

[
∂

∂r

(
r 2 sin θ

∂φ

∂r

)
+ ∂

∂θ

(
sin θ

∂φ

∂θ

)
+ ∂

∂�

(
1

sin θ

∂φ

∂�

)]
= 0

(3.43)

Recall from Section 2.14 that, for a two-dimensional incompressible flow, a
stream function ψ can be defined such that, from Equations (2.150a and b),

u = ∂ψ

∂y
(2.150a)

v = −∂ψ

∂x
(2.150b)

The continuity equation, ∇ · V = 0, expressed in cartesian coordinates, is

∇ · V = ∂u

∂x
+ ∂v

∂y
= 0 (3.44)

Substituting Equations (2.150a and b) into (3.44), we obtain

∂

∂x

(
∂ψ

∂y

)
+ ∂

∂y

(
−∂ψ

∂x

)
= ∂2ψ

∂x ∂y
− ∂2ψ

∂y ∂x
= 0 (3.45)

Since mathematically ∂2ψ/∂x ∂y = ∂2ψ/∂y ∂x, we see from Equation (3.45)
that ψ automatically satisfies the continuity equation. Indeed, the very definition
and use of ψ is a statement of the conservation of mass, and therefore Equa-
tions (2.150a and b) can be used in place of the continuity equation itself. If, in
addition, the incompressible flow is irrotational, we have, from the irrotationality
condition stated in Equation (2.131),

∂v

∂x
− ∂u

∂y
= 0 (2.131)

Substituting Equations (2.150a and b) into (2.131), we have

∂

∂x

(
−∂ψ

∂x

)
− ∂

∂y

(
∂ψ

∂y

)
= 0
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or
∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0 (3.46)

which is Laplace’s equation. Therefore, the stream function also satisfies Laplace’s
equation, along with φ.

From Equations (3.40) and (3.46), we make the following obvious and im-
portant conclusions:

1. Any irrotational, incompressible flow has a velocity potential and stream
function (for two-dimensional flow) that both satisfy Laplace’s equation.

2. Conversely, any solution of Laplace’s equation represents the velocity
potential or stream function (two-dimensional) for an irrotational,
incompressible flow.

Note that Laplace’s equation is a second-order linear partial differential equa-
tion. The fact that it is linear is particularly important, because the sum of any
particular solutions of a linear differential equation is also a solution of the equa-
tion. For example, if φ1, φ2, φ3, . . . , φn represent n separate solutions of Equa-
tion (3.40), then the sum

φ = φ1 + φ2 + · · · + φn

is also a solution of Equation (3.40). Since irrotational, incompressible flow is
governed by Laplace’s equation and Laplace’s equation is linear, we conclude
that a complicated flow pattern for an irrotational, incompressible flow can be
synthesized by adding together a number of elementary flows that are also ir-
rotational and incompressible. Indeed, this establishes the grand strategy for
the remainder of our discussions on inviscid, incompressible flow. We develop
flow-field solutions for several different elementary flows, which by themselves
may not seem to be practical flows in real life. However, we then proceed to add
(i.e., superimpose) these elementary flows in different ways such that the resulting
flow fields do pertain to practical problems.

Before proceeding further, consider the irrotational, incompressible flow
fields over different aerodynamic shapes, such as a sphere, cone, or airplane
wing. Clearly, each flow is going to be distinctly different; the streamlines and
pressure distribution over a sphere are quite different from those over a cone.
However, these different flows are all governed by the same equation, namely,
∇2φ = 0. How, then, do we obtain different flows for the different bodies? The
answer is found in the boundary conditions. Although the governing equation
for the different flows is the same, the boundary conditions for the equation must
conform to the different geometric shapes, and hence yield different flow-field
solutions. Boundary conditions are therefore of vital concern in aerodynamic
analysis. Let us examine the nature of boundary conditions further.

Consider the external aerodynamic flow over a stationary body, such as the
airfoil sketched in Figure 3.18. The flow is bounded by (1) the freestream flow
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yb = f(x)
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Figure 3.18 Boundary conditions at infinity and on a body; inviscid flow.

that occurs (theoretically) an infinite distance away from the body and (2) the
surface of the body itself. Therefore, two sets of boundary conditions apply as
follows.

3.7.1 Infinity Boundary Conditions

Far away from the body (toward infinity), in all directions, the flow approaches
the uniform freestream conditions. Let V∞ be aligned with the x direction as
shown in Figure 3.18. Hence, at infinity,

u = ∂φ

∂x
= ∂ψ

∂y
= V∞ (3.47a)

v = ∂φ

∂y
= ∂ψ

∂x
= 0 (3.47b)

Equations (3.47a and b) are the boundary conditions on velocity at infinity. They
apply at an infinite distance from the body in all directions, above and below, and
to the left and right of the body, as indicated in Figure 3.18.

3.7.2 Wall Boundary Conditions

If the body in Figure 3.18 has a solid surface, then it is impossible for the flow
to penetrate the surface. Instead, if the flow is viscous, the influence of friction
between the fluid and the solid surface creates a zero velocity at the surface. Such
viscous flows are discussed in Chapters 15 to 20. In contrast, for inviscid flows
the velocity at the surface can be finite, but because the flow cannot penetrate the
surface, the velocity vector must be tangent to the surface. This “wall tangency”
condition is illustrated in Figure 3.18, which shows V tangent to the body surface.
If the flow is tangent to the surface, then the component of velocity normal to the
surface must be zero. Let n be a unit vector normal to the surface as shown in
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Figure 3.18. The wall boundary condition can be written as

V · n = (∇φ) · n = 0 (3.48a)

or ∂φ

∂n
= 0 (3.48b)

Equation (3.48a or b) gives the boundary condition for velocity at the wall; it is
expressed in terms of φ. If we are dealing with ψ rather than φ, then the wall
boundary condition is

∂ψ

∂s
= 0 (3.48c)

where s is the distance measured along the body surface, as shown in Figure 3.18.
Note that the body contour is a streamline of the flow, as also shown in Figure 3.18.
Recall that ψ = constant is the equation of a streamline. Thus, if the shape of the
body in Figure 3.18 is given by yb = f (x), then

ψsurface = ψy=yb = const (3.48d)

is an alternative expression for the boundary condition given in Equation (3.48c).
If we are dealing with neither φ nor ψ, but rather with the velocity components

u andv themselves, then the wall boundary condition is obtained from the equation
of a streamline, Equation (2.118), evaluated at the body surface; that is,

dyb

dx
=

(
v

u

)
surface

(3.48e)

Equation (3.48e) states simply that the body surface is a streamline of the flow.
The form given in Equation (3.48e) for the flow tangency condition at the body
surface is used for all inviscid flows, incompressible to hypersonic, and does not
depend on the formulation of the problem in terms of φ or ψ (or ψ̄).

3.8 INTERIM SUMMARY
Reflecting on our previous discussions, the general approach to the solution of
irrotational, incompressible flows can be summarized as follows:

1. Solve Laplace’s equation for φ [Equation (3.40)] or ψ [Equation (3.46)]
along with the proper boundary conditions [such as Equations (3.47) and
(3.48)]. These solutions are usually in the form of a sum of elementary
solutions (to be discussed in the following sections).

2. Obtain the flow velocity from V = ∇φ or u = ∂ψ/∂y and v = −∂ψ/∂x .

3. Obtain the pressure from Bernoulli’s equation, p + 1
2ρV 2 = p∞ + 1

2ρV 2
∞,

where p∞ and V∞ are known freestream conditions.

Since V and p are the primary dependent variables for an incompressible flow,
steps 1 to 3 are all that we need to solve a given problem as long as the flow is
incompressible and irrotational.
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3.9 UNIFORM FLOW: OUR FIRST
ELEMENTARY FLOW

In this section, we present the first of a series of elementary incompressible flows
that later will be superimposed to synthesize more complex incompressible flows.
For the remainder of this chapter and in Chapter 4, we deal with two-dimensional
steady flows; three-dimensional steady flows are treated in Chapters 5 and 6.

Consider a uniform flow with velocity V∞ oriented in the positive x direction,
as sketched in Figure 3.19. It is easily shown (see Problem 3.8) that a uniform
flow is a physically possible incompressible flow (i.e., it satisfies ∇ · V = 0) and
that it is irrotational (i.e., it satisfies ∇ × V = 0). Hence, a velocity potential for
uniform flow can be obtained such that ∇φ = V. Examining Figure 3.19, and
recalling Equation (2.156), we have

∂φ

∂x
= u = V∞ (3.49a)

and ∂φ

∂y
= v = 0 (3.49b)

Integrating Equation (3.49a) with respect to x , we have

φ = V∞x + f (y) (3.50)

where f (y) is a function of y only. Integrating Equation (3.49b) with respect to
y, we obtain

φ = const + g(x) (3.51)

where g(x) is a function of x only. In Equations (3.50) and (3.51), φ is the same
function; hence, by comparing these equations, g(x) must be V∞x, and f (y)

must be constant. Thus,

φ = V∞x + const (3.52)

Figure 3.19 Uniform flow.
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Note that in a practical aerodynamic problem, the actual value of φ is not sig-
nificant; rather, φ is always used to obtain the velocity by differentiation; that is,
∇φ = V. Since the derivative of a constant is zero, we can drop the constant
from Equation (3.52) without any loss of rigor. Hence, Equation (3.52) can be
written as

φ = V∞x (3.53)

Equation (3.53) is the velocity potential for a uniform flow with velocity V∞
oriented in the positive x direction. Note that the derivation of Equation (3.53)
does not depend on the assumption of incompressibility; it applies to any uniform
flow, compressible or incompressible.

Consider the incompressible stream function ψ . From Figure 3.19 and Equa-
tions (2.150a and b), we have

∂ψ

∂y
= u = V∞ (3.54a)

and ∂ψ

∂x
= −v = 0 (3.54b)

Integrating Equation (3.54a) with respect to y and Equation (3.54b) with respect
to x , and comparing the results, we obtain

ψ = V∞y (3.55)

Equation (3.55) is the stream function for an incompressible uniform flow oriented
in the positive x direction.

From Section 2.14, the equation of a streamline is given by ψ = constant.
Therefore, from Equation (3.55), the streamlines for the uniform flow are given
by ψ = V∞y = constant. Because V∞ is itself constant, the streamlines are thus
given mathematically as y = constant (i.e., as lines of constant y). This result is
consistent with Figure 3.19, which shows the streamlines as horizontal lines (i.e.,
as lines of constant y). Also, note from Equation (3.53) that the equipotential lines
are lines of constant x , as shown by the dashed line in Figure 3.19. Consistent
with our discussion in Section 2.16, note that the lines of ψ = constant and φ =
constant are mutually perpendicular.

Equations (3.53) and (3.55) can be expressed in terms of polar coordinates,
where x = r cos θ and y = r sin θ, as shown in Figure 3.19. Hence,

φ = V∞r cos θ (3.56)

and ψ = V∞r sin θ (3.57)
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Consider the circulation in a uniform flow. The definition of circulation is
given by


 ≡ −
∮

C
V · ds (2.136)

Let the closed curve C in Equation (2.136) be the rectangle shown at the left of
Figure 3.19; h and l are the lengths of the vertical and horizontal sides, respec-
tively, of the rectangle. Then∮

C
V · ds = −V∞l − 0(h) + V∞l + 0(h) = 0

or 
 = 0 (3.58)

Equation (3.58) is true for any arbitrary closed curve in the uniform flow. To show
this, note that V∞ is constant in both magnitude and direction, and hence


 = −
∮

C
V · ds = −V∞ ·

∮
C

ds = V∞ · 0 = 0

because the line integral of ds around a closed curve is identically zero. Therefore,
from Equation (3.58), we state that circulation around any closed curve in a
uniform flow is zero.

The above result is consistent with Equation (2.137), which states that


 = −
∫ ∫

S

(∇ × V) · dS (2.137)

We stated earlier that a uniform flow is irrotational; that is, ∇ × V = 0 everywhere.
Hence, Equation (2.137) yields 
 = 0.

Note that Equations (3.53) and (3.55) satisfy Laplace’s equation [see Equa-
tion (3.41)], which can be easily proved by simple substitution. Therefore, uniform
flow is a viable elementary flow for use in building more complex flows.

3.10 SOURCE FLOW: OUR SECOND
ELEMENTARY FLOW

Consider a two-dimensional, incompressible flow where all the streamlines are
straight lines emanating from a central point O , as shown at the left of Figure 3.20.
Moreover, let the velocity along each of the streamlines vary inversely with dis-
tance from point O . Such a flow is called a source flow. Examining Figure 3.20,
we see that the velocity components in the radial and tangential directions are Vr

and Vθ , respectively, where Vθ = 0. The coordinate system in Figure 3.20 is a
cylindrical coordinate system, with the z axis perpendicular to the page. (Note
that polar coordinates are simply the cylindrical coordinates r and θ confined to
a single plane given by z = constant.) It is easily shown (see Problem 3.9) that
(1) source flow is a physically possible incompressible flow, that is, ∇ · V = 0, at
every point except the origin, where ∇ · V becomes infinite, and (2) source flow
is irrotational at every point.
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� = const

Figure 3.20 Source and sink flows.

In a source flow, the streamlines are directed away from the origin, as shown at
the left of Figure 3.20. The opposite case is that of a sink flow, where by definition
the streamlines are directed toward the origin, as shown at the right of Figure 3.20.
For sink flow, the streamlines are still radial lines from a common origin, along
which the flow velocity varies inversely with distance from point O . Indeed, a
sink flow is simply a negative source flow.

The flows in Figure 3.20 have an alternate, somewhat philosophical inter-
pretation. Consider the origin, point O , as a discrete source or sink. Moreover,
interpret the radial flow surrounding the origin as simply being induced by the
presence of the discrete source or sink at the origin (much like a magnetic field
is induced in the space surrounding a current-carrying wire). Recall that, for a
source flow, ∇ · V = 0 everywhere except at the origin, where it is infinite. Thus,
the origin is a singular point, and we can interpret this singular point as a discrete
source or sink of a given strength, with a corresponding induced flow field about
the point. This interpretation is very convenient and is used frequently. Other types
of singularities, such as doublets and vortices, are introduced in subsequent sec-
tions. Indeed, the irrotational, incompressible flow field about an arbitrary body
can be visualized as a flow induced by a proper distribution of such singularities
over the surface of the body. This concept is fundamental to many theoretical
solutions of incompressible flow over airfoils and other aerodynamic shapes, and
it is the very heart of modern numerical techniques for the solution of such flows.
You will obtain a greater appreciation for the concept of distributed singularities
for the solution of incompressible flow in Chapters 4 through 6. At this stage,
however, simply visualize a discrete source (or sink) as a singularity that induces
the flows shown in Figure 3.20.

Let us look more closely at the velocity field induced by a source or sink.
By definition, the velocity is inversely proportional to the radial distance r . As
stated earlier, this velocity variation is a physically possible flow, because it yields
∇ · V = 0. Moreover, it is the only such velocity variation for which the relation
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Figure 3.21 Volume flow rate from a line source.

∇ · V = 0 is satisfied for the radial flows shown in Figure 3.20. Hence,

Vr = c

r
(3.59a)

and Vθ = 0 (3.59b)

where c is constant. The value of the constant is related to the volume flow from
the source, as follows. In Figure 3.20, consider a depth of length l perpendicular to
the page, that is, a length l along the z axis. This is sketched in three-dimensional
perspective in Figure 3.21. In Figure 3.21, we can visualize an entire line of
sources along the z axis, of which the source O is just part. Therefore, in a two-
dimensional flow, the discrete source, sketched in Figure 3.20, is simply a single
point on the line source shown in Figure 3.21. The two-dimensional flow shown
in Figure 3.20 is the same in any plane perpendicular to the z axis, that is, for any
plane given by z = constant. Consider the mass flow across the surface of the
cylinder of radius r and height l as shown in Figure 3.21. The elemental mass flow
across the surface element dS shown in Figure 3.21 is ρV · dS = ρVr ( r dθ)(l).
Hence, noting that Vr is the same value at any θ location for the fixed radius r ,
the total mass flow across the surface of the cylinder is

ṁ =
∫ 2π

0
ρVr (r dθ)l = ρrlVr

∫ 2π

0
dθ = 2πrlρVr (3.60)

Since ρ is defined as the mass per unit volume and ṁ is mass per second, then
ṁ/ρ is the volume flow per second. Denote this rate of volume flow by v̇. Thus,
from Equation (3.60), we have

v̇ = ṁ

ρ
= 2πrlVr (3.61)
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Moreover, the rate of volume flow per unit length along the cylinder is v̇/ l.
Denote this volume flow rate per unit length (which is the same as per unit depth
perpendicular to the page in Figure 3.20) as �. Hence, from Equation 3.61, we
obtain

� = v̇

l
= 2πr Vr

or Vr = �

2πr
(3.62)

Hence, comparing Equations (3.59a) and (3.62), we see that the constant in Equa-
tion (3.59a) is c = �/2π . In Equation (3.62), � defines the source strength, it is
physically the rate of volume flow from the source, per unit depth perpendicular
to the page of Figure 3.20. Typical units of � are square meters per second or
square feet per second. In Equation (3.62), a positive value of � represents a
source, whereas a negative value represents a sink.

The velocity potential for a source can be obtained as follows. From Equa-
tions (2.157), (3.59b), and (3.62),

∂φ

∂r
= Vr = �

2πr
(3.63)

and 1

r

∂φ

∂θ
= Vθ = 0 (3.64)

Integrating Equation (3.63) with respect to r , we have

φ = �

2π
ln r + f (θ) (3.65)

Integrating Equation (3.64) with respect to θ , we have

φ = const + f (r) (3.66)

Comparing Equations (3.65) and (3.66), we see that f (r) = (�/2π) ln r and
f (θ) = constant. As explained in Section 3.9, the constant can be dropped without
loss of rigor, and hence Equation (3.65) yields

φ = �

2π
ln r (3.67)

Equation (3.67) is the velocity potential for a two-dimensional source flow.
The stream function can be obtained as follows. From Equations (2.151a

and b), (3.59b), and (3.62),

1

r

∂ψ

∂θ
= Vr = �

2πr
(3.68)

and −∂ψ

∂r
= Vθ = 0 (3.69)



CHAPTER 3 Fundamentals of Inviscid, Incompressible Flow 249

Integrating Equation (3.68) with respect to θ , we obtain

ψ = �

2π
θ + f (r) (3.70)

Integrating Equation (3.69) with respect to r , we have

ψ = const + f (θ) (3.71)

Comparing Equations (3.70) and (3.71) and dropping the constant, we obtain

ψ = �

2π
θ (3.72)

Equation (3.72) is the stream function for a two-dimensional source flow.
The equation of the streamlines can be obtained by setting Equation (3.72)

equal to a constant:

ψ = �

2π
θ = const (3.73)

From Equation (3.73), we see that θ = constant, which, in polar coordinates, is
the equation of a straight line from the origin. Hence, Equation (3.73) is con-
sistent with the picture of the source flow sketched in Figure 3.20. Moreover,
Equation (3.67) gives an equipotential line as r = constant, that is, a circle with
its center at the origin, as shown by the dashed line in Figure 3.20. Once again,
we see that streamlines and equipotential lines are mutually perpendicular.

To evaluate the circulation for source flow, recall the ∇ × V = 0 everywhere.
In turn, from Equation (2.137),


 = −
∫ ∫

S

(∇ × V) · dS = 0

for any closed curve C chosen in the flow field. Hence, as in the case of uniform
flow discussed in Section 3.9, there is no circulation associated with the source
flow.

It is straightforward to show that Equations (3.67) and (3.72) satisfy Laplace’s
equation, simply by substitution into ∇2φ = 0 and ∇2ψ = 0 written in terms of
cylindrical coordinates [see Equation (3.42)]. Therefore, source flow is a viable
elementary flow for use in building more complex flows.

3.11 COMBINATION OF A UNIFORM FLOW
WITH A SOURCE AND SINK

Consider a polar coordinate system with a source of strength � located at the
origin. Superimpose on this flow a uniform stream with velocity V∞ moving from
left to right, as sketched in Figure 3.22. The stream function for the resulting flow
is the sum of Equations (3.57) and (3.72):

ψ = V∞r sin θ + �

2π
θ (3.74)
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Figure 3.22 Superposition of a uniform flow and a source; flow over a
semi-infinite body.

Since both Equations (3.57) and (3.72) are solutions of Laplace’s equation,
we know that Equation (3.74) also satisfies Laplace’s equation; that is, Equa-
tion (3.74) describes a viable irrotational, incompressible flow. The streamlines
of the combined flow are obtained from Equation (3.74) as

ψ = V∞r sin θ + �

2π
θ = const (3.75)

The resulting streamline shapes from Equation (3.75) are sketched at the right of
Figure 3.22. The source is located at point D. The velocity field is obtained by
differentiating Equation (3.75):

Vr = 1

r

∂ψ

∂θ
= V∞ cos θ + �

2πr
(3.76)

and Vθ = −∂ψ

∂r
= −V∞ sin θ (3.77)

Note from Section 3.10 that the radial velocity from a source is �/2πr , and from
Section 3.9 the component of the freestream velocity in the radial direction is
V∞ cos θ . Hence, Equation (3.76) is simply the direct sum of the two velocity
fields—a result that is consistent with the linear nature of Laplace’s equation.
Therefore, not only can we add the values of φ or ψ to obtain more complex
solutions, we can add their derivatives, that is, the velocities, as well.

The stagnation points in the flow can be obtained by setting Equations (3.76)
and (3.77) equal to zero:

V∞ cos θ + �

2πr
= 0 (3.78)

and V∞ sin θ = 0 (3.79)

Solving for r and θ , we find that one stagnation point exists, located at (r, θ) =
(�/2πV∞, π), which is labeled as point B in Figure 3.22. That is, the stagnation
point is a distance (�/2πV∞) directly upstream of the source. From this result, the
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distance DB clearly grows smaller if V∞ is increased and larger if � is increased—
trends that also make sense based on intuition. For example, looking at Figure 3.22,
you would expect that as the source strength is increased, keeping V∞ the same, the
stagnation point B will be blown further upstream. Conversely, if V∞ is increased,
keeping the source strength the same, the stagnation point will be blown further
downstream.

If the coordinates of the stagnation point at B are substituted into Equa-
tion (3.75), we obtain

ψ = V∞
�

2πV∞
sin π + �

2π
π = const

ψ = �

2
= const

Hence, the streamline that goes through the stagnation point is described by
ψ = �/2. This streamline is shown as curve ABC in Figure 3.22.

Examining Figure 3.22, we now come to an important conclusion. Since we
are dealing with inviscid flow, where the velocity at the surface of a solid body
is tangent to the body, then any streamline of the combined flow at the right of
Figure 3.22 could be replaced by a solid surface of the same shape. In particular,
consider the streamline ABC. Because it contains the stagnation point at B, the
streamline ABC is a dividing streamline; that is, it separates the fluid coming from
the freestream and the fluid emanating from the source. All the fluid outside ABC is
from the freestream, and all the fluid inside ABC is from the source. Therefore, as
far as the freestream is concerned, the entire region inside ABC could be replaced
with a solid body of the same shape, and the external flow, that is, the flow from
the freestream, would not feel the difference. The streamline ψ = �/2 extends
downstream to infinity, forming a semi-infinite body. Therefore, we are led to the
following important interpretation. If we want to construct the flow over a solid
semi-infinite body described by the curve ABC as shown in Figure 3.22, then all
we need to do is take a uniform stream with velocity V∞ and add to it a source
of strength � at point D. The resulting superposition will then represent the flow
over the prescribed solid semi-infinite body of shape ABC. This illustrates the
practicality of adding elementary flows to obtain a more complex flow over a
body of interest.

The superposition illustrated in Figure 3.22 results in the flow over the semi-
infinite body ABC. This is a half-body that stretches to infinity in the downstream
direction (i.e., the body is not closed). However, if we take a sink of equal strength
as the source and add it to the flow downstream of point D, then the resulting
body shape will be closed. Let us examine this flow in more detail.

Consider a polar coordinate system with a source and sink placed a distance
b to the left and right of the origin, respectively, as sketched in Figure 3.23.
The strengths of the source and sink are � and −�, respectively (equal and
opposite). In addition, superimpose a uniform stream with velocity V∞, as shown
in Figure 3.23. The stream function for the combined flow at any point P with
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Figure 3.23 Superposition of a uniform flow and a
source-sink pair; flow over a Rankine oval.

coordinates (r, θ) is obtained from Equations (3.57) and (3.72):

ψ = V∞r sin θ + �

2π
θ1 − �

2π
θ2

or ψ = V∞r sin θ + �

2π
(θ1 − θ2) (3.80)

The velocity field is obtained by differentiating Equation (3.80) according to
Equations (2.151a and b). Note from the geometry of Figure 3.23 that θ1 and
θ2 in Equation (3.80) are functions of r , θ , and b. In turn, by setting V = 0,
two stagnation points are found, namely, points A and B in Figure 3.23. These
stagnation points are located such that (see Problem 3.13)

OA = OB =
√

b2 + �b

πV∞
(3.81)

The equation of the streamlines is given by Equation (3.80) as

ψ = V∞r sin θ + �

2π
(θ1 − θ2) = const (3.82)

The equation of the specific streamline going through the stagnation points is
obtained from Equation (3.82) by noting that θ = θ1 = θ2 = π at point A and
θ = θ1 = θ2 = 0 at point B. Hence, for the stagnation streamline, Equation (3.82)
yields a value of zero for the constant. Thus, the stagnation streamline is given
by ψ = 0, that is,

V∞r sin θ + �

2π
(θ1 − θ2) = 0 (3.83)

the equation of an oval, as sketched in Figure 3.23. Equation (3.83) is also the
dividing streamline; all the flow from the source is consumed by the sink and is
contained entirely inside the oval, whereas the flow outside the oval has originated
with the uniform stream only. Therefore, in Figure 3.23, the region inside the oval
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can be replaced by a solid body with the shape given by ψ = 0, and the region
outside the oval can be interpreted as the inviscid, potential (irrotational), incom-
pressible flow over the solid body. This problem was first solved in the nineteenth
century by the famous Scottish engineer W. J. M. Rankine; hence, the shape given
by Equation (3.83) and sketched in Figure 3.23 is called a Rankine oval.

3.12 DOUBLET FLOW: OUR THIRD
ELEMENTARY FLOW

There is a special, degenerate case of a source-sink pair that leads to a singularity
called a doublet. The doublet is frequently used in the theory of incompressible
flow; the purpose of this section is to describe its properties.

Consider a source of strength � and a sink of equal (but opposite) strength
−� separated by a distance l, as shown in Figure 3.24a. At any point P in the
flow, the stream function is

ψ = �

2π
(θ1 − θ2) = − �

2π
�θ (3.84)

where �θ = θ2 − θ1 as seen from Figure 3.24a. Equation (3.84) is the stream
function for a source-sink pair separated by the distance l.

Now in Figure 3.24a, let the distance l approach zero while the absolute
magnitudes of the strengths of the source and sink increase in such a fashion that
the product l� remains constant. This limiting process is shown in Figure 3.24b.
In the limit, as l → 0 while l� remains constant, we obtain a special flow pattern
defined as a doublet. The strength of the doublet is denoted by κ and is defined
as κ ≡ l�. The stream function for a doublet is obtained from Equation (3.84)
as follows:

ψ = lim
l→0

κ=l�=const

(
− �

2π
dθ

)
(3.85)

Figure 3.24 How a source-sink pair approaches a doublet in the limiting
case.
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where in the limit �θ → dθ → 0. (Note that the source strength � approaches
an infinite value in the limit.) In Figure 3.24b, let r and b denote the distances
to point P from the source and sink, respectively. Draw a line from the sink
perpendicular to r , and denote the length along this line by a. For an infinitesimal
dθ , the geometry of Figure 3.24b yields

a = l sin θ

b = r − l cos θ

dθ = a

b

Hence, dθ = a

b
= l sin θ

r − l cos θ
(3.86)

Substituting Equation (3.86) into (3.85), we have

ψ = lim
l→0

κ=const

(
− �

2π

l sin θ

r − l cos θ

)

or ψ = lim
l→0

κ=const

(
− κ

2π

sin θ

r − l cos θ

)

or ψ = − κ

2π

sin θ

r
(3.87)

Equation (3.87) is the stream function for a doublet. In a similar fashion, the
velocity potential for a doublet is given by (see Problem 3.14)

φ = κ

2π

cos θ

r
(3.88)

The streamlines of a doublet flow are obtained from Equation (3.87):

ψ = − κ

2π

sin θ

r
= const = c

or r = − κ

2πc
sin θ (3.89)

Equation (3.89) gives the equation for the streamlines in doublet flow. Recall from
analytic geometry that the following equation in polar coordinates

r = d sin θ (3.90)

is a circle with a diameter d on the vertical axis and with the center located
d/2 directly above the origin. Comparing Equations (3.89) and (3.90), we see
that the streamlines for a doublet are a family of circles with diameter κ/2πc,
as sketched in Figure 3.25. The different circles correspond to different values
of the parameter c. Note that in Figure 3.24 we placed the source to the left
of the sink; hence, in Figure 3.25 the direction of flow is out of the origin to
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Figure 3.25 Doublet flow with strength κ .

the left and back into the origin from the right. In Figure 3.24, we could just
as well have placed the sink to the left of the source. In such a case, the signs
in Equations (3.87) and (3.88) would be reversed, and the flow in Figure 3.25
would be in the opposite direction. Therefore, a doublet has associated with it a
sense of direction—the direction with which the flow moves around the circular
streamlines. By convention, we designate the direction of the doublet by an arrow
drawn from the sink to the source, as shown in Figure 3.25. In Figure 3.25, the
arrow points to the left, which is consistent with the form of Equations (3.87)
and (3.88). If the arrow would point to the right, the sense of rotation would be
reversed, Equation (3.87) would have a positive sign, and Equation (3.88) would
have a negative sign.

Returning to Figure 3.24, note that in the limit as l → 0, the source and sink
fall on top of each other. However, they do not extinguish each other, because the
absolute magnitude of their strengths becomes infinitely large in the limit, and
we have a singularity of strength (∞−∞); this is an indeterminate form that can
have a finite value.

As in the case of a source or sink, it is useful to interpret the doublet flow
shown in Figure 3.25 as being induced by a discrete doublet of strength κ placed
at the origin. Therefore, a doublet is a singularity that induces about it the double-
lobed circular flow pattern shown in Figure 3.25.

3.13 NONLIFTING FLOW OVER
A CIRCULAR CYLINDER

Consulting our road map given in Figure 3.4, we see that we are well into the third
column, having already discussed uniform flow, sources and sinks, and doublets.
Along the way, we have seen how the flow over a semi-infinite body can be
simulated by the combination of a uniform flow with a source, and the flow over
an oval-shaped body can be constructed by superimposing a uniform flow and a
source-sink pair. In this section, we demonstrate that the combination of a uniform
flow and a doublet produces the flow over a circular cylinder. A circular cylinder
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Figure 3.26 Superposition of a uniform flow and a doublet; nonlifting flow over a
circular cylinder.

is one of the most basic geometric shapes available, and the study of the flow
around such a cylinder is a classic problem in aerodynamics.

Consider the addition of a uniform flow with velocity V∞ and a doublet of
strength κ , as shown in Figure 3.26. The direction of the doublet is upstream,
facing into the uniform flow. From Equations (3.57) and (3.87), the stream func-
tion for the combined flow is

ψ = V∞r sin θ − κ

2π

sin θ

r

or ψ = V∞r sin θ

(
1 − κ

2πV∞r 2

)
(3.91)

Let R2 ≡ κ/2πV∞. Then Equation (3.91) can be written as

ψ = (V∞r sin θ)

(
1 − R2

r 2

)
(3.92)

Equation (3.92) is the stream function for a uniform flow-doublet combination;
it is also the stream function for the flow over a circular cylinder of radius R as
shown in Figure 3.26 and as demonstrated below.

The velocity field is obtained by differentiating Equation (3.92), as follows:

Vr = 1

r

∂ψ

∂θ
= 1

r
(V∞r cos θ)

(
1 − R2

r 2

)

Vr =
(

1 − R2

r 2

)
V∞ cos θ (3.93)
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Vθ = −∂ψ

∂r
= −

[
(V∞r sin θ)

2R2

r 3
+

(
1 − R2

r 2

)
(V∞ sin θ)

]

Vθ = −
(

1 + R2

r 2

)
V∞ sin θ (3.94)

To locate the stagnation points, set Equations (3.93) and (3.94) equal to zero:(
1 − R2

r 2

)
V∞ cos θ = 0 (3.95)

(
1 + R2

r 2

)
V∞ sin θ = 0 (3.96)

Simultaneously solving Equations (3.95) and (3.96) for r and θ , we find that there
are two stagnation points, located at (r, θ) = (R, 0) and (R, π). These points are
denoted as A and B, respectively, in Figure 3.26.

The equation of the streamline that passes through the stagnation point B is
obtained by inserting the coordinates of B into Equation (3.92). For r = R and
θ = π , Equation (3.92) yields ψ = 0. Similarly, inserting the coordinates of point
A into Equation (3.92), we also find that ψ = 0. Hence, the same streamline goes
through both stagnation points. Moreover, the equation of this streamline, from
Equation (3.92), is

ψ = (V∞r sin θ)

(
1 − R2

r 2

)
= 0 (3.97)

Note that Equation (3.97) is satisfied by r = R for all values of θ . However,
recall that R2 ≡ κ/2πV∞, which is a constant. Moreover, in polar coordinates,
r = constant = R is the equation of a circle of radius R with its center at the
origin. Therefore, Equation (3.97) describes a circle with radius R, as shown in
Figure 3.26. Moreover, Equation (3.97) is satisfied by θ = π and θ = 0 for all
values of r ; hence, the entire horizontal axis through points A and B, extending
infinitely far upstream and downstream, is part of the stagnation streamline.

Note that the ψ = 0 streamline, since it goes through the stagnation points,
is the dividing streamline. That is, all the flow inside ψ = 0 (inside the circle)
comes from the doublet, and all the flow outside ψ = 0 (outside the circle) comes
from the uniform flow. Therefore, we can replace the flow inside the circle by
a solid body, and the external flow will not know the difference. Consequently,
the inviscid irrotational, incompressible flow over a circular cylinder of radius R
can be synthesized by adding a uniform flow with velocity V∞ and a doublet of
strength κ , where R is related to V∞ and κ through

R =
√

κ

2πV∞
(3.98)

Note from Equations (3.92) to (3.94) that the entire flow field is symmetrical
about both the horizontal and vertical axes through the center of the cylinder, as
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clearly seen by the streamline pattern sketched in Figure 3.26. Hence, the pressure
distribution is also symmetrical about both axes. As a result, the pressure distri-
bution over the top of the cylinder is exactly balanced by the pressure distribution
over the bottom of the cylinder (i.e., there is no net lift). Similarly, the pressure
distribution over the front of the cylinder is exactly balanced by the pressure dis-
tribution over the back of the cylinder (i.e., there is no net drag). In real life, the
result of zero lift is easy to accept, but the result of zero drag makes no sense. We
know that any aerodynamic body immersed in a real flow will experience a drag.
This paradox between the theoretical result of zero drag, and the knowledge that
in real life the drag is finite, was encountered in the year 1744 by the Frenchman
Jean Le Rond d’Alembert—and it has been known as d’Alembert’s paradox ever
since. For d’Alembert and other fluid dynamic researchers during the eighteenth
and nineteenth centuries, this paradox was unexplained and perplexing. Of course,
today we know that the drag is due to viscous effects which generate frictional
shear stress at the body surface and which cause the flow to separate from the sur-
face on the back of the body, thus creating a large wake downstream of the body
and destroying the symmetry of the flow about the vertical axis through the
cylinder. These viscous effects are discussed in detail in Chapters 15 through 20.
However, such viscous effects are not included in our present analysis of the
inviscid flow over the cylinder. As a result, the inviscid theory predicts that the
flow closes smoothly and completely behind the body, as sketched in Figure 3.26.
It predicts no wake, and no asymmetries, resulting in the theoretical result of
zero drag.

Let us quantify the above discussion. The velocity distribution on the surface
of the cylinder is given by Equations (3.93) and (3.94) with r = R, resulting in

Vr = 0 (3.99)

and Vθ = −2V∞ sin θ (3.100)

Note that at the surface of the cylinder, Vr is geometrically normal to the surface;
hence, Equation (3.99) is consistent with the physical boundary condition that
the component of velocity normal to a stationary solid surface must be zero.
Equation (3.100) gives the tangential velocity, which is the full magnitude of
velocity on the surface of the cylinder, that is, V = Vθ = −2V∞ sin θ on the
surface. The minus sign in Equation (3.100) is consistent with the sign convention
in polar coordinates that Vθ is positive in the direction of increasing θ , that is, in
the counterclockwise direction as shown in Figure 3.27. However, in Figure 3.26,
the surface velocity for 0 ≤ θ ≤ π is obviously in the opposite direction of
increasing θ ; hence, the minus sign in Equation (3.100) is proper. For π ≤
θ ≤ 2π , the surface flow is in the same direction as increasing θ , but sin θ is
itself negative; hence, once again the minus sign in Equation (3.100) is proper.
Note from Equation (3.100) that the velocity at the surface reaches a maximum
value of 2V∞ at the top and the bottom of the cylinder (where θ = π/2 and
3π/2, respectively), as shown in Figure 3.28. Indeed, these are the points of



CHAPTER 3 Fundamentals of Inviscid, Incompressible Flow 259

Figure 3.27 Sign convention for Vθ in
polar coordinates.

2V
�
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�

V
� �

R

Figure 3.28 Maximum velocity in the flow over
a circular cylinder.

maximum velocity for the entire flow field around the cylinder, as can be seen
from Equations (3.93) and (3.94).

The pressure coefficient is given by Equation (3.38):

Cp = 1 −
(

V

V∞

)2

(3.38)

Combining Equations (3.100) and (3.38), we find that the surface pressure coef-
ficient over a circular cylinder is

Cp = 1 − 4 sin2 θ (3.101)

Note that C p varies from 1.0 at the stagnation points to −3.0 at the points of max-
imum velocity. The pressure coefficient distribution over the surface is sketched
in Figure 3.29. The regions corresponding to the top and bottom halves of the
cylinder are identified at the top of Figure 3.29. Clearly, the pressure distribution
over the top half of the cylinder is equal to the pressure distribution over the
bottom half, and hence the lift must be zero, as discussed earlier. Moreover, the
regions corresponding to the front and rear halves of the cylinder are identified
at the bottom of Figure 3.29. Clearly, the pressure distributions over the front
and rear halves are the same, and hence the drag is theoretically zero, as also
discussed previously. These results are confirmed by Equations (1.15) and (1.16).
Since c f = 0 (we are dealing with an inviscid flow), Equations (1.15) and (1.16)
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Figure 3.29 Pressure coefficient distribution over the surface of a circular
cylinder; theoretical results for inviscid, incompressible flow.

become, respectively,

cn = 1

c

∫ c

0
(Cp,l − Cp,u) dx (3.102)

ca = 1

c

∫ TE

LE
(Cp,u − Cp,l) dy (3.103)

For the circular cylinder, the chord c is the horizontal diameter. From Figure 3.29,
Cp,l = Cp,u for corresponding stations measured along the chord, and hence
the integrands in Equations (3.102) and (3.103) are identically zero, yielding
cn = ca = 0. In turn, the lift and drag are zero, thus, again confirming our
previous conclusions.

EXAMPLE 3.13

Consider the nonlifting flow over a circular cylinder. Calculate the locations on the surface
of the cylinder where the surface pressure equals the freestream pressure.

■ Solution
When p = p∞, then C p = 0. From Equation (3.101),

C p = 0 = 1 − 4 sin2 θ

Hence, sin θ = ± 1
2

θ = 30◦, 150◦, 210◦, 330◦

These points, as well as the stagnation points and points of minimum pressure, are illus-
trated in Figure 3.30. Note that at the stagnation point, where C p = 1, the pressure is
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Figure 3.30 Values of pressure at various locations on the surface of a circular
cylinder; nonlifting case.

p∞ +q∞; the pressure decreases to p∞ in the first 30◦ of expansion around the body, and
the minimum pressure at the top and bottom of the cylinder, consistent with C p = −3, is
p∞ − 3q∞.

EXAMPLE 3.14

In the nonlifting flow over a circular cylinder, consider the infinitesimally small fluid
elements moving along the surface of the cylinder. Calculate the angular locations over
the surface where the acceleration of the fluid elements are a local maximum and minimum.
For the case where the radius of the cylinder is 1 m and the freestream flow velocity is
50 m/s, calculate the values of the local maximum and minimum accelerations.

■ Solution
From Equation (3.100) the local velocity of the fluid elements on the surface as a function
of angular location θ is

Vθ = −2V∞ sin θ (3.100)

The acceleration of the fluid elements is dVθ /dt . From Equation (3.100),

dVθ

dt
= −2V∞(cos θ)

dθ

dt
(E3.1)

Return to Figure 3.28. Let dθ be an incremental change in θ . The corresponding incre-
mental distance on the cylinder surface subtended by dθ is ds, given by

ds = R dθ
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Hence,

dθ

dt
= 1

R

ds

dt
(E3.2)

Substituting Equation (E3.2) into (E3.1), we have

dVθ

dt
= −2V∞(cos θ)

(
1

R

ds

dt

)
(E3.3)

For a fluid element moving over an incremental distance ds in time dt , its linear velocity
is by definition ds/dt . Thus, Vθ ≡ ds/dt . Replacing ds/dt in Equation (E3.3) with Vθ , we
have

dVθ

dt
= −2V∞(cos θ)

(
Vθ

R

)
(E3.4)

Substitute Equation (3.100) into (E3.4).

dVθ

dt
= 4V 2∞

R
sin θ cos θ (E3.5)

From the trigonometric identity

sin 2θ ≡ 2 sin θ cos θ

Equation (E3.5) becomes

dVθ

dt
= 2V 2∞

R
sin 2θ (E3.6)

Equation (E3.6) gives the flow acceleration along the surface, dVθ /dt , as a function of
angular location θ along the surface. To find the θ locations at which the acceleration is a
maximum or minimum, differentiate Equation (E3.6) with respect to θ , and set the result
equal to zero.

d

dθ

(
dVθ

dt

)
= 4V 2∞

R
cos 2θ = 0 (E3.7)

Solving Equation (E3.7) for θ , we have the location where acceleration is either a local
maximum or minimum:

θ = 45◦, 135◦, 225◦, 315◦ (E3.8)

From Equation (E3.6), the values of the local flow acceleration at each one of these
locations are respectively

2V 2∞
R

, −2V 2∞
R

,
2V 2∞

R
, −2V 2∞

R
(E3.9)

Interpretation: Return to Figures 3.27 and 3.28, and note our sign convention that θ is
zero at the rearward stagnation point and increases in the counterclockwise direction; this
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is the conventional polar coordinate system where θ increases in the counterclockwise
direction, and we have followed this convention throughout the present chapter. That is, as
θ sweeps counterclockwise, θ = 90◦ is the top of the cylinder, θ = 180◦ is the location of
the forward stagnation point, and θ = 270◦ is the bottom of the cylinder. The consistent
sign convention for Vθ , as seen in Figure 3.27, is positive in the direction of increasing θ .
The direction of V∞ in Figure 3.28, however, is left to right. Hence the actual left-to-right
flow over the top of the cylinder has a negative velocity because it is running counter to
the positive direction of Vθ shown in Figure 3.27. The left-to-right flow over the bottom of
the cylinder, however, has a positive velocity because it is running in the positive direction
of Vθ . This is totally consistent with the result given for Vθ in Equation (3.100).

Vθ = −2V∞ sin θ (3.100)

Over the top of the cylinder, where θ varies from 0◦ to 180◦, Equation (3.100) gives a
negative value of Vθ , whereas over the bottom of the cylinder, where θ varies from 180◦
to 360◦, Equation (3.100) gives a positive value of Vθ . With this in mind, now consider the
location and values of the local maximum and minimum acceleration as given by relations
(E3.8) and (E3.9), respectively. At θ = 45◦, the acceleration is a positive value; i.e., the
time rate of change Vθ is positive. However, at θ = 45◦, the velocity is a negative value,
and with a positive time rate of change, the velocity is becoming less negative; i.e., the
absolute value of Vθ is becoming smaller. The fluid element at θ = 45◦ is slowing down.
The point θ = 45◦ is therefore a point of maximum deceleration (minimum acceleration).
In contrast, at θ = 135◦ the velocity is a negative value, but from (E3.9), the local
acceleration is also negative. This means that at θ = 135◦, with a negative time rate of
change of velocity, the velocity itself is becoming more negative, and its absolute value
is increasing. At θ = 135◦, the fluid element is speeding up, and θ = 135◦ is a point of
maximum acceleration.

Over the bottom surface of the cylinder, Vθ is positive. At θ = 225◦ (which is on the
front face of the cylinder) the acceleration from (E3.9) is also positive; i.e., at θ = 225◦
the fluid element is speeding up and hence θ = 225◦ is a point of maximum acceleration.
At θ = 315◦ (which is on the back face of the cylinder) the acceleration from (E3.9) is
negative; i.e., at θ = 315◦ the fluid element is slowing down. Hence, θ = 315◦ is a point
of maximum deceleration.

In short, again examining Figure 3.28, the flow over the front face of the cylinder starts
out at zero velocity at the front stagnation point (θ = 180◦), accelerates to a maximum
velocity of 2V∞ at the top (θ = 90◦) and bottom (θ = 270◦) of the cylinder, with a
maximum acceleration occurring at θ = 135◦ and 225◦. The flow then decelerates over
the back face of the cylinder, coming to zero velocity at the rear stagnation point (θ = 0),
with maximum deceleration occurring at θ = 45◦ and 315◦. It is interesting, and it also
makes intuitive sense, that the maximum acceleration and deceleration occur geometrically
at the points on the cylinder surface halfway between the stagnation points and the points
of maximum velocity at the top and bottom. We might have guessed this right from the
beginning of this worked example. But frequently in physical science intuition can betray
us, and it is necessary to make an analysis as we have done here to find the correct
result.
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Note: The interpretation given above is rather long and protracted. It was carried out
in order to identify which of the positive or negative values in (E3.9) corresponded to
an acceleration or deceleration, and at all times we had to keep our mind focused on
the sign convention for the polar coordinate system shown in Figures 3.27 and 3.28.
This polar coordinate system with θ increasing in the counterclockwise direction is
standard mathematical convention, and we have chosen to use it throughout this
chapter.

Finally, let us calculate the actual value of maximum acceleration and deceleration
for R = 1 m and V∞ = 50 m/s. From (E3.9),

2V 2∞
R

= 2(50)2

(1)
= 5000 m/s2

Since the standard sea level value of the acceleration of gravity on earth is 9.8 ms/s2, a
fluid element flowing over the surface of the circular cylinder in this example experiences
a mind-boggling maximum acceleration and deceleration of

5000

9.8
= 510.2 g

So once again, as we saw with Example 2.3, a fluid element in an otherwise seemingly
benign flow field can experience tremendously large accelerations.

3.14 VORTEX FLOW: OUR FOURTH
ELEMENTARY FLOW

Again, consulting our chapter road map in Figure 3.4, we have discussed three
elementary flows—uniform flow, source flow, and doublet flow—and have super-
imposed these elementary flows to obtain the nonlifting flow over several body
shapes, such as ovals and circular cylinders. In this section, we introduce our
fourth, and last, elementary flow: vortex flow. In turn, in Sections 3.15 and 3.16,
we see how the superposition of flows involving such vortices leads to cases with
finite lift.

Consider a flow where all the streamlines are concentric circles about a given
point, as sketched in Figure 3.31. Moreover, let the velocity along any given
circular streamline be constant, but let it vary from one streamline to another
inversely with distance from the common center. Such a flow is called a vortex
flow. Examine Figure 3.31; the velocity components in the radial and tangential
directions are Vr and Vθ , respectively, where Vr = 0 and Vθ = constant/r .
It is easily shown (try it yourself) that (1) vortex flow is a physically possible
incompressible flow, that is, ∇ · V = 0 at every point, and (2) vortex flow is
irrotational, that is, ∇ × V = 0, at every point except the origin.

From the definition of vortex flow, we have

Vθ = const

r
= C

r
(3.104)
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Figure 3.31 Vortex flow.

To evaluate the constant C , take the circulation around a given circular streamline
of radius r :


 = −
∮

C
V · ds = −Vθ (2πr)

or Vθ = − 


2πr
(3.105)

Comparing Equations (3.104) and (3.105), we see that

C = − 


2π
(3.106)

Therefore, for vortex flow, Equation (3.106) demonstrates that the circulation
taken about all streamlines is the same value, namely, 
 = −2πC . By convention,

 is called the strength of the vortex flow, and Equation (3.105) gives the velocity
field for a vortex flow of strength 
. Note from Equation (3.105) that Vθ is negative
when 
 is positive; that is, a vortex of positive strength rotates in the clockwise
direction. (This is a consequence of our sign convention on circulation defined in
Section 2.13, namely, positive circulation is clockwise.)

We stated earlier that vortex flow is irrotational except at the origin. What
happens at r = 0? What is the value of ∇ × V at r = 0? To answer these questions,
recall Equation (2.137) relating circulation to vorticity:


 = −
∫ ∫

S

(∇ × V) · dS (2.137)
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Combining Equations (3.106) and (2.137), we obtain

2πC =
∫ ∫

S

(∇ × V) · dS (3.107)

Since we are dealing with two-dimensional flow, the flow sketched in Figure 3.31
takes place in the plane of the paper. Hence, in Equation (3.107), both ∇ × V and
dS are in the same direction, both perpendicular to the plane of the flow. Thus,
Equation (3.107) can be written as

2πC =
∫ ∫

S

(∇ × V) · dS =
∫ ∫

S

|∇ × V| dS (3.108)

In Equation (3.108), the surface integral is taken over the circular area inside
the streamline along which the circulation 
 = −2πC is evaluated. However,

 is the same for all the circulation streamlines. In particular, choose a circle as
close to the origin as we wish (i.e., let r → 0). The circulation will still remain

 = −2πC . However, the area inside this small circle around the origin will
become infinitesimally small, and∫ ∫

S

|∇ × V| dS → |∇ × V| dS (3.109)

Combining Equations (3.108) and (3.109), in the limit as r → 0, we have

2πC = |∇ × V| dS

or |∇ × V| = 2πC

dS
(3.110)

However, as r → 0, dS → 0. Therefore, in the limit as r → 0, from Equa-
tion (3.110), we have

|∇ × V| → ∞
Conclusion: Vortex flow is irrotational everywhere except at the point r = 0,
where the vorticity is infinite. Therefore, the origin, r = 0, is a singular point in
the flow field. We see that, along with sources, sinks, and doublets, the vortex
flow contains a singularity. Hence, we can interpret the singularity itself, that is,
point O in Figure 3.31, to be a point vortex which induces about it the circular
vortex flow shown in Figure 3.31.

The velocity potential for vortex flow can be obtained as follows:

∂φ

∂r
= Vr = 0 (3.111a)

1

r

∂φ

∂θ
= Vθ = − 


2πr
(3.111b)
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Integrating Equations (3.111a and b), we find

φ = − 


2π
θ (3.112)

Equation (3.112) is the velocity potential for vortex flow.
The stream function is determined in a similar manner:

1

r

∂ψ

∂θ
= Vr = 0 (3.113a)

−∂ψ

∂r
= Vθ = − 


2πr
(3.113b)

Integrating Equations (3.113a and b), we have

ψ = 


2π
ln r (3.114)

Equation (3.114) is the stream function for vortex flow. Note that since ψ =
constant is the equation of the streamline, Equation (3.114) states that the stream-
lines of vortex flow are given by r = constant (i.e., the streamlines are circles).
Thus, Equation (3.114) is consistent with our definition of vortex flow. Also, note
from Equation (3.112) that equipotential lines are given by θ = constant, that is,
straight radial lines from the origin. Once again, we see that equipotential lines
and streamlines are mutually perpendicular.

At this stage, we summarize the pertinent results for our four elementary
flows in Table 3.1.

Table 3.1

Type of flow Velocity φ ψ

Uniform flow in
x direction u = V∞ V∞x V∞ y

Source Vr = �

2πr

�

2π
ln r

�

2π
θ

Vortex Vθ = − 


2πr
− 


2π
θ




2π
ln r

Doublet Vr = − κ

2π

cos θ

r 2

κ

2π

cos θ

r
− κ

2π

sin θ

r

Vθ = − κ

2π

sin θ

r 2
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EXAMPLE 3.15

Consider the vortex flow discussed in this section. Imagine that you are standing at a
location 20 feet from the center of the vortex, and you are feeling a 100 mi/h wind. What
is the strength of the vortex?

■ Solution
From Equation (3.105),

Vθ = − 


2πr

In this example, the direction of the 100 mi/h wind is not stipulated; for our purpose it is
not relevant. We are interested only in the magnitude of the strength of the vortex. Hence,
recalling that 88 ft/s = 60 mi/h, we have

|
| = 2πr Vθ = 2π(20)(100)
88

60
= 1.843 x 104 ft2/s

Comment: Actual numbers for circulation are not something frequently quoted. Therefore,
most aerodynamicists do not have a “feel” for the magnitude of 
 in most applications.
In contrast, we do have a feel for more common properties such as velocity; we have a
feel for what a 100 mi/h wind is like, especially anybody who has ventured outside in a
tropical storm. The purpose of this example is to show us a number for 
; in this case it is
over 18,000 in the English engineering units of feet and seconds. In most cases we really
do not care what the value of 
 is because it is immediately used to obtain more practical
data, such as aerodynamic lift (as we will see in the next section).

3.15 LIFTING FLOW OVER A CYLINDER
In Section 3.13, we superimposed a uniform flow and a doublet to synthesize the
flow over a circular cylinder, as shown in Figure 3.26. In addition, we proved
that both the lift and drag were zero for such a flow. However, the streamline
pattern shown at the right of Figure 3.26 is not the only flow that is theoretically
possible around a circular cylinder. It is the only flow that is consistent with zero
lift. However, there are other possible flow patterns around a circular cylinder—
different flow patterns that result in a nonzero lift on the cylinder. Such lifting
flows are discussed in this section.

Now you might be hesitant at this moment, perplexed by the question as
to how a lift could possibly be exerted on a circular cylinder. Is not the body
perfectly symmetric, and would not this geometry always result in a symmetric
flow field with a consequent zero lift, as we have already discussed? You might be
so perplexed that you run down to the laboratory, place a stationary cylinder in a
low-speed tunnel, and measure the lift. To your satisfaction, you measure no lift,
and you walk away muttering that the subject of this section is ridiculous—there
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Nonlifting flow
over a cylinder

Vortex of
strength � Lifting flow over

a cylinder
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r
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Figure 3.32 The synthesis of lifting flow over a circular cylinder.

is no lift on the cylinder. However, go back to the wind tunnel, and this time
run a test with the cylinder spinning about its axis at relatively high revolutions
per minute. This time you measure a finite lift. Also, by this time you might be
thinking of other situations: spin on a baseball causes it to curve, and spin on a
golfball causes it to hook or slice. Clearly, in real life there are nonsymmetric
aerodynamic forces acting on these symmetric, spinning bodies. So, maybe the
subject matter of this section is not so ridiculous after all. Indeed, as you will soon
appreciate, the concept of lifting flow over a cylinder will start us on a journey
which leads directly to the theory of the lift generated by airfoils, as discussed in
Chapter 4.

Consider the flow synthesized by the addition of the nonlifting flow over a
cylinder and a vortex of strength 
, as shown in Figure 3.32. The stream function
for nonlifting flow over a circular cylinder of radius R is given by Equation (3.92):

ψ1 = (V∞r sin θ)

(
1 − R2

r 2

)
(3.92)

The stream function for a vortex of strength 
 is given by Equation (3.114).
Recall that the stream function is determined within an arbitrary constant; hence,
Equation (3.114) can be written as

ψ2 = 


2π
ln r + const (3.115)

Since the value of the constant is arbitrary, let

Const = − 


2π
ln R (3.116)

Combining Equations (3.115) and (3.116), we obtain

ψ2 = 


2π
ln

r

R
(3.117)
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Equation (3.117) is the stream function for a vortex of strength 
 and is just as
valid as Equation (3.114) obtained earlier; the only difference between these two
equations is a constant of the value given by Equation (3.116).

The resulting stream function for the flow shown at the right of Figure 3.32 is

ψ = ψ1 + ψ2

or ψ = (V∞r sin θ)

(
1 − R2

r 2

)
+ 


2π
ln

r

R
(3.118)

From Equation (3.118), if r = R, then ψ = 0 for all values of θ . Since
ψ = constant is the equation of a streamline, r = R is therefore a streamline of
the flow, but r = R is the equation of a circle of radius R. Hence, Equation (3.118)
is a valid stream function for the inviscid, incompressible flow over a circular
cylinder of radius R, as shown at the right of Figure 3.32. Indeed, our previous
result given by Equation (3.92) is simply a special case of Equation (3.118)
with 
 = 0.

The resulting streamline pattern given by Equation (3.118) is sketched at the
right of Figure 3.32. Note that the streamlines are no longer symmetrical about
the horizontal axis through point O , and you might suspect (correctly) that the
cylinder will experience a resulting finite normal force. However, the streamlines
are symmetrical about the vertical axis through O , and as a result the drag will be
zero, as we prove shortly. Note also that because a vortex of strength 
 has been
added to the flow, the circulation about the cylinder is now finite and equal to 
.

The velocity field can be obtained by differentiating Equation (3.118). An
equally direct method of obtaining the velocities is to add the velocity field of a
vortex to the velocity field of the nonlifting cylinder. (Recall that because of the
linearity of the flow, the velocity components of the superimposed elementary
flows add directly.) Hence, from Equations (3.93) and (3.94) for nonlifting flow
over a cylinder of radius R, and Equations (3.111a and b) for vortex flow, we
have, for the lifting flow over a cylinder of radius R,

Vr =
(

1 − R2

r 2

)
V∞ cos θ (3.119)

Vθ = −
(

1 + R2

r 2

)
V∞ sin θ − 


2πr
(3.120)

To locate the stagnation points in the flow, set Vr = Vθ = 0 in Equa-
tions (3.119) and (3.120) and solve for the resulting coordinates (r, θ):

Vr =
(

1 − R2

r 2

)
V∞ cos θ = 0 (3.121)

Vθ = −
(

1 + R2

r 2

)
V∞ sin θ − 


2πr
= 0 (3.122)
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Figure 3.33 Stagnation points for the lifting flow over a circular cylinder.

From Equation (3.121), r = R. Substituting this result into Equation (3.122) and
solving for θ , we obtain

θ = arcsin
(

− 


4πV∞ R

)
(3.123)

Since 
 is a positive number, from Equation (3.123) θ must be in the third and
fourth quadrants. That is, there can be two stagnation points on the bottom half
of the circular cylinder, as shown by points 1 and 2 in Figure 3.33a. These points
are located at (R, θ), where θ is given by Equation (3.123). However, this result
is valid only when 
/4πV∞ R < 1. If 
/4πV∞ R > 1, then Equation (3.123) has
no meaning. If 
/4πV∞ R = 1, there is only one stagnation point on the surface
of the cylinder, namely, point (R, −π/2) labeled as point 3 in Figure 3.33b. For
the case of 
/4πV∞ R > 1, return to Equation (3.121). We saw earlier that it is
satisfied by r = R; however, it is also satisfied by θ = π/2 or −π/2. Substituting
θ = −π/2 into Equation (3.122), and solving for r , we have

r = 


4πV∞
±

√(



4πV∞

)2

− R2 (3.124)

Hence, for 
/4πV∞ R > 1, there are two stagnation points, one inside and the
other outside the cylinder, and both on the vertical axis, as shown by points 4
and 5 in Figure 3.33c. [How does one stagnation point fall inside the cylinder?
Recall that r = R, or ψ = 0, is just one of the allowed streamlines of the
flow. There is a theoretical flow inside the cylinder—flow that is issuing from the
doublet at the origin superimposed with the vortex flow for r < R. The circular
streamline r = R is the dividing streamline between this flow and the flow from
the freestream. Therefore, as before, we can replace the dividing streamline by
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a solid body—our circular cylinder—and the external flow will not know the
difference. Hence, although one stagnation point falls inside the body (point 5),
we are not realistically concerned about it. Instead, from the point of view of flow
over a solid cylinder of radius R, point 4 is the only meaningful stagnation point
for the case 
/4πV∞ R > 1.]

The results shown in Figure 3.33 can be visualized as follows. Consider the
inviscid, incompressible flow of given freestream velocity V∞ over a cylinder
of given radius R. If there is no circulation (i.e., if 
 = 0), the flow is given
by the sketch at the right of Figure 3.26, with horizontally opposed stagnation
points A and B. Now assume that a circulation is imposed on the flow, such that

 < 4πV∞ R. The flow sketched in Figure 3.33a will result; the two stagnation
points will move to the lower surface of the cylinder as shown by points 1 and
2. Assume that 
 is further increased until 
 = 4πV∞ R. The flow sketched
in Figure 3.33b will result, with only one stagnation point at the bottom of the
cylinder, as shown by point 3. When 
 is increased still further such that 
 >

4πV∞ R, the flow sketched in Figure 3.33c will result. The stagnation point will
lift from the cylinder’s surface and will appear in the flow directly below the
cylinder, as shown by point 4.

From the above discussion, 
 is clearly a parameter that can be chosen freely.
There is no single value of 
 that “solves” the flow over a circular cylinder; rather,
the circulation can be any value. Therefore, for the incompressible flow over a
circular cylinder, there are an infinite number of possible potential flow solutions,
corresponding to the infinite choices for values of 
. This statement is not limited
to flow over circular cylinders, but rather, it is a general statement that holds for
the incompressible potential flow over all smooth two-dimensional bodies. We
return to these ideas in subsequent sections.

From the symmetry, or lack of it, in the flows sketched in Figures 3.32 and
3.33, we intuitively concluded earlier that a finite normal force (lift) must exist
on the body but that the drag is zero; that is, d’Alembert’s paradox still prevails.
Let us quantify these statements by calculating expressions for lift and drag, as
follows.

The velocity on the surface of the cylinder is given by Equation (3.120) with
r = R:

V = Vθ = −2V∞ sin θ − 


2π R
(3.125)

In turn, the pressure coefficient is obtained by substituting Equation (3.125) into
Equation (3.38):

Cp = 1 −
(

V

V∞

)2

= 1 −
(

−2 sin θ − 


2π RV∞

)2

or Cp = 1 −
[

4 sin2 θ + 2
 sin θ

π RV∞
+

(



2π RV∞

)2
]

(3.126)
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In Section 1.5, we discussed in detail how the aerodynamic force coefficients can
be obtained by integrating the pressure coefficient and skin friction coefficient
over the surface. For inviscid flow, c f = 0. Hence, the drag coefficient cd is given
by Equation (1.16) as

cd = ca = 1

c

∫ TE

LE
(Cp,u − Cp,l) dy

or cd = 1

c

∫ TE

LE
Cp,u dy − 1

c

∫ TE

LE
Cp,l dy (3.127)

Converting Equation (3.127) to polar coordinates, we note that

y = R sin θ dy = R cos θ dθ (3.128)

Substituting Equation (3.128) into (3.127), and noting that c = 2R, we have

cd = 1

2

∫ 0

π

Cp,u cos θ dθ − 1

2

∫ 2π

π

Cp,l cos θ dθ (3.129)

The limits of integration in Equation (3.129) are explained as follows. In the first
integral, we are integrating from the leading edge (the front point of the cylinder),
moving over the top surface of the cylinder. Hence, θ is equal to π at the leading
edge and, moving over the top surface, decreases to 0 at the trailing edge. In
the second integral, we are integrating from the leading edge to the trailing edge
while moving over the bottom surface of the cylinder. Hence, θ is equal to π at the
leading edge and, moving over the bottom surface, increases to 2π at the trailing
edge. In Equation (3.129), both Cp,u and Cp,l are given by the same analytic
expression for Cp, namely, Equation (3.126). Hence, Equation (3.129) can be
written as

cd = −1

2

∫ π

0
Cp cos θ dθ − 1

2

∫ 2π

π

Cp cos θ dθ

or cd = −1

2

∫ 2π

0
Cp cos θ dθ (3.130)

Substituting Equation (3.126) into (3.130), and noting that∫ 2π

0
cos θ dθ = 0 (3.131a)

∫ 2π

0
sin2 θ cos θ dθ = 0 (3.131b)

∫ 2π

0
sin θ cos θ dθ = 0 (3.131c)
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we immediately obtain

cd = 0 (3.132)

Equation (3.132) confirms our intuitive statements made earlier. The drag on a
cylinder in an inviscid, incompressible flow is zero, regardless of whether or not
the flow has circulation about the cylinder.

The lift on the cylinder can be evaluated in a similar manner as follows. From
Equation (1.15) with c f = 0,

cl = cn = 1

c

∫ c

0
Cp,l dx − 1

c

∫ c

0
Cp,u dx (3.133)

Converting to polar coordinates, we obtain

x = R cos θ dx = −R sin θ dθ (3.134)

Substituting Equation (3.134) into (3.133), we have

cl = −1

2

∫ 2π

π

Cp,l sin θ dθ + 1

2

∫ 0

π

Cp,u sin θ dθ (3.135)

Again, noting that Cp,l and Cp,u are both given by the same analytic expression,
namely, Equation (3.126), Equation (3.135) becomes

cl = −1

2

∫ 2π

0
Cp sin θ dθ (3.136)

Substituting Equation (3.126) into (3.136), and noting that∫ 2π

0
sin θ dθ = 0 (3.137a)

∫ 2π

0
sin3 θ dθ = 0 (3.137b)

∫ 2π

0
sin2 θ dθ = π (3.137c)

we immediately obtain

cl = 


RV∞
(3.138)

From the definition of cl (see Section 1.5), the lift per unit span L ′ can be obtained
from

L ′ = q∞Scl = 1
2ρ∞V 2

∞Scl (3.139)
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Here, the planform area S = 2R(1). Therefore, combining Equations (3.138) and
(3.139), we have

L ′ = 1

2
ρ∞V 2

∞2R



RV∞

or L ′ = ρ∞V∞
 (3.140)

Equation (3.140) gives the lift per unit span for a circular cylinder with circulation

. It is a remarkably simple result, and it states that the lift per unit span is directly
proportional to circulation. Equation (3.140) is a powerful relation in theoretical
aerodynamics. It is called the Kutta-Joukowski theorem, named after the German
mathematician M. Wilhelm Kutta (1867–1944) and the Russian physicist Nikolai
E. Joukowski (1847–1921), who independently obtained it during the first decade
of twentieth century. We will have more to say about the Kutta-Joukowski theorem
in Section 3.16.

What are the connections between the above theoretical results and real life?
As stated earlier, the prediction of zero drag is totally erroneous—viscous effects
cause skin friction and flow separation which always produce a finite drag. The
inviscid flow treated in this chapter simply does not model the proper physics for
drag calculations. On the other hand, the prediction of lift via Equation (3.140)
is quite realistic. Let us return to the wind-tunnel experiments mentioned at the
beginning of this chapter. If a stationary, nonspinning cylinder is placed in a
low-speed wind tunnel, the flow field will appear as shown in Figure 3.34a. The
streamlines over the front of the cylinder are similar to theoretical predictions, as
sketched at the right of Figure 3.26. However, because of viscous effects, the flow
separates over the rear of the cylinder, creating a recirculating flow in the wake
downstream of the body. This separated flow greatly contributes to the finite drag
measured for the cylinder. On the other hand, Figure 3.34a shows a reasonably
symmetric flow about the horizontal axis, and the measurement of lift is essen-
tially zero. Now let us spin the cylinder in a clockwise direction about its axis. The
resulting flow fields are shown in Figure 3.34b and c. For a moderate amount of
spin (Figure 3.34b), the stagnation points move to the lower part of the cylinder,
similar to the theoretical flow sketched in Figure 3.33a. If the spin is sufficiently
increased (Figure 3.34c), the stagnation point lifts off the surface, similar to the
theoretical flow sketched in Figure 3.33c. And what is most important, a finite lift
is measured for the spinning cylinder in the wind tunnel. What is happening here?
Why does spinning the cylinder produce lift? In actuality, the friction between
the fluid and the surface of the cylinder tends to drag the fluid near the surface
in the same direction as the rotational motion. Superimposed on top of the usual
nonspinning flow, this “extra” velocity contribution creates a higher-than-usual
velocity at the top of the cylinder and a lower-than-usual velocity at the bottom, as
sketched in Figure 3.35. These velocities are assumed to be just outside the viscous
boundary layer on the surface. Recall from Bernoulli’s equation that as the
velocity increases, the pressure decreases. Hence, from Figure 3.35, the pressure
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(a)

Figure 3.34 These flow-field pictures were obtained in water, where aluminum filings
were scattered on the surface to show the direction of the streamlines. (a) Shown above is
the case for the nonspinning cylinder. (Prandtl, L., and O. G. Tietjens: Applied Hydro and
Aeromechanics Based on Lectures of L. Prandtl, United Engineering Trustees Inc.,1934,
McGraw-Hill, New York).

on the top of the cylinder is lower than on the bottom. This pressure imbalance
creates a net upward force, that is, a finite lift. Therefore, the theoretical prediction
embodied in Equation (3.140) that the flow over a circular cylinder can produce
a finite lift is verified by experimental observation.

The general ideas discussed above concerning the generation of lift on a
spinning circular cylinder in a wind tunnel also apply to a spinning sphere. This
explains why a baseball pitcher can throw a curve and how a golfer can hit a
hook or slice—all of which are due to nonsymmetric flows about the spinning
bodies, and hence the generation of an aerodynamic force perpendicular to the
body’s angular velocity vector. This phenomenon is called the Magnus effect,
named after the German engineer who first observed and explained it in Berlin
in 1852.

It is interesting to note that a rapidly spinning cylinder can produce a much
higher lift than an airplane wing of the same planform area; however, the drag
on the cylinder is also much higher than a well-designed wing. As a result, the
Magnus effect is not employed for powered flight. On the other hand, in the 1920s,
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(b)

(c)

Figure 3.34 (continued) These flow-field pictures were obtained in water, where aluminum
filings were scattered on the surface to show the direction of the streamlines. (b) Spinning
cylinder: peripheral velocity of the surface = 3V∞. (c) Spinning cylinder: peripheral velocity
of the surface = 6V∞. [(b) and (c) Prandtl, L., and O. G. Tietjens: Applied Hydro and
Aeromechanics Based on Lectures of L. Prandtl, United Engineering Trustees Inc.,1934,
McGraw-Hill, New York].
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Figure 3.35 Creation of lift on a spinning
cylinder.

the German engineer Anton Flettner replaced the sail on a boat with a rotating
circular cylinder with its axis vertical to the deck. In combination with the wind,
this spinning cylinder provided propulsion for the boat. Moreover, by the action
of two cylinders in tandem and rotating in opposite directions, Flettner was able to
turn the boat around. Flettner’s device was a technical success, but an economic
failure because the maintenance on the machinery to spin the cylinders at the
necessary high rotational speeds was too costly. Today, the Magnus effect has an
important influence on the performance of spinning missiles; indeed, a certain
amount of modern high-speed aerodynamic research has focused on the Magnus
forces on spinning bodies for missile applications.

EXAMPLE 3.16

Consider the lifting flow over a circular cylinder. The lift coefficient is 5. Calculate the
peak (negative) pressure coefficient.

■ Solution
Examining Figure 3.32, note that the maximum velocity for the nonlifting flow over a
cylinder is 2V∞ and that it occurs at the top and bottom points on the cylinder. When the
vortex in Figure 3.32 is added to the flow field, the direction of the vortex velocity is in the
same direction as the flow on the top of the cylinder, but opposes the flow on the bottom
of the cylinder. Hence, the maximum velocity for the lifting case occurs at the top of the
cylinder and is equal to the sum of the nonlifting value, −2V∞, and the vortex, −
/2π R.
(Note: We are still following the usual sign convention; since the velocity on the top of
the cylinder is in the opposite direction of increasing θ for the polar coordinate system,
the velocity magnitudes here are negative.) Hence,

V = −2V∞ − 


2π R
(E.1)

The lift coefficient and 
 are related through Equation (3.138):

cl = 


RV∞
= 5

Hence,



R
= 5V∞ (E.2)
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Substituting Equation (E.2) into (E.1), we have

V = −2V∞ − 5

2π
V∞ = −2.796V∞ (E.3)

Substituting Equation (E.3) into Equation (3.38), we obtain

C p = 1 −
(

V

V∞

)2

= 1 − (2.796)2 = −6.82

This example is designed in part to make the following point. Recall that, for
an inviscid, incompressible flow, the distribution of Cp over the surface of a body
depends only on the shape and orientation of the body—the flow properties such
as velocity and density are irrelevant here. Recall Equation (3.101), which gives
Cp as a function of θ only, namely, Cp = 1 − 4 sin2 θ . However, for the case of
lifting flow, the distribution of Cp over the surface is a function of one additional
parameter—namely, the lift coefficient. Clearly, in this example, only the value
of cl is given. However, this is powerful enough to define the flow uniquely; the
value of Cp at any point on the surface follows directly from the value of lift
coefficient, as demonstrated in the above problem.

EXAMPLE 3.17

For the flow field in Example 3.16, calculate the location of the stagnation points and the
points on the cylinder where the pressure equals freestream static pressure.

■ Solution
From Equation (3.123), the stagnation points are given by

θ = arcsin

(
− 


4πV∞ R

)
From Example 3.16,




RV∞
= 5

Thus, θ = arcsin

(
− 5

4π

)
= 203.4◦ and 336.6◦

To find the locations where p = p∞, first construct a formula for the pressure coefficient
on the cylinder surface:

C p = 1 −
(

V

V∞

)2

where V = −2V∞ sin θ − 


2π R
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Thus, C p = 1 −
(

−2 sin θ − 


2π R

)2

= 1 − 4 sin2 θ − 2
 sin θ

π RV∞
−

(



2π RV∞

)2

From Example 3.16, 
/RV∞ = 5. Thus,

C p = 1 − 4 sin2 θ − 10

π
sin θ −

(
5

2π

)2

= 0.367 − 3.183 sin θ − 4 sin2 θ

A check on this equation can be obtained by calculating C p at θ = 90◦ and seeing if it
agrees with the result obtained in Example 3.16. For θ = 90◦, we have

C p = 0.367 − 3.183 − 4 = −6.82

This is the same result as in Example 3.16; the equation checks.
To find the values of θ where p = p∞, set C p = 0:

0 = 0.367 − 3.183 sin θ − 4 sin2 θ

From the quadratic formula,

sin θ = 3.183 ±
√

(3.183)2 + 5.872

−8
= −0.897 or 0.102

Hence, θ = 243.8◦ and 296.23◦

Also, θ = 5.85◦ and 174.1◦

There are four points on the circular cylinder where p = p∞. These are sketched in
Figure 3.36, along with the stagnation point locations. As shown in Example 3.16, the
minimum pressure occurs at the top of the cylinder and is equal to p∞ − 6.82q∞. A
local minimum pressure occurs at the bottom of the cylinder, where θ = 3π/2. This local
minimum is given by

C p = 0.367 − 3.183 sin
3π

2
− 4 sin2 3π

2

= 0.367 + 3.183 − 4 = −0.45

Hence, at the bottom of the cylinder, p = p∞ − 0.45q∞.
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Figure 3.36 Values of pressure at various locations on the surface of a circular cylinder; lifting case
with finite circulation. The values of pressure correspond to the case discussed in Example 3.17.

EXAMPLE 3.18

Consider the lifting flow over a circular cylinder with a diameter of 0.5 m. The freestream
velocity is 25 m/s, and the maximum velocity on the surface of the cylinder is 75 m/s. The
freestream conditions are those for a standard altitude of 3 km. Calculate the lift per unit
span on the cylinder.

■ Solution
From Appendix D, at an altitude of 3 km, ρ = 0.90926 kg/m3. The maximum velocity
occurs at the top of the cylinder, where θ = 90◦. From Equation (3.125),

Vθ = −2V∞ sin θ − 


2π R

At θ = 90◦,

Vθ = −2V∞ − 


2π R

or, 
 = −2π R(Vθ + 2V∞)
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Recalling our sign convention that 
 is positive in the clockwise direction, and Vθ is
negative in the clockwise direction (reflect again on Figure 3.32), we have

Vθ = −75m/s

Hence, 
 = −2π R(Vθ + 2V∞) = −2π(0.25)[−75 + 2(25)]


 = −2π(0.25)(−25) = 39.27 m2/s

From Equation (3.140), the lift per unit span is

L ′ = ρ∞V∞


L ′ = (0.90926)(25)(39.27) = 892.7 N/m

Comment: In the course of this example, we have calculated a value for circulation;

 = 39.27 m2/s. In English engineering units, this is


 = 39.27
m2

s

(
3.28 ft

1 m

2)
= 422.5

ft2

s
.

In Example 3.15 we commented on the numerical value of circulation; in that case we
obtained a value of 18,430 ft2/s, much larger than in the present example. But we are still
seeing values of 
 in the hundreds, if not in the thousands—just an interesting observation.

3.16 THE KUTTA-JOUKOWSKI THEOREM
AND THE GENERATION OF LIFT

Although the result given by Equation (3.140) was derived for a circular cylin-
der, it applies in general to cylindrical bodies of arbitrary cross section. For
example, consider the incompressible flow over an airfoil section, as sketched
in Figure 3.37. Let curve A be any curve in the flow enclosing the airfoil. If the
airfoil is producing lift, the velocity field around the airfoil will be such that the
line integral of velocity around A will be finite, that is, the circulation


 ≡
∮

A
V · ds

is finite. In turn, the lift per unit span L ′ on the airfoil will be given by the
Kutta-Joukowski theorem, as embodied in Equation (3.140):

L ′ = ρ∞V∞
 (3.140)

This result underscores the importance of the concept of circulation, defined in
Section 2.13. The Kutta-Joukowski theorem states that lift per unit span on a
two-dimensional body is directly proportional to the circulation around the body.
Indeed, the concept of circulation is so important at this stage of our discussion
that you should reread Section 2.13 before proceeding further.

The general derivation of Equation (3.140) for bodies of arbitrary cross sec-
tion can be carried out using the method of complex variables. Such mathematics
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Figure 3.37 Circulation around a lifting airfoil.

is beyond the scope of this book. (It can be shown that arbitrary functions of com-
plex variables are general solutions of Laplace’s equation, which in turn governs
incompressible potential flow. Hence, more advanced treatments of such flows
utilize the mathematics of complex variables as an important tool. See Refer-
ence 9 for a particularly lucid treatment of inviscid, incompressible flow at a
more advanced level.)

In Section 3.15, the lifting flow over a circular cylinder was synthesized by
superimposing a uniform flow, a doublet, and a vortex. Recall that all three ele-
mentary flows are irrotational at all points, except for the vortex, which has infinite
vorticity at the origin. Therefore, the lifting flow over a cylinder as shown in Fig-
ure 3.33 is irrotational at every point except at the origin. If we take the circulation
around any curve not enclosing the origin, we obtain from Equation (2.137) the
result that 
 = 0. It is only when we choose a curve that encloses the origin,
where ∇ × V is infinite, that Equation (2.137) yields a finite 
, equal to the
strength of the vortex. The same can be said about the flow over the airfoil in
Figure 3.37. As we show in Chapter 4, the flow outside the airfoil is irrotational,
and the circulation around any closed curve not enclosing the airfoil (such as
curve B in Figure 3.37) is consequently zero. On the other hand, we also show in
Chapter 4 that the flow over an airfoil is synthesized by distributing vortices either
on the surface or inside the airfoil. These vortices have the usual singularities in
∇ × V, and therefore, if we choose a curve that encloses the airfoil (such as curve
A in Figure 3.37), Equation (2.137) yields a finite value of 
, equal to the sum of
the vortex strengths distributed on or inside the airfoil. The important point here
is that, in the Kutta-Joukowski theorem, the value of 
 used in Equation (3.140)
must be evaluated around a closed curve that encloses the body; the curve can be
otherwise arbitrary, but it must have the body inside it.

At this stage, let us pause and assess our thoughts. The approach we have
discussed above—the definition of circulation and the use of Equation (3.140) to
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obtain the lift—is the essence of the circulation theory of lift in aerodynamics.
Its development at the turn of the twentieth century created a breakthrough in
aerodynamics. However, let us keep things in perspective. The circulation theory
of lift is an alternative way of thinking about the generation of lift on an aero-
dynamic body. Keep in mind that the true physical sources of aerodynamic force
on a body are the pressure and shear stress distributions exerted on the surface of
the body, as explained in Section 1.5. The Kutta-Joukowski theorem is simply an
alternative way of expressing the consequences of the surface pressure distribu-
tion; it is a mathematical expression that is consistent with the special tools we
have developed for the analysis of inviscid, incompressible flow. Indeed, recall
that Equation (3.140) was derived in Section 3.15 by integrating the pressure dis-
tribution over the surface. Therefore, it is not quite proper to say that circulation
“causes” lift. Rather, lift is “caused” by the net imbalance of the surface pres-
sure distribution, and circulation is simply a defined quantity determined from
the same pressures. The relation between the surface pressure distribution (which
produces lift L ′) and circulation is given by Equation (3.140). However, in the
theory of incompressible, potential flow, it is generally much easier to determine
the circulation around the body rather than calculate the detailed surface pressure
distribution. Therein lies the power of the circulation theory of lift.

Consequently, the theoretical analysis of lift on two-dimensional bodies in
incompressible, inviscid flow focuses on the calculation of the circulation about
the body. Once 
 is obtained, then the lift per unit span follows directly from
the Kutta-Joukowski theorem. As a result, in subsequent sections we constantly
address the question: How can we calculate the circulation for a given body in a
given incompressible, inviscid flow?

3.17 NONLIFTING FLOWS OVER ARBITRARY
BODIES: THE NUMERICAL SOURCE
PANEL METHOD

In this section, we return to the consideration of nonlifting flows. Recall that
we have already dealt with the nonlifting flows over a semi-infinite body and a
Rankine oval and both the nonlifting and the lifting flows over a circular cylinder.
For those cases, we added our elementary flows in certain ways and discovered
that the dividing streamlines turned out to fit the shapes of such special bodies.
However, this indirect method of starting with a given combination of elementary
flows and seeing what body shape comes out of it can hardly be used in a practical
sense for bodies of arbitrary shape. For example, consider the airfoil in Figure 3.37.
Do we know in advance the correct combination of elementary flows to synthesize
the flow over this specified body? The answer is no. Rather, what we want is a
direct method; that is, let us specify the shape of an arbitrary body and solve for the
distribution of singularities which, in combination with a uniform stream, produce
the flow over the given body. The purpose of this section is to present such a direct
method, limited for the present to nonlifting flows. We consider a numerical
method appropriate for solution on a high-speed digital computer. The technique
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Figure 3.38 Source sheet.

is called the source panel method, which, since the late 1960s, has become a
standard aerodynamic tool in industry and most research laboratories. In fact, the
numerical solution of potential flows by both source and vortex panel techniques
has revolutionized the analysis of low-speed flows. We return to various numerical
panel techniques in Chapters 4 through 6. As a modern student of aerodynamics,
it is necessary for you to become familiar with the fundamentals of such panel
methods. The purpose of the present section is to introduce the basic ideas of the
source panel method, which is a technique for the numerical solution of nonlifting
flows over arbitrary bodies.

First, let us extend the concept of a source or sink introduced in Section 3.10.
In that section, we dealt with a single line source, as sketched in Figure 3.21.
Now imagine that we have an infinite number of such line sources side by side,
where the strength of each line source is infinitesimally small. These side-by-side
line sources form a source sheet, as shown in perspective in the upper left of
Figure 3.38. If we look along the series of line sources (looking along the z axis
in Figure 3.38), the source sheet will appear as sketched at the lower right of
Figure 3.38. Here, we are looking at an edge view of the sheet; the line sources
are all perpendicular to the page. Let s be the distance measured along the source
sheet in the edge view. Define λ = λ(s) to be the source strength per unit length
along s. [To keep things in perspective, recall from Section 3.10 that the strength
of a single line source � was defined as the volume flow rate per unit depth, that
is, per unit length in the z direction. Typical units for � are square meters per
second or square feet per second. In turn, the strength of a source sheet λ(s) is
the volume flow rate per unit depth (in the z direction) and per unit length (in
the s direction). Typical units for λ are meters per second or feet per second.]
Therefore, the strength of an infinitesimal portion ds of the sheet, as shown in
Figure 3.38, is λ ds. This small section of the source sheet can be treated as
a distinct source of strength λ ds. Now consider point P in the flow, located a
distance r from ds; the cartesian coordinates of P are (x, y). The small section



286 PART 2 Inviscid, Incompressible Flow
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Figure 3.39 Superposition of a uniform flow and a source sheet on a body
of given shape, to produce the flow over the body.

of the source sheet of strength λ ds induces an infinitesimally small potential dφ

at point P . From Equation (3.67), dφ is given by

dφ = λ ds

2π
ln r (3.141)

The complete velocity potential at point P , induced by the entire source sheet
from a to b, is obtained by integrating Equation (3.141):

φ(x, y) =
∫ b

a

λ ds

2π
ln r (3.142)

Note that, in general, λ(s) can change from positive to negative along the sheet;
that is, the “source” sheet is really a combination of line sources and line sinks.

Next, consider a given body of arbitrary shape in a flow with freestream
velocity V∞, as shown in Figure 3.39. Let us cover the surface of the prescribed
body with a source sheet, where the strength λ(s) varies in such a fashion that the
combined action of the uniform flow and the source sheet makes the airfoil surface
a streamline of the flow. Our problem now becomes one of finding the appropriate
λ(s). The solution of this problem is carried out numerically, as follows.

Let us approximate the source sheet by a series of straight panels, as shown
in Figure 3.40. Moreover, let the source strength λ per unit length be constant
over a given panel, but allow it to vary from one panel to the next. That is,
if there are a total of n panels, the source panel strengths per unit length are
λ1, λ2, . . . , λ j . . . , λn . These panel strengths are unknown; the main thrust of the
panel technique is to solve for λ j , j = 1 to n, such that the body surface becomes
a streamline of the flow. This boundary condition is imposed numerically by
defining the midpoint of each panel to be a control point and by determining the
λ j ’s such that the normal component of the flow velocity is zero at each control
point. Let us now quantify this strategy.

Let P be a point located at (x, y) in the flow, and let rpj be the distance from
any point on the j th panel to P , as shown in Figure 3.40. The velocity potential
induced at P due to the j th panel �φ j is, from Equation (3.142),

�φ j = λ j

2π

∫
j
ln rpj ds j (3.143)
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Figure 3.40 Source panel distribution over the surface of a body of arbitrary shape.

In Equation (3.143), λ j is constant over the j th panel, and the integral is taken
over the j th panel only. In turn, the potential at P due to all the panels is Equa-
tion (3.143) summed over all the panels:

φ(P) =
n∑

j=1

�φ j =
n∑

j=1

λ j

2π

∫
j
ln rpj ds j (3.144)

In Equation (3.144), the distance rpj is given by

rpj =
√

(x − x j )2 + (y − y j )2 (3.145)

where (x j , y j ) are coordinates along the surface of the j th panel. Since point P
is just an arbitrary point in the flow, let us put P at the control point of the i th
panel. Let the coordinates of this control point be given by (xi , yi ), as shown in
Figure 3.40. Then Equations (3.144) and (3.145) become

φ(xi , yi ) =
n∑

j=1

λ j

2π

∫
j
ln ri j ds j (3.146)

and ri j =
√

(xi − x j )2 + (yi − y j )2 (3.147)

Equation (3.146) is physically the contribution of all the panels to the potential
at the control point of the i th panel.

Recall that the boundary condition is applied at the control points; that is, the
normal component of the flow velocity is zero at the control points. To evaluate this
component, first consider the component of freestream velocity perpendicular to
the panel. Let ni be the unit vector normal to the i th panel, directed out of the body,
as shown in Figure 3.40. Also, note that the slope of the i th panel is (dy/dx)i . In
general, the freestream velocity will be at some incidence angle α to the x axis,



288 PART 2 Inviscid, Incompressible Flow

as shown in Figure 3.40. Therefore, inspection of the geometry of Figure 3.40
reveals that the component of V∞ normal to the i th panel is

V∞,n = V∞ · ni = V∞ cos βi (3.148)

where βi is the angle between V∞ and ni . Note that V∞,n is positive when directed
away from the body, and negative when directed toward the body.

The normal component of velocity induced at (xi , yi ) by the source panels
is, from Equation (3.146),

Vn = ∂

∂ni
[φ(xi , yi )] (3.149)

where the derivative is taken in the direction of the outward unit normal vector, and
hence, again, Vn is positive when directed away from the body. When the derivative
in Equation (3.149) is carried out, ri j appears in the denominator. Consequently,
a singular point arises on the i th panel because when j = i , at the control point
itself ri j = 0. It can be shown that when j = i , the contribution to the deriva-
tive is simply λi/2. Hence, Equation (3.149) combined with Equation (3.146)
becomes

Vn = λi

2
+

n∑
j=1

( j 
=1)

λ j

2π

∫
j

∂

∂ni
(ln ri j ) ds j (3.150)

In Equation (3.150), the first term λi/2 is the normal velocity induced at the i th
control point by the i th panel itself, and the summation is the normal velocity
induced at the i th control point by all the other panels.

The normal component of the flow velocity at the i th control point is the sum
of that due to the freestream [Equation (3.148)] and that due to the source panels
[Equation (3.150)]. The boundary condition states that this sum must be zero:

V∞,n + Vn = 0 (3.151)

Substituting Equations (3.148) and (3.150) into (3.151), we obtain

λi

2
+

n∑
j=1

( j 
=1)

λ j

2π

∫
j

∂

∂ni
(ln ri j ) ds j + V∞ cos βi = 0 (3.152)

Equation (3.152) is the crux of the source panel method. The values of the integrals
in Equation (3.152) depend simply on the panel geometry; they are not properties
of the flow. Let Ii, j be the value of this integral when the control point is on the
i th panel and the integral is over the j th panel. Then Equation (3.152) can be
written as

λi

2
+

n∑
j=1

( j 
=1)

λ j

2π
Ii, j + V∞ cos βi = 0 (3.153)

Equation (3.153) is a linear algebraic equation with n unknowns λ1, λ2, . . . , λn .
It represents the flow boundary condition evaluated at the control point of the i th
panel. Now apply the boundary condition to the control points of all the panels;
that is, in Equation (3.153), let i = 1, 2, . . . , n. The results will be a system of n
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linear algebraic equations with n unknowns (λ1, λ2, . . . , λn), which can be solved
simultaneously by conventional numerical methods.

Look what has happened! After solving the system of equations represented
by Equation (3.153) with i = 1, 2, . . . , n, we now have the distribution of source
panel strengths which, in an appropriate fashion, cause the body surface in Fig-
ure 3.40 to be a streamline of the flow. This approximation can be made more
accurate by increasing the number of panels, hence more closely representing the
source sheet of continuously varying strength λ(s) shown in Figure 3.39. Indeed,
the accuracy of the source panel method is amazingly good; a circular cylinder
can be accurately represented by as few as 8 panels, and most airfoil shapes, by
50 to 100 panels. (For an airfoil, it is desirable to cover the leading-edge region
with a number of small panels to represent accurately the rapid surface curvature
and to use larger panels over the relatively flat portions of the body. Note that, in
general, all the panels in Figure 3.40 can be different lengths.)

Once the λi ’s (i = 1, 2, . . . , n) are obtained, the velocity tangent to the sur-
face at each control point can be calculated as follows. Let s be the distance along
the body surface, measured positive from front to rear, as shown in Figure 3.40.
The component of freestream velocity tangent to the surface is

V∞,s = V∞ sin βi (3.154)

The tangential velocity Vs at the control point of the i th panel induced by all the
panels is obtained by differentiating Equation (3.146) with respect to s:

Vs = ∂φ

∂s
=

n∑
j=1

λ j

2π

∫
j

∂

∂s
(ln ri j ) ds j (3.155)

[The tangential velocity on a flat source panel induced by the panel itself is zero;
hence, in Equation (3.155), the term corresponding to j = i is zero. This is
easily seen by intuition, because the panel can only emit volume flow from its
surface in a direction perpendicular to the panel itself.] The total surface velocity
at the i th control point Vi is the sum of the contribution from the freestream
[Equation (3.154)] and from the source panels [Equation (3.155)]:

Vi = V∞,s + Vs = V∞ sin βi +
n∑

j=1

λ j

2π

∫
j

∂

∂s
(ln ri j ) ds j (3.156)

In turn, the pressure coefficient at the i th control point is obtained from Equa-
tion (3.38):

Cp,i = 1 −
(

Vi

V∞

)2

In this fashion, the source panel method gives the pressure distribution over the
surface of a nonlifting body of arbitrary shape.

When you carry out a source panel solution as described above, the accuracy
of your results can be tested as follows. Let Sj be the length of the j th panel.
Recall that λ j is the strength of the j th panel per unit length. Hence, the strength
of the j th panel itself is λi S j . For a closed body, such as in Figure 3.40, the sum
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of all the source and sink strengths must be zero, or else the body itself would be
adding or absorbing mass from the flow—an impossible situation for the case we
are considering here. Hence, the values of the λ j ’s obtained above should obey
the relation

n∑
j=1

λ j S j = 0 (3.157)

Equation (3.157) provides an independent check on the accuracy of the numerical
results.

EXAMPLE 3.19

Calculate the pressure coefficient distribution around a circular cylinder using the source
panel technique.

■ Solution
We choose to cover the body with eight panels of equal length, as shown in Figure 3.41.
This choice is arbitrary; however, experience has shown that, for the case of a circular
cylinder, the arrangement shown in Figure 3.41 provides sufficient accuracy. The panels
are numbered from 1 to 8, and the control points are shown by the dots in the center of
each panel.

Let us evaluate the integrals Ii, j which appear in Equation (3.153). Consider Fig-
ure 3.42, which illustrates two arbitrary chosen panels. In Figure 3.42, (xi , yi ) are the
coordinates of the control point of the i th panel and (x j , y j ) are the running coordinates
over the entire j th panel. The coordinates of the boundary points for the i th panel are
(Xi , Yi ) and (Xi+1, Yi+1); similarly, the coordinates of the boundary points for the j th
panel are (X j , Y j ) and (X j+1, Y j+1). In this problem, V∞ is in the x direction; hence,
the angles between the x axis and the unit vectors ni and n j are βi and β j , respectively.
Note that, in general, both βi and β j vary from 0 to 2π . Recall that the integral Ii, j is

Figure 3.41 Source panel distribution around a circular
cylinder.
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Figure 3.42 Geometry required for the evaluation of Ii j .

evaluated at the i th control point and the integral is taken over the complete j th panel:

Ii, j =
∫

j

∂

∂ni
(ln ri j ) ds j (3.158)

Since ri j =
√

(xi − x j )2 + (yi − y j )2

then
∂

∂ni
(ln ri j ) = 1

ri j

∂ri j

∂ni

= 1

ri j

1

2
[(xi − x j )

2 + (yi − y j )
2]−1/2

×
[

2(xi − x j )
dxi

dni
+ 2(yi − y j )

dyi

dni

]

or
∂

∂ni
(ln ri j ) = (xi − x j ) cos βi + (yi − y j ) sin βi

(xi − x j )2 + (yi − y j )2 (3.159)

Note in Figure 3.42 that �i and � j are angles measured in the counterclockwise direction
from the x axis to the bottom of each panel. From this geometry,

βi = �i + π

2
Hence, sin βi = cos �i (3.160a)

cos βi = − sin �i (3.160b)

Also, from the geometry of Figure 3.38, we have

x j = X j + s j cos � j (3.161a)

and y j = Y j + s j sin � j (3.161b)
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Substituting Equations (3.159) to (3.161) into (3.158), we obtain

Ii, j =
∫ S j

0

Cs j + D

s2
j + 2As j + B

ds j (3.162)

where A = −(xi − X j ) cos � j − (yi − Y j ) sin � j

B = (xi − X j )
2 + (yi − Y j )

2

C = sin(�i − � j )

D = (yi − Y j ) cos �i − (xi − X j ) sin �i

S j =
√

(X j+1 − X j )2 + (Y j+1 − Y j )2

Letting E = √
B − A2 = (xi − X j ) sin � j − (yi − Y j ) cos � j

we obtain an expression for Equation (3.162) from any standard table of integrals:

Ii, j = C

2
ln

(
S2

j + 2AS j + B

B

)
(3.163)

+ D − AC

E

(
tan−1 S j + A

E
− tan−1 A

E

)
Equation (3.163) is a general expression for two arbitrarily oriented panels; it is not
restricted to the case of a circular cylinder.

We now apply Equation (3.163) to the circular cylinder shown in Figure 3.41. For
purposes of illustration, let us choose panel 4 as the i th panel and panel 2 as the j th panel;
that is, let us calculate I4,2. From the geometry of Figure 3.41, assuming a unit radius for
the cylinder, we see that

X j = −0.9239 X j+1 = −0.3827 Y j = 0.3827

Y j+1 = 0.9239 �i = 315◦ � j = 45◦

xi = 0.6533 yi = 0.6533

Hence, substituting these numbers into the above formulas, we obtain

A = −1.3065 B = 2.5607 C = −1 D = 1.3065

S j = 0.7654 E = 0.9239

Inserting the above values into Equation (3.163), we obtain

I4,2 = 0.4018

Return to Figures 3.41 and 3.42. If we now choose panel 1 as the j th panel, keeping panel 4
as the i th panel, we obtain, by means of a similar calculation, I4,1 = 0.4074. Similarly,
I4,3 = 0.3528, I4,5 = 0.3528, I4,6 = 0.4018, I4,7 = 0.4074, and I4,8 = 0.4084.

Return to Equation (3.153), which is evaluated for the i th panel in Figures 3.40 and
3.42. Written for panel 4, Equation (3.153) becomes (after multiplying each term by 2 and
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noting that βi = 45◦ for panel 4)

0.4074λ1 + 0.4018λ2 + 0.3528λ3 + πλ4 + 0.3528λ5

+ 0.4018λ6 + 0.4074λ7 + 0.4084λ8 = −0.7071 2πV∞ (3.164)

Equation (3.164) is a linear algebraic equation in terms of the eight unknowns, λ1, λ2, . . . ,

λ8. If we now evaluate Equation (3.153) for each of the seven other panels, we obtain a
total of eight equations, including Equation (3.164), which can be solved simultaneously
for the eight unknown λ’s. The results are

λ1/2πV∞ = 0.3765 λ2/2πV∞ = 0.2662 λ3/2πV∞ = 0

λ4/2πV∞ = −0.2662 λ5/2πV∞ = −0.3765 λ6/2πV∞ = −0.2662

λ7/2πV∞ = 0 λ8/2πV∞ = 0.2662

Note the symmetrical distribution of the λ’s, which is to be expected for the nonlifting
circular cylinder. Also, as a check on the above solution, return to Equation (3.157). Since
each panel in Figure 3.41 has the same length, Equation (3.157) can be written simply as

n∑
j=1

λ j = 0

Substituting the values for the λ’s obtained into Equation (3.157), we see that the equation
is identically satisfied.

The velocity at the control point of the i th panel can be obtained from Equa-
tion (3.156). In that equation, the integral over the j th panel is a geometric quantity
that is evaluated in a similar manner as before. The result is∫

j

∂

∂s
(ln ri j )ds j = D − AC

2E
ln

S2
j + 2AS j + B

B
(3.165)

− C

(
tan−1 S j + A

E
− tan−1 A

E

)

With the integrals in Equation (3.156) evaluated by Equation (3.165), and with the values
for λ1, λ2, . . . , λ8 obtained above inserted into Equation (3.156), we obtain the veloci-
ties V1, V2, . . . , V8. In turn, the pressure coefficients C p,1, C p,2, . . . , C p,8 are obtained
directly from

C p,i = 1 −
(

Vi

V∞

)2

Results for the pressure coefficients obtained from this calculation are compared with the
exact analytical result, Equation (3.101) in Figure 3.43. Amazingly enough, in spite of the
relatively crude paneling shown in Figure 3.41, the numerical pressure coefficient results
are excellent.
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Figure 3.43 Pressure distribution over a circular cylinder; comparison of the
source panel results and theory.

3.18 APPLIED AERODYNAMICS: THE FLOW OVER
A CIRCULAR CYLINDER—THE REAL CASE

The inviscid, incompressible flow over a circular cylinder was treated in Sec-
tion 3.13. The resulting theoretical streamlines are sketched in Figure 3.26, char-
acterized by a symmetrical pattern where the flow “closes in” behind the cylinder.
As a result, the pressure distribution over the front of the cylinder is the same as
that over the rear (see Figure 3.29). This leads to the theoretical result that the
pressure drag is zero—d’Alembert’s paradox.

The real flow over a circular cylinder is quite different from that studied in
Section 3.13, the difference due to the influence of friction. Moreover, the drag
coefficient for the real flow over a cylinder is certainly not zero. For a viscous
incompressible flow, the results of dimensional analysis (Section 1.7) clearly
demonstrate that the drag coefficient is a function of the Reynolds number. The
variation of CD = f (Re) for a circular cylinder is shown in Figure 3.44, which
is based on a wealth of experimental data. Here, Re = (ρ∞V∞d)/μ∞, where
d is the diameter of the cylinder. Note that CD is very large for the extremely
small values of Re < 1, but decreases monotonically until Re ≈ 300,000. At
this Reynolds number, there is a precipitous drop of CD from a value near 1 to
about 0.3, then a slight recovery to about 0.6 for Re = 107. (Note: These results
are consistent with the comparison shown in Figure 1.54d and e, contrasting CD

for a circular cylinder at low and high Re.) What causes this precipitous drop in
CD when the Reynolds number reaches about 300,000? A detailed answer must
await our discussion of viscous flow in Chapter 4, and later in Part 4. However,
we state now that the phenomenon is caused by a sudden transition of laminar
flow within the boundary layer at the lower values of Re to a turbulent boundary
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Figure 3.44 Variation of cylinder-drag coefficient with Reynolds number.
(Source: Experimental data as compiled in Panton, Ronald, Incompressible Flow,
Wiley-Interscience, New York, 1984).

layer at the higher values of Re. Why does a turbulent boundary layer result in a
smaller CD for this case? Stay tuned; the answer is given in Chapter 4.

The variation of CD shown in Figure 3.44 across a range of Re from 10−1

to 107 is accompanied by tremendous variations in the qualitative aspects of the
flow field, as itemized, and as sketched in Figure 3.45.

1. For very low values of Re, say, 0 < Re < 4, the streamlines are almost
(but not exactly) symmetrical, and the flow is attached, as sketched in
Figure 3.45a. This regime of viscous flow is called Stokes flow; it is
characterized by a near balance of pressure forces with friction forces
acting on any given fluid element; the flow velocity is so low that inertia
effects are very small. A photograph of this type of flow is shown in
Figure 3.46, which shows the flow of water around a circular cylinder
where Re = 1.54. The streamlines are made visible by aluminum powder
on the surface, along with a time exposure of the film.

2. For 4 < Re < 40, the flow becomes separated on the back of the cylinder,
forming two distinct, stable vortices that remain in the position shown in
Figure 3.45b. A photograph of this type of flow is given in Figure 3.47,
where Re = 26.

3. As Re is increased above 40, the flow behind the cylinder becomes unstable;
the vortices which were in a fixed position in Figure 3.45b now are
alternately shed from the body in a regular fashion and flow downstream.
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(a)

(b)

(c)

(d)

(e)

Figure 3.45 Various types of flow over a circular cylinder.
(Source: Panton, Ronald, Incompressible Flow,
Wiley-Interscience, New York, 1984).



Figure 3.46 Flow over a circular cylinder. Re = 1.54. (Prandtl, L., and O. G. Tietjens:
Applied Hydro and Aeromechanics Based on Lectures of L. Prandtl, United Engineering
Trustees Inc.,1934, McGraw-Hill, New York).

Figure 3.47 Flow over a circular cylinder. Re = 26. (Prandtl, L., and O. G. Tietjens: Applied
Hydro and Aeromechanics Based on Lectures of L. Prandtl, United Engineering Trustees
Inc.,1934, McGraw-Hill, New York).

297
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Figure 3.48 Flow over a circular cylinder. Re = 140. A Karman vortex street exists behind
the cylinder at this Reynolds number. (© H. S. Photos/Alamy).

This flow is sketched in Figure 3.45c. A photograph of this type of flow is
shown in Figure 3.48, where Re = 140. This is a water flow where the
streaklines are made visible by the electrolytic precipitation method. (In this
method, metal plating on the cylinder surface acts as an anode, white
particles are precipitated by electrolysis near the anode, and these particles
subsequently flow downstream, forming a streakline. The definition of a
streakline is given in Section 2.11.) The alternately shed vortex pattern
shown in Figures 3.45c and 3.48 is called a Karman vortex street, named
after Theodor von Kármán, who began to study and analyze this pattern in
1911 while at Göttingen University in Germany. (von Karman subsequently
had a long and very distinguished career in aerodynamics, moving to the
California Institute of Technology in 1930, and becoming America’s
best-known aerodynamicist in the mid-twentieth century. An autobiography
of von Karman was published in 1967; see Reference 46. This reference is
“must” reading for anyone interested in a riveting perspective on the history
of aerodynamics in the twentieth century.)

4. As the Reynolds number is increased to large numbers, the Karman vortex
street becomes turbulent and begins to metamorphose into a distinct wake.
The laminar boundary layer on the cylinder separates from the surface on
the forward face, at a point about 80◦ from the stagnation point. This is
sketched in Figure 3.45d. The value of the Reynolds number for this flow is
on the order of 105. Note, from Figure 3.44, that CD is a relatively constant
value near unity for 103 < Re < 3 × 105.

5. For 3 × 105 < Re < 3 × 106, the separation of the laminar boundary layer
still takes place on the forward face of the cylinder. However, in the free
shear layer over the top of the separated region, transition to turbulent flow
takes place. The flow then reattaches on the back face of the cylinder, but
separates again at about 120◦ around the body measured from the stagnation
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point. This flow is sketched in Figure 3.45e. This transition to turbulent
flow, and the corresponding thinner wake (comparing Figure 3.45e with
Figure 3.45d), reduces the pressure drag on the cylinder and is responsible
for the precipitous drop in CD at Re = 3 × 105 shown in Figure 3.44. (More
details on this phenomenon are covered in Chapter 4 and Part 4.)

6. For Re > 3 × 106, the boundary layer transits directly to turbulent flow at
some point on the forward face, and the boundary layer remains totally
attached over the surface until it separates at an angular location slightly
less than 120◦ on the back surface. For this regime of flow, CD actually
increases slightly with increasing Re because the separation points on the
back surface begin to move closer to the top and bottom of the cylinder,
producing a fatter wake, and hence larger pressure drag.

In summary, from the photographs and sketches in this section, we see that
the real flow over a circular cylinder is dominated by friction effects, namely,
the separation of the flow over the rearward face of the cylinder. In turn, a finite
pressure drag is created on the cylinder, and d’Alembert’s paradox is resolved.

Let us examine the production of drag more closely. The theoretical pressure
distribution over the surface of a cylinder in an inviscid, incompressible flow
was given in Figure 3.29. In contrast, several real pressure distributions based
on experimental measurements for different Reynolds numbers are shown in
Figure 3.49, and are compared with the theoretical inviscid flow results obtained
in Section 3.13. Note that theory and experiment agree well on the forward face

Figure 3.49 Pressure distribution over a circular cylinder in low-speed flow. Comparison of
the theoretical pressure distribution with two experimental pressure distributions—one for a
subcritical Re and the other for a supercritical Re.
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of the cylinder, but that dramatic differences occur over the rearward face. The
theoretical results show the pressure decreasing around the forward face from
the initial total pressure at the stagnation point, reaching a minimum pressure
at the top and bottom of the cylinder (θ = 90◦ and 270◦), and then increasing
again over the rearward face, recovering to the total pressure at the rear stagnation
point. In contrast, in the real case where flow separation occurs, the pressures are
relatively constant in the separated region over the rearward face and have values
slightly less than freestream pressure. (In regions of separated flow, the pressure
frequently exhibits a nearly constant value.) In the separated region over the
rearward face, the pressure clearly does not recover to the higher values that exist
on the front face. There is a net imbalance of the pressure distribution between
the front and back faces, with the pressures on the front being higher than on the
back, and this imbalance produces the drag on the cylinder.

Return to Figure 3.44, and examine again the variation of CD as a function
of Re. The regimes associated with the very low Reynolds numbers, such as
Stokes flow for Re ≈ 1, are usually of no interest to aeronautical applications.
For example, consider a circular cylinder in an airflow of 30 m/s (about 100 ft/s,
or 68 mi/h) at standard sea level conditions, where ρ∞ = 1.23 kg/m3 and μ∞ =
1.79 × 10−5 kg/(m · s). The smaller the diameter of the cylinder, the smaller will
be the Reynolds number. Question: What is the required cylinder diameter in
order to have Re = 1? The answer is obtained from

Re = ρ∞V∞d

μ∞
= 1

Hence, d = μ∞
ρ∞V∞

= 1.79 × 10−5

(1.23)(30)
= 4 × 10−7 m

To have Re = 1 for the above conditions, the diameter of the cylinder would have
to be extremely small; note that the value of d = 4 × 10−7 m is only slightly
larger than the mean free path at standard sea level, which is 6.6 × 10−8 m. (See
Section 1.10 for the definition of the mean free path.) Clearly, Reynolds numbers
on the order of unity are of little practical aerodynamic importance.

If this is so, then what values of Re for the flow over cylinders are of practical
importance? For one such example, consider the wing wires between the upper
and lower wings on a World War I biplane, such as the SPAD XIII shown in
Figure 3.50. The diameter of these wires is about 3

32 in, or 0.0024 m. The top
speed of the SPAD was 130 mi/h, or 57.8 m/s. For this velocity at standard sea
level, we have

Re = ρ∞V∞d

μ∞
= (1.23)(57.8)(0.0024)

1.79 × 10−5
= 9532

With this value of Re, we are beginning to enter the world of practical aerody-
namics for the flow over cylinders. It is interesting to note that, from Figure 3.44,
CD = 1 for the wires on the SPAD. In terms of airplane aerodynamics, this is a
high drag coefficient for any component of an aircraft. Indeed, the bracing wires
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Figure 3.50 The French SPAD XIII, an example of a strut-and-wire biplane from World
War I. Captain Eddie Rickenbacker is shown at the front of the airplane. (© MPI/Stringer/
Getty Images).

used on biplanes of the World War I era were a source of high drag for the aircraft,
so much so that early in the war, bracing wire with a symmetric airfoil-like cross
section was utilized to help reduce this drag. Such wire was developed by the
British at the Royal Aircraft Factory at Farnborough, and was first tested exper-
imentally as early as 1914 on an SE-4 biplane. Interestingly enough, the SPAD
used ordinary round wire, and in spite of this was the fastest of all World War I
aircraft.

This author was struck by another example of the effect of cylinder drag
while traveling in Charleston, South Carolina, shortly after hurricane Hugo dev-
astated the area on September 28, 1989. Traveling north out of Charleston on
U.S. Route 17, near the small fishing town of McClellanville, one passes through
the Francis Marion National Forest. This forest was virtually destroyed by the
hurricane; 60-ft pine trees were snapped off near their base, and approximately
8 out of every 10 trees were down. The sight bore an eerie resemblance to scenes
from the battlefields in France during World War I. What type of force can destroy
an entire forest in this fashion? To answer this question, we note that the Weather
Bureau measured wind gusts as high as 175 mi/h during the hurricane. Let us
approximate the wind force on a typical 60-ft pine tree by the aerodynamic drag
on a cylinder of a length of 60 ft and a diameter of 5 ft. Since V = 175 mi/h =
256.7 ft/s, ρ∞ = 0.002377 slug/ft3, and μ∞ = 3.7373 × 10−7 slug/(ft · s), then
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the Reynolds number is

Re = ρ∞V∞d

μ∞
= (0.002377)(256.7)(5)

3.7373 × 10−7
= 8.16 × 106

Examining Figure 3.44, we see that CD = 0.7. Since CD is based on the drag per
unit length of the cylinder as well as the projected frontal area, we have for the
total drag exerted on an entire tree that is 60 ft tall

D = q∞SCD = 1
2ρ∞V 2

∞(d)(60)CD

= 1
2 (0.002377)(256.7)2(5)(60)(0.7) = 16,446 lb

a 16,000 lb force on the tree—it is no wonder a whole forest was destroyed.
(In the above analysis, we neglected the end effects of the flow over the end of
the vertical cylinder. Moreover, we did not correct the standard sea level density
for the local reduction in barometric pressure experienced inside a hurricane.
However, these are relatively small effects in comparison to the overall force on
the cylinder.) The aerodynamics of a tree, and especially that of a forest, are more
sophisticated than discussed here. Indeed, the aerodynamics of trees have been
studied experimentally with trees actually mounted in a wind tunnel.6

3.19 HISTORICAL NOTE: BERNOULLI AND
EULER—THE ORIGINS OF THEORETICAL
FLUID DYNAMICS

Bernoulli’s equation, expressed by Equations (3.14) and (3.15), is historically
the most famous equation in fluid dynamics. Moreover, we derived Bernoulli’s
equation from the general momentum equation in partial differential equation
form. The momentum equation is just one of the three fundamental equations
of fluid dynamics—the others being continuity and energy. These equations are
derived and discussed in Chapter 2 and applied to an incompressible flow in
this chapter. Where did these equations first originate? How old are they, and
who is responsible for them? Considering the fact that all of fluid dynamics in
general, and aerodynamics in particular, is built on these fundamental equations,
it is important to pause for a moment and examine their historical roots.

As discussed in Section 1.1, Isaac Newton, in his Principia of 1687, was the
first to establish on a rational basis the relationships between force, momentum,
and acceleration. Although he tried, he was unable to apply these concepts prop-
erly to a moving fluid. The real foundations of theoretical fluid dynamics were
not laid until the next century—developed by a triumvirate consisting of Daniel
Bernoulli, Leonhard Euler, and Jean Le Rond d’Alembert.

6 For more details, see the interesting discussion on forest aerodynamics in the book by John E. Allen
entitled Aerodynamics, The Science of Air in Motion, McGraw-Hill, New York, 1982.
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Figure 3.51 Bernoulli’s family tree.

First, consider Bernoulli. Actually, we must consider the whole family of
Bernoulli’s because Daniel Bernoulli was a member of a prestigious family that
dominated European mathematics and physics during the early part of the eigh-
teenth century. Figure 3.51 is a portion of the Bernoulli family tree. It starts
with Nikolaus Bernoulli, who was a successful merchant and druggist in Basel,
Switzerland, during the seventeenth century. With one eye on this family tree,
let us simply list some of the subsequent members of this highly accomplished
family:

1. Jakob—Daniel’s uncle. Mathematician and physicist, he was professor of
mathematics at the University of Basel. He made major contributions to the
development of calculus and coined the term “integral.”

2. Johann—Daniel’s father. He was a professor of mathematics at Groningen,
Netherlands, and later at the University of Basel. He taught the famous
French mathematician L’Hospital the elements of calculus, and after the
death of Newton in 1727 he was considered Europe’s leading
mathematician at that time.

3. Nikolaus—Daniel’s cousin. He studied mathematics under his uncles and
held a master’s degree in mathematics and a doctor of jurisprudence.

4. Nikolaus—Daniel’s brother. He was Johann’s favorite son. He held a master
of arts degree, and assisted with much of Johann’s correspondence to
Newton and Liebniz concerning the development of calculus.

5. Daniel himself—to be discussed below.
6. Johann—Daniel’s other brother. He succeeded his father in the Chair of

Mathematics at Basel and won the prize of the Paris Academy four times
for his work.

7. Johann—Daniel’s nephew. A gifted child, he earned the master of
jurisprudence at the age of 14. When he was 20, he was invited by
Frederick II to reorganize the astronomical observatory at the Berlin
Academy.
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8. Jakob—Daniel’s other nephew. He graduated in jurisprudence but worked
in mathematics and physics. He was appointed to the Academy in
St. Petersburg, Russia, but he had a promising career prematurely that
ended when he drowned in the river Neva at the age of 30.

With such a family pedigree, Daniel Bernoulli was destined for success.
Daniel Bernoulli was born in Groningen, Netherlands, on February 8, 1700.

His father, Johann, was a professor at Groningen but returned to Basel, Switzerland,
in 1705 to occupy the Chair of Mathematics which had been vacated by the death
of Jacob Bernoulli. At the University of Basel, Daniel obtained a master’s de-
gree in 1716 in philosophy and logic. He went on to study medicine in Basel,
Heidelburg, and Strasbourg, obtaining his Ph.D. in anatomy and botany in 1721.
During these studies, he maintained an active interest in mathematics. He followed
this interest by moving briefly to Venice, where he published an important work
entitled Exercitationes Mathematicae in 1724. This earned him much attention
and resulted in his winning the prize awarded by the Paris Academy—the first of
10 he was eventually to receive. In 1725, Daniel moved to St. Petersburg, Russia,
to join the academy. The St. Petersburg Academy had gained a substantial reputa-
tion for scholarship and intellectual accomplishment at that time. During the next
8 years, Bernoulli experienced his most creative period. While at St. Petersburg,
he wrote his famous book Hydrodynamica, completed in 1734, but not published
until 1738. In 1733, Daniel returned to Basel to occupy the Chair of Anatomy and
Botany, and in 1750 moved to the Chair of Physics created exclusively for him.
He continued to write, give very popular and well-attended lectures in physics,
and make contributions to mathematics and physics until his death in Basel on
March 17, 1782.

Daniel Bernoulli was famous in his own time. He was a member of virtually
all the existing learned societies and academies, such as Bologna, St. Petersburg,
Berlin, Paris, London, Bern, Turin, Zurich, and Mannheim. His importance to
fluid dynamics is centered on his book Hydrodynamica (1738). (With this book,
Daniel introduced the term “hydrodynamics” to the literature.) In this book, he
ranged over such topics as jet propulsion, manometers, and flow in pipes. Of
most importance, he attempted to obtain a relationship between pressure and
velocity. Unfortunately, his derivation was somewhat obscure, and Bernoulli’s
equation, ascribed by history to Daniel via his Hydrodynamica, is not to be found
in this book, at least not in the form we see it today [such as Equations (3.14)
and (3.15)]. The propriety of Equations (3.14) and (3.15) is further complicated
by his father, Johann, who also published a book in 1743 entitled Hydraulica.
It is clear from this latter book that the father understood Bernoulli’s theorem
better than his son; Daniel thought of pressure strictly in terms of the height of
a manometer column, whereas Johann had the more fundamental understanding
that pressure was a force acting on the fluid. (It is interesting to note that Johann
Bernoulli was a person of some sensitivity and irritability, with an overpowering
drive for recognition. He tried to undercut the impact of Daniel’s Hydrodynamica
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by predating the publication date of Hydraulica to 1728, to make it appear to have
been the first of the two. There was little love lost between son and father.)

During Daniel Bernoulli’s most productive years, partial differential equa-
tions had not yet been introduced into mathematics and physics; hence, he could
not approach the derivation of Bernoulli’s equation in the same fashion as we have
in Section 3.2. The introduction of partial differential equations to mathematical
physics was due to d’Alembert in 1747. d’Alembert’s role in fluid mechanics is
detailed in Section 3.20. Suffice it to say here that his contributions were equally if
not more important than Bernoulli’s, and d’Alembert represents the second mem-
ber of the triumvirate which molded the foundations of theoretical fluid dynamics
in the eighteenth century.

The third and probably pivotal member of this triumvirate was Leonhard
Euler. He was a giant among the eighteenth-century mathematicians and scientists.
As a result of his contributions, his name is associated with numerous equations
and techniques, for example, the Euler numerical solution of ordinary differential
equations, eulerian angles in geometry, and the momentum equations for inviscid
fluid flow [see Equation (3.12)].

Leonhard Euler was born on April 15, 1707, in Basel, Switzerland. His father
was a Protestant minister who enjoyed mathematics as a pastime. Therefore, Euler
grew up in a family atmosphere that encouraged intellectual activity. At the age of
13, Euler entered the University of Basel which at that time had about 100 students
and 19 professors. One of those professors was Johann Bernoulli, who tutored
Euler in mathematics. Three years later, Euler received his master’s degree in
philosophy.

It is interesting that three of the people most responsible for the early devel-
opment of theoretical fluid dynamics—Johann and Daniel Bernoulli and Euler—
lived in the same town of Basel, were associated with the same university, and
were contemporaries. Indeed, Euler and the Bernoullis were close and respected
friends—so much that, when Daniel Bernoulli moved to teach and study at the
St. Petersburg Academy in 1725, he was able to convince the academy to hire
Euler as well. At this invitation, Euler left Basel for Russia; he never returned to
Switzerland, although he remained a Swiss citizen throughout his life.

Euler’s interaction with Daniel Bernoulli in the development of fluid me-
chanics grew strong during these years at St. Petersburg. It was here that Euler
conceived of pressure as a point property that can vary from point to point through-
out a fluid and obtained a differential equation relating pressure and velocity, that
is, Euler’s equation given by Equation (3.12). In turn, Euler integrated the differ-
ential equation to obtain, for the first time in history, Bernoulli’s equation in the
form of Equations (3.14) and (3.15). Hence, we see that Bernoulli’s equation is
really a misnomer; credit for it is legitimately shared by Euler.

When Daniel Bernoulli returned to Basel in 1733, Euler succeeded him at St.
Petersburg as a professor of physics. Euler was a dynamic and prolific man; by
1741 he had prepared 90 papers for publication and written the two-volume book
Mechanica. The atmosphere surrounding St. Petersburg was conducive to such
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achievement. Euler wrote in 1749: “I and all others who had the good fortune to
be for some time with the Russian Imperial Academy cannot but acknowledge
that we owe everything which we are and possess to the favorable conditions
which we had there.”

However, in 1740, political unrest in St. Petersburg caused Euler to leave
for the Berlin Society of Sciences, at that time just formed by Frederick the
Great. Euler lived in Berlin for the next 25 years, where he transformed the
society into a major academy. In Berlin, Euler continued his dynamic mode of
working, preparing at least 380 papers for publication. Here, as a competitor
with d’Alembert (see Section 3.20), Euler formulated the basis for mathematical
physics.

In 1766, after a major disagreement with Frederick the Great over some
financial aspects of the academy, Euler moved back to St. Petersburg. This second
period of his life in Russia became one of physical suffering. In that same year,
he became blind in one eye after a short illness. An operation in 1771 resulted in
restoration of his sight, but only for a few days. He did not take proper precautions
after the operation, and within a few days, he was completely blind. However,
with the help of others, he continued his work. His mind was sharp as ever, and
his spirit did not diminish. His literary output even increased—about half of his
total papers were written after 1765!

On September 18, 1783, Euler conducted business as usual—giving a mathe-
matics lesson, making calculations of the motion of balloons, and discussing with
friends the planet of Uranus, which had recently been discovered. At about 5 P.M.,
he suffered a brain hemorrhage. His only words before losing consciousness were
“I am dying.” By 11 P.M., one of the greatest minds in history had ceased to exist.

With the lives of Bernoulli, Euler, and d’Alembert (see Section 3.20) as back-
ground, let us now trace the geneology of the basic equations of fluid dynamics.
For example, consider the continuity equation in the form of Equation (2.52). Al-
though Newton had postulated the obvious fact that the mass of a specified object
was constant, this principle was not appropriately applied to fluid mechanics until
1749. In this year, d’Alembert gave a paper in Paris, entitled “Essai d’une nouvelle
theorie de la resistance des fluides,” in which he formulated differential equations
for the conservation of mass in special applications to plane and axisymmetric
flows. Euler took d’Alembert’s results and, 8 years later, generalized them in a
series of three basic papers on fluid mechanics. In these papers, Euler published,
for the first time in history, the continuity equation in the form of Equation (2.52)
and the momentum equations in the form of Equations (2.113a and c), without
the viscous terms. Hence, two of the three basic conservation equations used to-
day in modern fluid dynamics were well established long before the American
Revolutionary War—such equations were contemporary with the time of George
Washington and Thomas Jefferson!

The origin of the energy equation in the form of Equation (2.96) without
viscous terms has its roots in the development of thermodynamics in the nineteenth
century. Its precise first use is obscure and is buried somewhere in the rapid
development of physical science in the nineteenth century.
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The purpose of this section has been to give you some feeling for the historical
development of the fundamental equations of fluid dynamics. Maybe we can
appreciate these equations more when we recognize that they have been with us
for quite some time and that they are the product of much thought from some of
the greatest minds of the eighteenth century.

3.20 HISTORICAL NOTE: D’ALEMBERT
AND HIS PARADOX

You can well imagine the frustration that Jean le Rond d’Alembert felt in 1744
when, in a paper entitled “Traite de l’equilibre et des mouvements de fluids pour
servir de suite au traite de dynamique,” he obtained the result of zero drag for the
inviscid, incompressible flow over a closed two-dimensional body. Using different
approaches, d’Alembert encountered this result again in 1752 in his paper entitled
“Essai sur la resistance” and again in 1768 in his “Opuscules mathematiques.”
In this last paper can be found the quote given at the beginning of Chapter 15;
in essence, he had given up trying to explain the cause of this paradox. Even
though the prediction of fluid-dynamic drag was a very important problem in
d’Alembert’s time, and in spite of the number of great minds that addressed
it, the fact that viscosity is responsible for drag was not appreciated. Instead,
d’Alembert’s analyses used momentum principles in a frictionless flow, and quite
naturally he found that the flow field closed smoothly around the downstream
portion of the bodies, resulting in zero drag. Who was this man, d’Alembert?
Considering the role his paradox played in the development of fluid dynamics, it
is worth our time to take a closer look at the man himself.

d’Alembert was born illegitimately in Paris on November 17, 1717. His
mother was Madame De Tenun, a famous salon hostess of that time, and his
father was Chevalier Destouches-Canon, a cavalry officer. d’Alembert was im-
mediately abandoned by his mother (she was an ex-nun who was afraid of being
forcibly returned to the convent). However, his father quickly arranged for a home
for d’Alembert—with a family of modest means named Rousseau. d’Alembert
lived with this family for the next 47 years. Under the support of his father,
d’Alembert was educated at the College de Quatre-Nations, where he studied
law and medicine, and later turned to mathematics. For the remainder of his life,
d’Alembert would consider himself a mathematician. By a program of self-study,
d’Alembert learned the works of Newton and the Bernoullis. His early mathemat-
ics caught the attention of the Paris Academy of Sciences, of which he became a
member in 1741. d’Alembert published frequently and sometimes rather hastily,
in order to be in print before his competition. However, he made substantial con-
tributions to the science of his time. For example, he was (1) the first to formulate
the wave equation of classical physics, (2) the first to express the concept of a
partial differential equation, (3) the first to solve a partial differential equation—he
used separation of variables—and (4) the first to express the differential equa-
tions of fluid dynamics in terms of a field. His contemporary, Leonhard Euler
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(see Sections 1.1 and 3.18) later expanded greatly on these equations and was
responsible for developing them into a truly rational approach for fluid-dynamic
analysis.

During the course of his life, d’Alembert became interested in many scien-
tific and mathematical subjects, including vibrations, wave motion, and celestial
mechanics. In the 1750s, he had the honored position of science editor for the
Encyclopedia—a major French intellectual endeavor of the eighteenth century
which attempted to compile all existing knowledge into a large series of books.
As he grew older, he also wrote papers on nonscientific subjects, mainly musical
structure, law, and religion.

In 1765, d’Alembert became very ill. He was helped to recover by the nurs-
ing of Mlle. Julie de Lespinasse, the woman who was d’Alembert’s only love
throughout his life. Although he never married, d’Alembert lived with Julie de
Lespinasse until she died in 1776. d’Alembert had always been a charming gen-
tleman, renowned for his intelligence, gaiety, and considerable conversational
ability. However, after Mlle. de Lespinasse’s death, he became frustrated and
morose—living a life of despair. He died in this condition on October 29, 1783,
in Paris.

d’Alembert was one of the great mathematicians and physicists of the eigh-
teenth century. He maintained active communications and dialogue with both
Bernoulli and Euler and ranks with them as one of the founders of modern fluid
dynamics. This, then, is the man behind the paradox, which has existed as an
integral part of fluid dynamics for the past two centuries.

3.21 SUMMARY
Return to the road map given in Figure 3.4. Examine each block of the road map to
remind yourself of the route we have taken in this discussion of the fundamentals
of inviscid, incompressible flow. Before proceeding further, make certain that you
feel comfortable with the detailed material represented by each block, and how
each block is related to the overall flow of ideas and concepts.

For your convenience, some of the highlights of this chapter are summarized
next:

Bernoulli’s equation

p + 1
2ρV 2 = const

(a) Applies to inviscid, incompressible flows only.
(b) Holds along a streamline for a rotational flow.
(c) Holds at every point throughout an irrotational flow.
(d) In the form given above, body forces (such as gravity) are neglected,

and steady flow is assumed.
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Quasi-one-dimensional continuity equation

ρ AV = const (for compressible flow)

AV = const (for incompressible flow)

From a measurement of the Pitot pressure p0 and static pressure p1, the velocity
of an incompressible flow is given by

V1 =
√

2(p0 − p1)

ρ
(3.34)

Pressure coefficient

Definition:

Cp = p − p∞
q∞

(3.36)

where dynamic pressure is q∞ ≡ 1
2ρ∞V 2

∞.
For incompressible steady flow with no friction:

Cp = 1 −
(

V

V∞

)2

(3.38)

Governing equations

∇ · V = 0 (condition of incompressibility) (3.39)

∇2φ = 0 (Laplace’s equation; holds for
irrotational, incompressible flow)

(3.40)

or ∇2ψ = 0 (3.46)

Boundary conditions

u = ∂φ

∂x
= ∂ψ

∂y
= V∞

v = ∂φ

∂y
= −∂ψ

∂x
= 0

at infinity

V · n = 0 at body (flow tangency condition)
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Elementary flows

(a) Uniform flow: φ = V∞x = V∞r cos θ (3.53)

ψ = V∞y = V∞r sin θ (3.55)

(b) Source flow:
φ = �

2π
ln r (3.67)

ψ = �

2π
θ (3.72)

Vr = �

2πr
Vθ = 0 (3.62)

(c) Doublet flow:
φ = κ

2π

cos θ

r
(3.88)

ψ = − κ

2π

sin θ

r
(3.87)

(d) Vortex flow:
φ = − 


2π
θ (3.112)

ψ = 


2π
ln r (3.114)

Vθ = − 


2πr
Vr = 0 (3.105)

Inviscid flow over a cylinder

(a) Nonlifting (uniform flow and doublet)

ψ = (V∞r sin θ)

(
1 − R2

r 2

)
(3.92)

where R = radius of cylinder = κ/2πV∞.
Surface velocity: V∞ = −2V∞ sin θ (3.100)

Surface pressure coefficient: Cp = 1 − 4 sin2 θ (3.101)

L = D = 0

(b) Lifting (uniform flow + doublet + vortex)

ψ = (V∞r sin θ)

(
1 − R2

r 2

)
+ 


2π
ln

r

R
(3.118)

(continued)
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Surface velocity: Vθ = −2V∞ sin θ − 


2π R
(3.125)

L ′ = ρ∞V∞
 (lift per unit span) (3.140)

D = 0

Kutta-Joukowski theorem
For a closed two-dimensional body of arbitrary shape, the lift per unit span is
L ′ = ρ∞V∞
.

Source panel method
This is a numerical method for calculating the nonlifting flow over bodies of
arbitrary shape. Governing equations:

λi

2
+

n∑
j=1

( j 
=1)

λ j

2π

∫
j

∂

∂ni
(ln ri j ) ds j + V∞ cos βi = 0 (i = 1, 2, . . . , n)

(3.152)

3.22 INTEGRATED WORK CHALLENGE:
RELATION BETWEEN AERODYNAMIC
DRAG AND THE LOSS OF TOTAL PRESSURE
IN THE FLOW FIELD

Concept: The concept of total pressure in a flow is introduced in Section 3.4 in
conjunction with the use of a Pitot tube for airspeed measurement. However, total
pressure is more significant than just the pressure that exists at a stagnation point
on a body. It is, by general definition, the pressure that would exist at any point
in a flow if the flow velocity were somehow magically slowed to zero velocity
at that point without the influence of the dissipative effects of friction or thermal
conduction. A more complete examination of the definition of total pressure is
discussed in Section 7.5 dealing with the general case of a compressible flow.
For our purposes here, we will continue our treatment of an incompressible flow,
where from Equation (3.35), the total pressure, p0, is given by p0 = p1 + 1

2ρV 2
1 .

This relation stems from Bernoulli’s equation, and hence applies to an incom-
pressible flow with no friction. Note, however, that the “no friction” criterion
applies only to that part of the flow associated with the slowing-down process
from the local flow velocity to zero. As discussed in Section 3.4, this slowing-
down process can be real, as occurs when the flow comes to a stop at the entrance
of a Pitot tube or at a stagnation point on a body. Or, the slowing-down process
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can be imaginary, where at any given point in a flow we imagine the flow slowed
to zero velocity at that point, and then the pressure that would exist at that point,
is by definition the total pressure at that point. For example, consider two points
in a flow, points 1 and 2, where the static pressure and flow velocity are p1, V1, p2,
and V2, respectively. At point 1,

p01 = p1 + 1

2
ρV 2

1

and at point 2,

p02 = p2 + 1

2
ρV 2

1

In general, at these two points, due to dissipative effects in the flow, the total
pressure will not be the same, i.e., p01 
= p02 . Only in the case of flows without
internal dissipation, i.e., without external friction or thermal conduction, will the
total pressure be the same. Of course, in this chapter we are dealing with a fric-
tionless flow, so for all the flows considered here, assuming a uniform freestream
ahead of the body or entering a wind tunnel, the total pressure is constant through-
out the flow.

Total pressure is a measure of the ability of a flow to do some kind of “useful
work.” When there is the loss of total pressure, the flow loses some of its ca-
pacity to do useful work. For example, in the flow through a jet engine, a loss
of total pressure causes a net loss of engine thrust. In the external flow over an
aerodynamic body, the drag on that body causes a net loss of total pressure in the
flow. It is precisely this effect that is the subject of the present Integrated Work
Challenge.

Challenge: Examine and derive a relation between the aerodynamic drag on a
body and the loss of total pressure in the flow field.

Solution: Consider the control volume sketched in Figure 2.20a. Here, the drag
per unit span on a body inside the control volume is related to the loss of momen-
tum in the flow, and the relation is given by a combination of Equations (2.78)
and (2.79) as

D′ = − .......................................................................
.........

∫∫
S

(ρV · ds)u =
∫ a

i
ρ1u2

1dy −
∫ b

h
ρ2u2

2dy (C3.1)

Along station i − a,

p01 = p1 + 1

2
ρu2

1

where p1 and u1 are constant over the station, and u1 is the freestream velocity
V∞ ahead of the body. Thus,

p01 = p1 + 1

2
ρV 2

∞ (C3.2)
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Along station h − b,

p02 = p2 + 1

2
ρu2

2 (C3.3)

where p2 is constant over the station but u2 is a variable in the downstream wake
of the body.

The total pressure integrated over the inflow station is∫ a

i
p01 dy =

∫ a

i

(
p1 + 1

2
ρV 2

∞

)
dy

and the total pressure integrated over the outflow station is∫ b

h
p01 dy =

∫ b

h

(
p2 + 1

2
ρu2

2

)
dy

The net integrated loss of total pressure between the inflow and outflow stations
is the difference between the two integrals. Denoting the net integrated loss of
total pressure by IL, we have

IL =
∫ a

i

(
p1 + 1

2
ρV 2

∞

)
dy −

∫ b

h

(
p2 + 1

2
ρu2

2

)
dy (C3.4)

The static pressure across stations ai and hb is constant and equal to p∞. Also,
consider the streamlines forming the upper and lower boundaries of the control
volume in Figure 2.20a to be far enough apart to be essentially straight, parallel
streamlines; thus the distances ia and hb are the same. Hence, in Equation (3.4),
the terms involving the static pressure become∫ a

i
p1dy −

∫ b

h
p2dy =

∫ a

i
p∞dy −

∫ a

i
p∞dy = 0

and Equation (3.4) reduces to

IL =
∫ a

i

(
1

2
ρV 2

∞ − 1

2
ρu2

2

)
dy (C3.5)

or, since ρ is constant

IL = 1

2
ρ

∫ a

i

(
V 2

∞ − u2
2

)
dy (C3.6)

However, from Equation (C3.1),

ρ

∫ a

i

(
V 2

∞ − u2
2

)
dy = D′ (C3.7)

Comparing Equations (C3.6) and (C3.7), we have

IL = 1

2
D′ (C3.8)
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That is, there is a net loss of total pressure per unit depth from the inflow to the
outflow boundaries, and this integrated loss of total pressure is equal to one-half
of the aerodynamic drag per unit span exerted on the body immersed in the flow.

So we see that there is a connection between drag and the loss of total pressure.
Total pressure is a measure of the capacity of the flow to do useful work. Drag is
a force opposing the forward motion of a body; drag is a mechanism that creates
a kind of “negative work” that must be countered by an increase in the positive
work to move the body. In the flow over a body, drag serves to reduce the local
flow field velocity, which is reflected in a reduction of total pressure.

3.23 INTEGRATED WORK CHALLENGE:
CONCEPTUAL DESIGN OF A SUBSONIC
WIND TUNNEL

Concept: The aerodynamic flow in the test section of a low-speed subsonic
wind tunnel is discussed in Section 3.3. Two basic configurations for such wind
tunnels are sketched in Figures 3.8a and 3.8b, an open-circuit tunnel and a closed-
circuit tunnel, respectively. These wind tunnels are aerodynamic devices, in the
same spirit that an airplane is an aerodynamic device. And like an airplane that is
powered by some type of motor, so is a wind tunnel powered by a motor, as shown
in Figure 3.8. The conceptual design of an airplane starts with the specification of
the requirements to be met by the airplane, and a preliminary calculation of the
power required to meet these specifications is an essential part of the conceptual
design process. (See Anderson, Aircraft Performance and Design, 1999, McGraw-
Hill, Chapter 7.) Similarly, the conceptual design of a wind tunnel starts with a
specification for the aerodynamic flow in the test section, and the power required
to drive the wind tunnel flow to meet the specified conditions is an essential part
of the conceptual design process of the tunnel. The purpose of this Integrated
Work Challenge is to illustrate this design process.

Challenge: Consider that you have been given the job of designing a new subsonic
wind tunnel. The specifications call for a maximum test-section flow velocity of
120 m/s and a test section size that can accommodate an airplane model with a
wing span of 2 m. The Reynolds number capability in the flow direction must be
25 million. The specifications also require a closed-circuit wind tunnel because
it takes less power to run such a tunnel compared with an open circuit for the
same test section conditions. Of course, just a glance at Figure 3.8 indicates that
a closed-circuit tunnel requires a great deal more laboratory space than an open-
circuit tunnel, but for the present design we assume there are no space limitations.
Your challenge is to prepare a conceptual design for the new wind tunnel, and
in particular to estimate the power required to drive the flow around the tunnel
circuit.

Solution: Step one is to determine the size of the test section. We choose a
rectangular shape for the test section, and we need to determine the width and
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height of the cross section perpendicular to the flow and the length of the test
section in the flow direction. For the most part, there is no precise technical
calculation for the test section; indeed, there are no “right” dimensions to be had,
just like there is no one “right” shape for a new airplane. There are a multitude
of viable shapes and sizes. When a designer chooses a size and shape, he or she
is guided by existing designs that have been proven to work. For our Integrated
Work Challenge, we will examine previous wind tunnel designs and make some
decisions based on these designs. An excellent source of such design information
is Barlow, Rae, and Pope, Low-Speed Wind Tunnel Testing, Third Edition, 1999,
John Wiley and Sons, New York. Our specifications call for a test section with a
width large enough such that an airplane model with a 2-meter wingspan would
comfortably fit. Barlow et al. recommend that the maximum wing span of a model
be less than 0.8 of the tunnel width in order to minimize the effects of the tunnel
walls on the aerodynamic measurements. Let us design our test section width
such that the model wingspan will be about 0.7 of the tunnel width. Thus,

Width = 2 m

0.7
= 2.86 m

For convenience during the fabrication of the tunnel, we will round the width
to the whole number of 3 m. Barlow et al. also suggest that for testing airplane
models, a rectangular test section with a width-to-height ratio of about 1.5 will
minimize the wall correction factor on the measured data. Thus, we choose the
height of the test section to be

Height = width

1.5
= 3 m

1.5
= 2 m

So our tunnel will have a 2×3-m test section. Parenthetically, we note (see Barlow
et al., p. 102) that the subsonic wind tunnel established years ago by Boeing at
the University of Washington has a rectangular test section that is 8 × 12 ft, the
same 2 to 3 ratio chosen for our design.

Our test section must be long enough to provide the maximum specified test
Reynolds number of 25 million (25 × 106). To achieve this Reynolds number,
recalling that the specified flow velocity in the test section is 120 m/s, noting
that the test-section flow temperature and density correspond to standard sea
level conditions (see Appendix D) of T∞ = 288.16 K and ρ∞ = 1.225 kg/m3,
and the viscosity coefficient at this temperature is 1.7894 × 10−5 kg/(m)(s) from
Section 1.11, the required test section length � is obtained from:

Re = ρ∞V∞
�

μ∞
= 25 × 106

or,

� = μ∞Re

ρ∞V∞
= (1.7894 × 10−5)(25 × 106)

(1.225)(120)

� = 3.046 m
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Again we will be conservative and choose the test section length to be slightly
longer, namely 3.2 m. So the overall size of our rectangular-shaped text section
will be

Height:width:length = 2 m × 3 m × 3.2 m

Caution: An airplane that is designed larger than it needs to be will have a larger
weight and more surface area that generates more drag than necessary, hence
requiring engines with more power than they need. Similarly, a wind tunnel with
a test section that is larger than it needs to be will require more mass flow of
air, and the wetted surface area of the walls being more than it needs to be will
generate a larger friction loss than necessary, both requiring more motor power to
drive the wind tunnel than necessary. Hence, in our determination of the size of
the test section for our wind tunnel, we have been a little conservative to ensure
the generation of a proper flow for accurate aerodynamic measurements, but we
must be careful not to be too conservative.

Step two of our conceptual design is an estimate of the power required to
drive the wind tunnel. For this, we first calculate the energy of the flow in the test
section. The kinetic energy per unit mass of gas in the test section, where Vt is
the flow velocity in the test section, is 1

2 V 2
t . The mass flow of air through the test

section with cross-sectional At is ṁt = ρt At Vt . The jet power in the test section,
Pt , is the time rate of flow of energy through the test section, given by

Pt = (mass flow)(kinetic energy per unit mass)

= (ρt At Vt)

(
1

2
V 2

t

)
or,

Pt = 1

2
ρt At V

3
t (C3.9)

The function of the motor in a closed-return wind tunnel is to provide power to
first get the air moving through the tunnel, but after the flow is up to speed, then
the motor power is required to overcome losses in the flow as it moves around
the tunnel circuit. If there were no losses, no motor power would be required,
and the tunnel would be a perpetual motion machine. Nature ensures that this
does not happen, so our next conceptual design step is to estimate the losses as
the air flows around the tunnel circuit.

Referring to our discussion in Section 3.22 of the connection between drag
on an aerodynamic body and the loss of total pressure in the flow around that
body, in a similar fashion the loss in any section of the wind tunnel is defined as
the mean loss of total pressure of the air flow as it passes through that section.
The total pressure is

p0 = p + 1

2
ρV 2 (C3.10)

and for the external flow over an aerodynamic body, the loss in p0 is due to the loss
of velocity and hence loss of dynamic pressure 1

2ρV 2 in Equation (C3.10). How-
ever, for the internal flow through a wind tunnel, the principle of mass conservation
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applied at any particular section of the tunnel dictates that there can be no loss
of velocity due to dissipative effects. From the continuity equation for an incom-
pressible flow, Equation (9.22), we have

AV = constant

and since A is fixed by the wind tunnel design, any change in velocity between
two locations in the tunnel is simply due to the area change between these two
sections. Nevertheless, dissipation occurs in the flow (friction due to the flow
along the tunnel walls, etc.), and this loss does show up as a loss of total pressure.
However, referring to Equation (C3.10), this loss appears as a decrease in the
static pressure, p, compared with what the static pressure would be if there were
no dissipative losses. In Equation (C3.10), p0 and p are frequently referred to as
the “total head” and “static head,” respectively. As stated by Barlow et al. (p. 73):

“There will be equal drops in static head and in total head corresponding to the friction
loss. Throughout the wind tunnel the losses that occur appear as successive pressure
drops to be balanced by the pressure rise through the fan. The total pressure drop will
be the pressure rise required by the fan.”

As shown in Figure 3.8, the fan is connected to the motor and is the mechanism
that supplies energy to the air flow, analogous to the propeller on an airplane that
converts engine power to thrust power to propel the airplane.

In order to estimate the power required to drive the wind tunnel, referring to
Figure 3.8, we should estimate the total pressure drop in each section of the wind
tunnel, such as the nozzle, test section, diffuser, turning vanes in the corners, etc.
Let us denote the rate of flow losses in the complete circuit as Pc. Defining the
energy ratio, ER , as

ER = Pt

Pc
(C3.11)

we could estimate the energy ratio that pertains to each tunnel section. There are
engineering methods for making such estimates, as nicely detailed in Barlow et
al. For our purposes, however, we will make an estimate of the value of ER for
the complete wind tunnel by looking at values from existing wind tunnels. From
a tabulation in Barlow et al. (p. 102), the wind tunnel closest in size to our design
is the University of Washington 8 × 12 foot tunnel with an energy ratio of 8.3.
This is the highest value of any of the tunnels listed in the tabulation and reflects
a highly efficient design for the university’s tunnel. Using this energy ratio for
our conceptual design, we have from Equation (C3.11)

Pc = Pt

ER
(C3.12)

where the jet power in our 2 × 3-m test section is obtained from Equation (C3.9)

Pt = 1

2
ρt At V

3
t

= 1

2
(1.23)(2)(3)(120)3 = 6.376 × 106 W
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From Equation (C3.9),

Pc = Pt

ER
= 6.376 × 106

8.3
= 7.682 × 106 W

Noting that 746 W = 1 hp, the rate of flow losses in the wind tunnel is

Pc = 7.682 × 105

746
= 1030 hp

This is the power that the fan must supply to the flow. Assuming no losses from
the motor to the fan and then to the flow (i.e., 100% motor and fan efficiency),
the motor must supply 1030 hp to drive the wind tunnel.

To summarize the basic conceptual design of our subsonic wind tunnel:

Tunnel circuit: Closed return, such as in Figure 3.8b
Size of test section: 2 m × 3 m × 3.2 m
Flow velocity in the test section: 120 m/s
Motor power required: 1030 hp

3.24 PROBLEMS
Note: All the following problems assume an inviscid, incompressible flow. Also,
standard sea level density and pressure are 1.23 kg/m3 (0.002377 slug/ft3) and
1.01 × 105 N/m2 (2116 lb/ft2), respectively.

3.1 For an irrotational flow, show that Bernoulli’s equation holds between any
points in the flow, not just along a streamline.

3.2 Consider a venturi with a throat-to-inlet area ratio of 0.8, mounted on the
side of an airplane fuselage. The airplane is in flight at standard sea level.
If the static pressure at the throat is 2100 lb/ft2, calculate the velocity of
the airplane.

3.3 Consider a venturi with a small hole drilled in the side of the throat. This
hole is connected via a tube to a closed reservoir. The purpose of the
venturi is to create a vacuum in the reservoir when the venturi is placed in
an airstream. (The vacuum is defined as the pressure difference below the
outside ambient pressure.) The venturi has a throat-to-inlet area ratio of
0.85. Calculate the maximum vacuum obtainable in the reservoir when the
venturi is placed in an airstream of 90 m/s at standard sea level conditions.

3.4 Consider a low-speed open-circuit subsonic wind tunnel with an
inlet-to-throat area ratio of 12. The tunnel is turned on, and the pressure
difference between the inlet (the settling chamber) and the test section is
read as a height difference of 10 cm on a U-tube mercury manometer.
(The density of liquid mercury is 1.36 × 104 kg/m3.) Calculate the
velocity of the air in the test section.

3.5 Assume that a Pitot tube is inserted into the test-section flow of the wind
tunnel in Problem 3.4. The tunnel test section is completely sealed from
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the outside ambient pressure. Calculate the pressure measured by the Pitot
tube, assuming the static pressure at the tunnel inlet is atmospheric.

3.6 A Pitot tube on an airplane flying at standard sea level reads 1.07×
105 N/m2. What is the velocity of the airplane?

3.7 At a given point on the surface of the wing of the airplane in Problem 3.6,
the flow velocity is 130 m/s. Calculate the pressure coefficient at this point.

3.8 Consider a uniform flow with velocity V∞. Show that this flow is a
physically possible incompressible flow and that it is irrotational.

3.9 Show that a source flow is a physically possible incompressible flow
everywhere except at the origin. Also show that it is irrotational
everywhere.

3.10 Prove that the velocity potential and the stream function for a uniform
flow, Equations (3.53) and (3.55), respectively, satisfy Laplace’s equation.

3.11 Prove that the velocity potential and the stream function for a source flow,
Equations (3.67) and (3.72), respectively, satisfy Laplace’s equation.

3.12 Consider the flow over a semi-infinite body as discussed in Section 3.11. If
V∞ is the velocity of the uniform stream, and the stagnation point is 1 ft
upstream of the source:
a. Draw the resulting semi-infinite body to scale on graph paper.
b. Plot the pressure coefficient distribution over the body; that is, plot Cp

versus distance along the centerline of the body.
3.13 Derive Equation (3.81). Hint: Make use of the symmetry of the flow field

shown in Figure 3.18; that is, start with the knowledge that the stagnation
points must lie on the axis aligned with the direction of V∞.

3.14 Derive the velocity potential for a doublet; that is, derive Equation (3.88).
Hint: The easiest method is to start with Equation (3.87) for the stream
function and extract the velocity potential.

3.15 Consider the nonlifting flow over a circular cylinder. Derive an expression
for the pressure coefficient at an arbitrary point (r, θ) in this flow, and
show that it reduces to Equation (3.101) on the surface of the cylinder.

3.16 Consider the nonlifting flow over a circular cylinder of a given radius,
where V∞ = 20 ft/s. If V∞ is doubled, that is, V∞ = 40 ft/s, does the
shape of the streamlines change? Explain.

3.17 Consider the lifting flow over a circular cylinder of a given radius and with
a given circulation. If V∞ is doubled, keeping the circulation the same,
does the shape of the streamlines change? Explain.

3.18 The lift on a spinning circular cylinder in a freestream with a velocity of
30 m/s and at standard sea level conditions is 6 N/m of span. Calculate the
circulation around the cylinder.

3.19 A typical World War I biplane fighter (such as the French SPAD shown in
Figure 3.50) has a number of vertical interwing struts and diagonal
bracing wires. Assume for a given airplane that the total length for the
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vertical struts (summed together) is 25 ft, and that the struts are cylindrical
with a diameter of 2 in. Assume also that the total length of the bracing
wires is 80 ft, with a cylindrical diameter of 3

32 in. Calculate the drag (in
pounds) contributed by these struts and bracing wires when the airplane is
flying at 120 mi/h at standard sea level. Compare this component of drag
with the total zero-lift drag for the airplane, for which the total wing area
is 230 ft2 and the zero-lift drag coefficient is 0.036.

3.20 The Kutta-Joukowski theorem, Equation (3.140), was derived exactly
for the case of the lifting cylinder. In Section 3.16 it is stated without
proof that Equation (3.140) also applies in general to a two-dimensional
body of arbitrary shape. Although this general result can be proven
mathematically, it also can be accepted by making a physical argument as
well. Make this physical argument by drawing a closed curve around the
body where the closed curve is very far away from the body, so far away
that in perspective the body becomes a very small speck in the middle of
the domain enclosed by the closed curve.

3.21 Consider the streamlines over a circular cylinder as sketched at the right of
Figure 3.26. Single out the first three streamlines flowing over the top of
the cylinder. Designate each streamline by its stream function, ψ1, ψ2, and
ψ3. The first streamline wets the surface of the cylinder; designate ψ1 = 0.
The streamline above that is ψ2, and the next one above that is ψ3.
Assume the streamlines start out in the freestream equally spaced. Hence,
the volume flow rates between the streamlines are the same. The
streamline ψ2 passes through the point (1.2R,π /2) directly above the top
of the cylinder. Calculate the location of the point directly above the top of
the cylinder through which the streamline ψ3 flows. Comment on the
spacing between the streamlines directly above the top.

3.22 Consider the flow field over a circular cylinder mounted perpendicular to
the flow in the test section of a low-speed subsonic wind tunnel. At
standard sea level conditions, if the flow velocity at some region of the
flow field exceeds about 250 mi/h, compressibility begins to have an effect
in that region. Calculate the velocity of the flow in the test section of the
wind tunnel above which compressibility effects begin to become
important, i.e., above which we cannot accurately assume totally
incompressible flow over the cylinder for the wind tunnel tests.

3.23 Prove that the flow field specified in Example 2.1 is not incompressible;
i.e., it is a compressible flow as stated without proof in Example 2.1.



C H A P T E R 4
Incompressible Flow
over Airfoils

Of the many problems now engaging attention, the following are considered of
immediate importance and will be considered by the committee as rapidly as
funds can be secured for the purpose. . . . The evolution of more efficient wing
sections of practical form, embodying suitable dimensions for an economical
structure, with moderate travel of the center-of-pressure and still affording
a large range of angle-of-attack combined with efficient action.

From the first Annual Report of the
NACA, 1915

PREVIEW BOX

Imagine that you have just been given an airfoil of a
particular shape at a certain angle of attack to a given
low-speed flow, and you have been asked to obtain
the lift (or more importantly, the lift coefficient) of
the airfoil. What do you do (besides panicking)? Your
first inclination might be to make a model of the air-
foil, put it in a low-speed wind tunnel, and measure
the lift coefficient. This is indeed what aerodynami-
cists have been doing for more than 100 years. The
early part of this chapter discusses such experimental
measurements of airfoil properties in low-speed wind
tunnels. These measurements give you an immediate
feel for airfoil lift, drag, and moment coefficients as

a function of angle of attack. The experimental mea-
surements give you a fast track toward obtaining a
comfortable and practical understanding as to how
airfoils behave. That is what the first three sections of
this chapter are all about.

Most of the rest of this chapter, however, deals
with our second inclination as to how to obtain the
airfoil properties, namely, to calculate them. This is
a horse of a different color. You will be introduced
to the elegant circulation theory of lift—the crowning
jewel of inviscid, incompressible flow theory for the
calculation of lift. At the turn of the twentieth cen-
tury, the circulation theory of lift was a breakthrough
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in the theoretical prediction of lift. In this chapter, we
first apply this theory to thin airfoils at small angles of
attack; thin airfoil theory was developed in Germany
during World War I and is by far the most tractable
means of obtaining analytical solutions for lift and
moments on an airfoil. But, as we shall see, thin air-
foil theory, as its name implies, holds only for thin
airfoils at small angles of attack. This is not as restric-
tive as it seems, however, because many airplanes over
the past years have relatively thin airfoils, and cruise
at relatively small angles of attack. Thin airfoil theory
gives us a lot of practical results, plus the intellectual
gratification of carrying through some elegant theo-
retical thinking—give it a good read and I think you
will like it.

Since the 1960s, the advent and development of
the high-speed digital computer allowed detailed nu-
merical solutions based on the circulation theory of
lift, solutions for the lift on a body of arbitrary shape
and thickness at any angle of attack, subject of course
to the assumption of inviscid potential flow. These
numerical solutions, an extension of the panel so-
lutions discussed in Section 3.17, are discussed to-
ward the end of this chapter—they are the “gold
standard” for low-speed, inviscid-flow airfoil calcu-
lations, and are used throughout the aeronautical in-
dustry and by many aeronautical research and devel-
opment laboratories. The concept of panel solutions
is an inspired numerical application of the circulation
theory of lift, and it has opened the door to the anal-
ysis of practically any airfoil shape at any angle of
attack.

Airfoils come in many different shapes. An his-
torical sequence of airfoil shapes through 1935 is
shown in Figure 4.1. Beginning in 1938, the National
Advisory Committee for Aeronautics (NACA) devel-
oped a revolutionary series of airfoil shapes designed
to encourage laminar flow in the boundary layer over
the airfoil, hence dramatically reducing skin fric-
tion drag on the airfoil; the shape of a representative
laminar-flow airfoil is given in Figure 4.2. Although
these shapes never produced the desired amount of
laminar flow in practice, by a stroke of serendipity
they proved to be excellent high-speed airfoils for jet-
powered airplanes after 1945. Beginning in 1965 Na-
tional Aeronautics and Space Administration (NASA)
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Figure 4.1 Historical sequence of airfoil sections.
(Source: NASA.)

c

x

Point of maximum
thickness

NACA 66-012

Figure 4.2 Laminar-flow airfoil shape.
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Figure 4.3 Supercritical airfoil shape.

Figure 4.4 Supersonic airfoil shapes.

developed another series of revolutionary airfoil
shapes, supercritical airfoils, designed for efficient
flight near Mach one; a typical supercritical airfoil
shape is shown in Figure 4.3. Classic airfoil shapes
for supersonic flow are shown in Figure 4.4; note
the very slender profiles with sharp leading edges.
All the airfoil shapes shown in Figure 4.1 through
4.4 were designed for specific purposes in their time
and have been used on untold numbers of different
airplanes. Today, the proper design of new airfoil
shapes is more important than ever. Using numerical

techniques, aircraft companies usually custom-design
the airfoil shapes for new airplanes, shapes that best
fit the design requirements for the specific airplane.
This chapter is exclusively devoted to the study of
airfoils; it discusses the fundamental aspects of airfoil
aerodynamics—aspects that are the heart of airfoil de-
sign and performance.

Figure 4.5 shows an airplane in flight, sustained
in the air by the aerodynamic action of its wing. Air-
plane wings are made up of airfoil shapes. The first
step in understanding the aerodynamics of wings is
to understand the aerodynamics of airfoils. Airfoil
aerodynamics is important stuff—it is the stuff of this
chapter. Moreover, it is truly interesting. It is fun to
visualize the flow over an airfoil and to learn how to
calculate the resulting lift on the airfoil. Read on and
enjoy.

Figure 4.5 DeHaviland DHC-6 Twin Otter
( c© Photodisc/Alamy).

4.1 INTRODUCTION
With the advent of successful powered flight at the turn of the twentieth century,
the importance of aerodynamics ballooned almost overnight. In turn, interest
grew in the understanding of the aerodynamic action of such lifting surfaces as
fixed wings on airplanes and, later, rotors on helicopters. In the period 1912–
1918, the analysis of airplane wings took a giant step forward when Ludwig
Prandtl and his colleagues at Göttingen, Germany, showed that the aerodynamic
consideration of wings could be split into two parts: (1) the study of the
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section of a wing—an airfoil—and (2) the modification of such airfoil prop-
erties to account for the complete, finite wing. This approach is still used today;
indeed, the theoretical calculation and experimental measurement of modern air-
foil properties have been a major part of the aeronautics research carried out by
the National Aeronautics and Space Administration (NASA) in the 1970s and
1980s. (See Chapter 5 of Reference 2 for an historical sketch on airfoil develop-
ment and Reference 10 for a description of modern airfoil research.) Following
Prandtl’s philosophy, the present chapter deals exclusively with airfoils, whereas
Chapter 5 treats the case of a complete, finite wing. Therefore, in this chap-
ter and Chapter 5, we make a major excursion into aerodynamics as applied to
airplanes.

What is an airfoil? Consider a wing as drawn in perspective in Figure 4.6.
The wing extends in the y direction (the span direction). The freestream velocity
V∞ is parallel to the xz plane. Any section of the wing cut by a plane parallel to the
xz plane is called an airfoil. The purpose of this chapter is to present theoretical
methods for the calculation of airfoil properties. In most of this chapter we will
deal with inviscid flow, which does not lead to predictions of airfoil drag; indeed,
d’Alembert’s paradox says that the drag on an airfoil is zero—clearly not a realistic
answer. We will have to wait until Section 4.12 and Chapter 15 and a discussion
of viscous flow before predictions of drag can be made. However, the lift and
moments on the airfoil are due mainly to the pressure distribution, which (below
the stall) is dictated by inviscid flow. Therefore, this chapter concentrates on the
theoretical prediction of airfoil lift and moments.

The road map for this chapter is given in Figure 4.7. After some initial
discussion on airfoil nomenclature and characteristics, we present two app-
roaches to low-speed airfoil theory. One is the classical thin airfoil theory dev-
eloped during the period 1910–1920 (the right-hand branch of Figure 4.7). The
other is the modern numerical approach for arbitrary airfoils using vortex panels

Figure 4.6 Definition of an airfoil.
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Figure 4.7 Road map for Chapter 4.
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(the left-hand branch of Figure 4.7). Please refer to this road map as you work
your way through this chapter.

4.2 AIRFOIL NOMENCLATURE
The first patented airfoil shapes were developed by Horatio F. Phillips in 1884.
Phillips was an Englishman who carried out the first serious wind-tunnel experi-
ments on airfoils. In 1902, the Wright brothers conducted their own airfoil tests
in a wind tunnel, developing relatively efficient shapes which contributed to their
successful first flight on December 17, 1903 (see Section 1.1). Clearly, in the early
days of powered flight, airfoil design was basically customized and personalized.
However, in the early 1930s, NACA—the forerunner of NASA—embarked on a
series of definitive airfoil experiments using airfoil shapes that were constructed
rationally and systematically. Many of these NACA airfoils are in common use
today. Therefore, in this chapter we follow the nomenclature established by the
NACA; such nomenclature is now a well-known standard.

Consider the airfoil sketched in Figure 4.8. The mean camber line is the
locus of points halfway between the upper and lower surfaces as measured
perpendicular to the mean camber line itself. The most forward and rearward
points of the mean camber line are the leading and trailing edges, respectively.
The straight line connecting the leading and trailing edges is the chord line
of the airfoil, and the precise distance from the leading to the trailing edge
measured along the chord line is simply designated the chord c of the airfoil.
The camber is the maximum distance between the mean camber line and the
chord line, measured perpendicular to the chord line. The thickness is the dis-
tance between the upper and lower surfaces, also measured perpendicular to
the chord line. The shape of the airfoil at the leading edge is usually circular,
with a leading-edge radius of approximately 0.02c. The shapes of all standard
NACA airfoils are generated by specifying the shape of the mean camber line and
then wrapping a specified symmetrical thickness distribution around the mean
camber line.

The force-and-moment system on an airfoil was discussed in Section 1.5,
and the relative wind, angle of attack, lift, and drag were defined in Figure 1.16.
You should review these considerations before proceeding further.

Figure 4.8 Airfoil nomenclature.
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The NACA identified different airfoil shapes with a logical numbering sys-
tem. For example, the first family of NACA airfoils, developed in the 1930s, was
the “four-digit” series, such as the NACA 2412 airfoil. Here, the first digit is the
maximum camber in hundredths of chord, the second digit is the location of max-
imum camber along the chord from the leading edge in tenths of chord, and the
last two digits give the maximum thickness in hundredths of chord. For the NACA
2412 airfoil, the maximum camber is 0.02c located at 0.4c from the leading edge,
and the maximum thickness is 0.12c. It is common practice to state these numbers
in percent of chord, that is, 2 percent camber at 40 percent chord, with 12 percent
thickness. An airfoil with no camber, that is, with the camber line and chord line
coincident, is called a symmetric airfoil. Clearly, the shape of a symmetric airfoil
is the same above and below the chord line. For example, the NACA 0012 airfoil
is a symmetric airfoil with a maximum thickness of 12 percent.

The second family of NACA airfoils was the “five-digit” series, such as the
NACA 23012 airfoil. Here, the first digit when multiplied by 3

2 gives the design
lift coefficient1 in tenths, the next two digits when divided by 2 give the location of
maximum camber along the chord from the leading edge in hundredths of chord,
and the final two digits give the maximum thickness in hundredths of chord. For
the NACA 23012 airfoil, the design lift coefficient is 0.3, the location of maximum
camber is at 0.15c, and the airfoil has 12 percent maximum thickness.

One of the most widely used family of NACA airfoils is the “6-series” laminar
flow airfoils, developed during World War II. An example is the NACA 65-218.
Here, the first digit simply identifies the series, the second gives the location of
minimum pressure in tenths of chord from the leading edge (for the basic symmet-
ric thickness distribution at zero lift), the third digit is the design lift coefficient
in tenths, and the last two digits give the maximum thickness in hundredths of
chord. For the NACA 65-218 airfoil, the 6 is the series designation, the minimum
pressure occurs at 0.5c for the basic symmetric thickness distribution at zero lift,
the design lift coefficient is 0.2, and the airfoil is 18 percent thick.

The complete NACA airfoil numbering system is given in Reference 11.
Indeed, Reference 11 is a definitive presentation of the classic NACA airfoil work
up to 1949. It contains a discussion of airfoil theory, its application, coordinates
for the shape of NACA airfoils, and a huge bulk of experimental data for these
airfoils. This author strongly encourages you to read Reference 11 for a thorough
presentation of airfoil characteristics.

As a matter of interest, the following is a short partial listing of airplanes
currently in service that use standard NACA airfoils.

1 The design lift coefficient is the theoretical lift coefficient for the airfoil when the angle of attack is such
that the slope of the mean camber line at the leading edge is parallel to the freestream velocity. In terms
of the Kutta condition to be discussed in Section 4.5, this configuration corresponds to the Kutta
condition holding at the leading edge as well as the trailing edge, i.e., the vortex sheet strength at the
leading edge must be zero because the flow velocity just above the leading edge is the same as the flow
velocity just below the leading edge.
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Airplane Airfoil

Beechcraft Sundowner NACA 63A415
Beechcraft Bonanza NACA 23016.5 (at root)

NACA 23012 (at tip)
Cessna 150 NACA 2412
Fairchild A-10 NACA 6716 (at root)

NACA 6713 (at tip)
Gates Learjet 24D NACA 64A109
General Dynamics F-16 NACA 64A204
Lockheed C-5 Galaxy NACA 0012 (modified)

In addition, many of the large aircraft companies today design their own special-
purpose airfoils; for example, the Boeing 727, 737, 747, 757, 767, and 777 all
have specially designed Boeing airfoils. Such capability is made possible by
modern airfoil design computer programs utilizing either panel techniques or
direct numerical finite-difference solutions of the governing partial differential
equations for the flow field. (Such equations are developed in Chapter 2.)

4.3 AIRFOIL CHARACTERISTICS
Before discussing the theoretical calculation of airfoil properties, let us examine
some typical results. During the 1930s and 1940s, the NACA carried out numerous
measurements of the lift, drag, and moment coefficients on the standard NACA
airfoils. These experiments were performed at low speeds in a wind tunnel where
the constant-chord wing spanned the entire test section from one sidewall to the
other. In this fashion, the flow “sees” a wing without wing tips—a so-called infinite
wing, which theoretically stretches to infinity along the span (in the y direction in
Figure 4.6). Because the airfoil section is the same at any spanwise location along
the infinite wing, the properties of the airfoil and the infinite wing are identical.
Hence, airfoil data are frequently called infinite wing data. (In contrast, we see
in Chapter 5 that the properties of a finite wing are somewhat different from its
airfoil properties.)

The typical variation of lift coefficient with angle of attack for an airfoil is
sketched in Figure 4.9. At low-to-moderate angles of attack, cl varies linearly with
α; the slope of this straight line is denoted by a0 and is called the lift slope. In
this region, the flow moves smoothly over the airfoil and is attached over most of
the surface, as shown in the streamline picture at the left of Figure 4.9. However,
as α becomes large, the flow tends to separate from the top surface of the airfoil,
creating a large wake of relatively “dead air” behind the airfoil as shown at the
right of Figure 4.9. Inside this separated region, the flow is recirculating, and part
of the flow is actually moving in a direction opposite to the freestream—so-called
reversed flow. (Refer also to Figure 1.42.) This separated flow is due to viscous
effects and is discussed in Section 4.12 and Chapter 15. The consequence of this
separated flow at high α is a precipitous decrease in lift and a large increase
in drag; under such conditions the airfoil is said to be stalled. The maximum
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Figure 4.9 Schematic of lift-coefficient variation with angle of attack
for an airfoil.

value of cl , which occurs just prior to the stall, is denoted by cl,max; it is one
of the most important aspects of airfoil performance, because it determines the
stalling speed of an airplane. The higher is cl,max, the lower is the stalling speed.
A great deal of modern airfoil research has been directed toward increasing cl,max.
Again examining Figure 4.9, we see that cl increases linearly with α until flow
separation begins to have an effect. Then the curve becomes nonlinear, cl reaches
a maximum value, and finally the airfoil stalls. At the other extreme of the curve,
noting Figure 4.9, the lift at α = 0 is finite; indeed, the lift goes to zero only
when the airfoil is pitched to some negative angle of attack. The value of α when
lift equals zero is called the zero-lift angle of attack and is denoted by αL=0.
For a symmetric airfoil, αL=0 = 0, whereas for all airfoils with positive camber
(camber above the chord line), αL=0 is a negative value, usually on the order of
−2 or −3◦.

The inviscid flow airfoil theory discussed in this chapter allows us to predict
the lift slope a0 and αL=0 for a given airfoil. It does not allow us to calculate cl,max,
which is a difficult viscous flow problem, to be discussed in Chapters 15 to 20.

Experimental results for lift and moment coefficients for the NACA 2412
airfoil are given in Figure 4.10. Here, the moment coefficient is taken about the
quarter-chord point. Recall from Section 1.6 that the force-and-moment system
on an airfoil can be transferred to any convenient point; however, the quarter-
chord point is commonly used. (Refresh your mind on this concept by reviewing
Section 1.6, especially Figure 1.25.) Also shown in Figure 4.10 are theoretical
results to be discussed later. Note that the experimental data are given for two
different Reynolds numbers. The lift slope a0 is not influenced by Re; however,
cl,max is dependent upon Re. This makes sense, because cl,max is governed by
viscous effects, and Re is a similarity parameter that governs the strength of inertia
forces relative to viscous forces in the flow. [See Section 1.7 and Equation (1.35).]
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Figure 4.10 Experimental data for lift coefficient and moment
coefficient about the quarter-chord point for an NACA 2412 airfoil.
(Source: Data obtained from Abbott, I. H., and A. E. von Doenhoff:
Theory of Wing Sections, McGraw-Hill Book Company, New York,
1949; also, Dover Publications, Inc., New York, 1959.) Also shown is a
comparison with theory described in Section 4.8.

The moment coefficient is also insensitive to Re except at large α. The NACA
2412 airfoil is a commonly used airfoil, and the results given in Figure 4.10 are
quite typical of airfoil characteristics. For example, note from Figure 4.10 that
αL=0 = −2.1◦, cl,max ≈ 1.6, and the stall occurs at α ≈ 16◦.

This chapter deals primarily with airfoil theory for an inviscid, incompressible
flow; such theory is incapable of predicting airfoil drag, as noted earlier. However,
for the sake of completeness, experimental data for the drag coefficient cd for the
NACA 2412 airfoil are given in Figure 4.11 as a function of the angle of attack.2

The physical source of this drag coefficient is both skin friction drag and pres-
sure drag due to flow separation (so-called form drag). The sum of these two

2 In many references, such as Reference 11, it is common to plot cd versus cl , rather than versus α. A plot
of cd versus cl is called a drag polar. For the sake of consistency with Figure 4.10, we choose to plot cd

versus α here.
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Figure 4.11 Experimental data for profile drag coefficient and moment
coefficient about the aerodynamic center for the NACA 2412 airfoil.
(Source: Data obtained from Abbott, I. H., and A. E. von Doenhoff:
Theory of Wing Sections, McGraw-Hill Book Company, New York,
1949; also, Dover Publications, Inc., New York, 1959.)

effects yields the profile drag coefficient cd for the airfoil, which is plotted
in Figure 4.11. Note that cd is sensitive to Re, which is to be expected since
both skin friction and flow separation are viscous effects. Again, we must wait
until Section 4.12 and Chapters 15 to 20 to obtain some tools for theoretically
predicting cd .

Also plotted in Figure 4.11 is the moment coefficient about the aerodynamic
center cm,ac. In general, moments on an airfoil are a function of α. However, there
is one point on the airfoil about which the moment is independent of angle of
attack; such a point is defined as the aerodynamic center. Clearly, the data in
Figure 4.11 illustrate a constant value for cm,ac over a wide range of α.

For an elementary but extensive discussion of airfoil and wing properties, see
Chapter 5 of Reference 2.

EXAMPLE 4.1

Consider an NACA 2412 airfoil with a chord of 0.64 m in an airstream at standard sea
level conditions. The freestream velocity is 70 m/s. The lift per unit span is 1254 N/m.
Calculate the angle of attack and the drag per unit span.
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■ Solution
At standard sea level, ρ = 1.23 kg/m3:

q∞ = 1
2ρ∞V 2

∞ = 1
2 (1.23)(70)2 = 3013.5 N/m2

cl = L ′

q∞S
= L ′

q∞c(1)
= 1254

3013.5(0.64)
= 0.65

From Figure 4.10, for cl = 0.65, we obtain α = 4◦ .

To obtain the drag per unit span, we must use the data in Figure 4.11. However, since
cd = f (Re), let us calculate Re. At standard sea level, μ = 1.789×10−5 kg/(m · s). Hence,

Re = ρ∞V∞c

μ∞
= 1.23(70)(0.64)

1.789 × 10−5 = 3.08 × 106

Therefore, using the data for Re = 3.1 × 106 in Figure 4.11, we find cd = 0.0068. Thus,

D′ = q∞Scd = q∞c(1)cd = 3013.5(0.64)(0.0068) = 13.1 N/m

EXAMPLE 4.2

For the airfoil and flow conditions given in Example 4.1, calculate the moment per unit
span about the aerodynamic center.

■ Solution
From Figure 4.11, cm,ac, which is independent of angle of attack, is −0.05. The moment
per unit span about the aerodynamic center is

M ′
ac = q∞Sccm,ac

= (3013.5)(0.64)(0.64)(−0.05) = −61.7 Nm

Recall the sign convention for aerodynamic moments introduced in Section 1.5, namely,
that a negative moment, as obtained here, is a pitch-down moment, tending to reduce the
angle of attack.

EXAMPLE 4.3

For the NACA 2412 airfoil, calculate and compare the lift-to-drag ratios at angles of attack
of 0, 4, 8, and 12 degrees. The Reynolds number is 3.1 × 106.

■ Solution
The lift-to-drag ratio, L/D, is given by

L

D
= q∞Sc�

q∞Scd
= c�

cd
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From Figures 4.10 and 4.11, we have

α c� cd c�/cd

0 0.25 0.0065 38.5
4 0.65 0.0070 93
8 1.08 0.0112 96

12 1.44 0.017 85

Note that, as the angle of attack increases, the lift-to-drag ratio first increases, reaches a
maximum, and then decreases. The maximum lift-to-drag ratio, (L/D)max, is an important
parameter in airfoil performance; it is a direct measure of aerodynamic efficiency. The
higher the value of (L/D)max, the more efficient is the airfoil. The values of L/D for
airfoils are quite large numbers in comparison to that for a complete airplane. Due to the
extra drag associated with all parts of the airplane, values of (L/D)max for real airplanes
are on the order of 10 to 20.

4.4 PHILOSOPHY OF THEORETICAL SOLUTIONS
FOR LOW-SPEED FLOW OVER AIRFOILS:
THE VORTEX SHEET

In Section 3.14, the concept of vortex flow was introduced; refer to Figure 3.31 for
a schematic of the flow induced by a point vortex of strength � located at a given
point O . (Recall that Figure 3.31, with its counterclockwise flow, corresponds to
a negative value of �. By convention, a positive � induces a clockwise flow.) Let
us now expand our concept of a point vortex. Referring to Figure 3.31, imagine
a straight line perpendicular to the page, going through point O , and extending
to infinity both out of and into the page. This line is a straight vortex filament
of strength �. A straight vortex filament is drawn in perspective in Figure 4.12.
(Here, we show a clockwise flow, which corresponds to a positive value of �.)
The flow induced in any plane perpendicular to the straight vortex filament by the
filament itself is identical to that induced by a point vortex of strength �; that is,
in Figure 4.12, the flows in the planes perpendicular to the vortex filament at O
and O ′ are identical to each other and are identical to the flow induced by a point
vortex of strength �. Indeed, the point vortex described in Section 3.14 is simply
a section of a straight vortex filament.

In Section 3.17, we introduced the concept of a source sheet, which is an infi-
nite number of line sources side by side, with the strength of each line source being
infinitesimally small. For vortex flow, consider an analogous situation. Imagine
an infinite number of straight vortex filaments side by side, where the strength of
each filament is infinitesimally small. These side-by-side vortex filaments form a
vortex sheet, as shown in perspective in the upper left of Figure 4.13. If we look
along the series of vortex filaments (looking along the y axis in Figure 4.13), the
vortex sheet will appear as sketched at the lower right of Figure 4.13. Here, we
are looking at an edge view of the sheet; the vortex filaments are all perpendicular
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Figure 4.12 Vortex filament.

Figure 4.13 Vortex sheet.
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to the page. Let s be the distance measured along the vortex sheet in the edge
view. Define γ = γ (s) as the strength of the vortex sheet, per unit length along s.
Thus, the strength of an infinitesimal portion ds of the sheet is γ ds. This small
section of the vortex sheet can be treated as a distinct vortex of strength γ ds.
Now consider point P in the flow, located a distance r from ds; the cartesian
coordinates of P are (x, z). The small section of the vortex sheet of strength γ ds
induces an infinitesimally small velocity dV at point P . From Equation (3.105),
dV is given by

dV = −γ ds

2πr
(4.1)

and is in a direction perpendicular to r , as shown in Figure 4.13. The velocity
at P induced by the entire vortex sheet is the summation of Equation (4.1) from
point a to point b. Note that dV , which is perpendicular to r , changes direction at
point P as we sum from a to b; hence, the incremental velocities induced at P by
different sections of the vortex sheet must be added vectorally. Because of this, it
is sometimes more convenient to deal with the velocity potential. Again referring
to Figure 4.13, the increment in velocity potential dφ induced at point P by the
elemental vortex γ ds is, from Equation (3.112),

dφ = −γ ds

2π
θ (4.2)

In turn, the velocity potential at P due to the entire vortex sheet from a to b is

φ(x, z) = − 1

2π

∫ b

a
θγ ds (4.3)

Equation (4.1) is particularly useful for our discussion of classical thin airfoil
theory, whereas Equation (4.3) is important for the numerical vortex panel method.

Recall from Section 3.14 that the circulation � around a point vortex is equal
to the strength of the vortex. Similarly, the circulation around the vortex sheet in
Figure 4.13 is the sum of the strengths of the elemental vortices; that is,

� =
∫ b

a
γ ds (4.4)

Recall that the source sheet introduced in Section 3.17 has a discontinuous
change in the direction of the normal component of velocity across the sheet
(from Figure 3.38, note that the normal component of velocity changes direction
by 180◦ in crossing the sheet), whereas the tangential component of velocity is
the same immediately above and below the source sheet. In contrast, for a vortex
sheet, there is a discontinuous change in the tangential component of velocity
across the sheet, whereas the normal component of velocity is preserved across
the sheet. This change in tangential velocity across the vortex sheet is related
to the strength of the sheet as follows. Consider a vortex sheet as sketched in
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Figure 4.14 Tangential velocity jump across a
vortex sheet.

Figure 4.14. Consider the rectangular dashed path enclosing a section of the
sheet of length ds. The velocity components tangential to the top and bottom
of this rectangular path are u1 and u2, respectively, and the velocity components
tangential to the left and right sides are v1 and v2, respectively. The top and bottom
of the path are separated by the distance dn. From the definition of circulation
given by Equation (2.136), the circulation around the dashed path is

� = −(v2 dn − u1 ds − v1 dn + u2 ds)

or � = (u1 − u2) ds + (v1 − v2) dn (4.5)

However, since the strength of the vortex sheet contained inside the dashed path
is γ ds, we also have

� = γ ds (4.6)

Therefore, from Equations (4.5) and (4.6),

γ ds = (u1 − u2) ds + (v1 − v2) dn (4.7)

Let the top and bottom of the dashed line approach the vortex sheet; that is, let
dn → 0. In the limit, u1 and u2 become the velocity components tangential
to the vortex sheet immediately above and below the sheet, respectively, and
Equation (4.7) becomes

γ ds = (u1 − u2) ds

or γ = u1 − u2 (4.8)

Equation (4.8) is important; it states that the local jump in tangential velocity
across the vortex sheet is equal to the local sheet strength.

We have now defined and discussed the properties of a vortex sheet. The con-
cept of a vortex sheet is instrumental in the analysis of the low-speed characteris-
tics of an airfoil. A philosophy of airfoil theory of inviscid, incompressible flow
is as follows. Consider an airfoil of arbitrary shape and thickness in a freestream
with velocity V∞, as sketched in Figure 4.15. Replace the airfoil surface with a
vortex sheet of variable strength γ (s), as also shown in Figure 4.15. Calculate
the variation of γ as a function of s such that the induced velocity field from
the vortex sheet when added to the uniform velocity of magnitude V∞ will make
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Figure 4.15 Simulation of an arbitrary airfoil by distributing a
vortex sheet over the airfoil surface.

the vortex sheet (hence the airfoil surface) a streamline of the flow. In turn, the
circulation around the airfoil will be given by

� =
∫

γ ds

where the integral is taken around the complete surface of the airfoil. Finally, the
resulting lift is given by the Kutta-Joukowski theorem:

L ′ = ρ∞V∞�

This philosophy is not new. It was first espoused by Ludwig Prandtl and his
colleagues at Göttingen, Germany, during the period 1912–1922. However, no
general analytical solution for γ = γ (s) exists for an airfoil of arbitrary shape
and thickness. Rather, the strength of the vortex sheet must be found numerically,
and the practical implementation of the above philosophy had to wait until the
1960s with the advent of large digital computers. Today, the above philosophy is
the foundation of the modern vortex panel method, to be discussed in Section 4.9.

The concept of replacing the airfoil surface in Figure 4.15 with a vortex sheet
is more than just a mathematical device; it also has physical significance. In real
life, there is a thin boundary layer on the surface, due to the action of friction
between the surface and the airflow (see Figures 1.41 and 1.46). This boundary
layer is a highly viscous region in which the large velocity gradients produce
substantial vorticity; that is, ∇ × V is finite within the boundary layer. (Review
Section 2.12 for a discussion of vorticity.) Hence, in real life, there is a distribution
of vorticity along the airfoil surface due to viscous effects, and our philosophy of
replacing the airfoil surface with a vortex sheet (such as in Figure 4.15) can be
construed as a way of modeling this effect in an inviscid flow.3

Imagine that the airfoil in Figure 4.15 is made very thin. If you were to stand
back and look at such a thin airfoil from a distance, the portions of the vortex sheet

3 It is interesting to note that some recent research by NASA is hinting that even as complex a problem as
flow separation, heretofore thought to be a completely viscous-dominated phenomenon, may in reality be
an inviscid-dominated flow which requires only a rotational flow. For example, some inviscid flow-field
numerical solutions for flow over a circular cylinder, when vorticity is introduced either by means of a
nonuniform freestream or a curved shock wave, are accurately predicting the separated flow on the
rearward side of the cylinder. However, as exciting as these results may be, they are too preliminary to be
emphasized in this book. We continue to talk about flow separation in Chapters 15 to 20 as being a
viscous-dominated effect, until definitely proved otherwise. This recent research is mentioned here only
as another example of the physical connection between vorticity, vortex sheets, viscosity, and real life.
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Figure 4.16 Thin airfoil approximation.

on the top and bottom surface of the airfoil would almost coincide. This gives rise
to a method of approximating a thin airfoil by replacing it with a single vortex
sheet distributed over the camber line of the airfoil, as sketched in Figure 4.16.
The strength of this vortex sheet γ (s) is calculated such that, in combination
with the freestream, the camber line becomes a streamline of the flow. Although
the approach shown in Figure 4.16 is approximate in comparison with the case
shown in Figure 4.15, it has the advantage of yielding a closed-form analytical
solution. This philosophy of thin airfoil theory was first developed by Max Munk,
a colleague of Prandtl, in 1922 (see Reference 12). It is discussed in Sections 4.7
and 4.8.

4.5 THE KUTTA CONDITION
The lifting flow over a circular cylinder was discussed in Section 3.15, where
we observed that an infinite number of potential flow solutions were possible,
corresponding to the infinite choice of �. For example, Figure 3.33 illustrates
three different flows over the cylinder, corresponding to three different values of
�. The same situation applies to the potential flow over an airfoil; for a given
airfoil at a given angle of attack, there are an infinite number of valid theoretical
solutions, corresponding to an infinite choice of �. For example, Figure 4.17
illustrates two different flows over the same airfoil at the same angle of attack but
with different values of �. At first, this may seem to pose a dilemma. We know
from experience that a given airfoil at a given angle of attack produces a single
value of lift (e.g., see Figure 4.10). So, although there is an infinite number of
possible potential flow solutions, nature knows how to pick a particular solution.
Clearly, the philosophy discussed in the previous section is not complete—we
need an additional condition that fixes � for a given airfoil at a given α.

To attempt to find this condition, let us examine some experimental results for
the development of the flow field around an airfoil which is set into motion from
an initial state of rest. Figure 4.18 shows a series of classic photographs of the flow
over an airfoil, taken from Prandtl and Tietjens (Reference 8). In Figure 4.18a, the
flow has just started, and the flow pattern is just beginning to develop around the
airfoil. In these early moments of development, the flow tries to curl around
the sharp trailing edge from the bottom surface to the top surface, similar to the
sketch shown at the left of Figure 4.17. However, more advanced considerations
of inviscid, incompressible flow (see, e.g., Reference 9) show the theoretical
result that the velocity becomes infinitely large at a sharp corner. Hence, the type



Figure 4.17 Effect of different values of circulation on the potential flow over a
given airfoil at a given angle of attack. Points 1 and 2 are stagnation points.

(a)

(b)

Figure 4.18 The development of steady flow over an airfoil; the airfoil is impulsively started
from rest and attains a steady velocity through the fluid. (a) A moment just after starting.
(b) An intermediate time. (Both photos: Prandtl, L., and O. G. Tietjens: Applied Hydro and
Aeromechanics Based on Lectures of L. Prandtl, United Engineering Trustees Inc.,1934,
McGraw-Hill, New York.) 339
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(c)

Figure 4.18 (continued) The development of steady flow over an airfoil; the airfoil is
impulsively started from rest and attains a steady velocity through the fluid. (c) The final
steady flow. (Prandtl, L., and O. G. Tietjens: Applied Hydro and Aeromechanics Based on
Lectures of L. Prandtl, United Engineering Trustees Inc.,1934, McGraw-Hill, New York.)

of flow sketched at the left of Figure 4.17, and shown in Figure 4.18a, is not
tolerated very long by nature. Rather, as the real flow develops over the airfoil,
the stagnation point on the upper surface (point 2 in Figure 4.17) moves toward
the trailing edge. Figure 4.18b shows this intermediate stage. Finally, after the
initial transient process dies out, the steady flow shown in Figure 4.18c is reached.
This photograph demonstrates that the flow is smoothly leaving the top and the
bottom surfaces of the airfoil at the trailing edge. This flow pattern is sketched at
the right of Figure 4.17 and represents the type of pattern to be expected for the
steady flow over an airfoil.

Reflecting on Figures 4.17 and 4.18, we emphasize again that in establishing
the steady flow over a given airfoil at a given angle of attack, nature adopts
that particular value of circulation (�2 in Figure 4.17) which results in the flow
leaving smoothly at the trailing edge. This observation was first made and used in
a theoretical analysis by the German mathematician M. Wilhelm Kutta in 1902.
Therefore, it has become known as the Kutta condition.

In order to apply the Kutta condition in a theoretical analysis, we need to be
more precise about the nature of the flow at the trailing edge. The trailing edge
can have a finite angle, as shown in Figures 4.17 and 4.18 and as sketched at the
left of Figure 4.19, or it can be cusped, as shown at the right of Figure 4.19. First,
consider the trailing edge with a finite angle, as shown at the left of Figure 4.19.
Denote the velocities along the top surface and the bottom surface as V1 and V2,
respectively. V1 is parallel to the top surface at point a, and V2 is parallel to the
bottom surface at point a. For the finite-angle trailing edge, if these velocities were
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At point a: V1 = V2 = 0 At point a: V1 = V2 � 0
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Figure 4.19 Different possible shapes of the trailing edge
and their relation to the Kutta condition.

finite at point a, then we would have two velocities in two different directions at
the same point, as shown at the left of Figure 4.19. However, this is not physically
possible, and the only recourse is for both V1 and V2 to be zero at point a. That
is, for the finite trailing edge, point a is a stagnation point, where V1 = V2 = 0.
In contrast, for the cusped trailing edge shown at the right of Figure 4.19, V1 and
V2 are in the same direction at point a, and hence both V1 and V2 can be finite.
However, the pressure at point a, p2, is a single, unique value, and Bernoulli’s
equation applied at both the top and bottom surfaces immediately adjacent to
point a yields

pa + 1
2ρV 2

1 = pa + 1
2ρV 2

2

or V1 = V2

Hence, for the cusped trailing edge, we see that the velocities leaving the top and
bottom surfaces of the airfoil at the trailing edge are finite and equal in magnitude
and direction.

We can summarize the statement of the Kutta condition as follows:

1. For a given airfoil at a given angle of attack, the value of � around the
airfoil is such that the flow leaves the trailing edge smoothly.

2. If the trailing-edge angle is finite, then the trailing edge is a stagnation point.
3. If the trailing edge is cusped, then the velocities leaving the top and bottom

surfaces at the trailing edge are finite and equal in magnitude and direction.

Consider again the philosophy of simulating the airfoil with vortex sheets
placed either on the surface or on the camber line, as discussed in Section 4.4.
The strength of such a vortex sheet is variable along the sheet and is denoted
by γ (s). The statement of the Kutta condition in terms of the vortex sheet is as
follows. At the trailing edge (TE), from Equation (4.8), we have

γ (TE) = γ (a) = V1 − V2 (4.9)

However, for the finite-angle trailing edge, V1 = V2 = 0; hence, from Equa-
tion (4.9), γ (TE) = 0. For the cusped trailing edge, V1 = V2 �= 0; hence, from
Equation (4.9), we again obtain the result that γ (TE) = 0. Therefore, the Kutta
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condition expressed in terms of the strength of the vortex sheet is

γ (TE) = 0 (4.10)

4.5.1 Without Friction Could We Have Lift?

In Section 1.5 we emphasized that the resultant aerodynamic force on a body
immersed in a flow is due to the net integrated effect of the pressure and shear
stress distributions over the body surface. Moreover, in Section 4.1 we noted
that lift on an airfoil is primarily due to the surface pressure distribution, and
that shear stress has virtually no effect on lift. It is easy to see why. Look at the
airfoil shapes in Figures 4.17 and 4.18, for example. Recall that pressure acts
normal to the surface, and for these airfoils the direction of this normal pressure
is essentially in the vertical direction, that is, the lift direction. In contrast, the
shear stress acts tangential to the surface, and for these airfoils the direction of
this tangential shear stress is mainly in the horizontal direction, that is, the drag
direction. Hence, pressure is the dominant player in the generation of lift, and
shear stress has a negligible effect on lift. It is for this reason that the lift on an
airfoil below the stall can be accurately predicted by inviscid theories such as that
discussed in this chapter.

However, if we lived in a perfectly inviscid world, an airfoil could not pro-
duce lift. Indeed, the presence of friction is the very reason why we have lift.
These sound like strange, even contradictory statements to our discussion in the
preceding paragraph. What is going on here? The answer is that in real life, the
way that nature insures that the flow will leave smoothly at the trailing edge, that
is, the mechanism that nature uses to choose the flow shown in Figure 4.18c, is
that the viscous boundary layer remains attached to the surface all the way to the
trailing edge. Nature enforces the Kutta condition by means of friction. If there
were no boundary layer (i.e., no friction), there would be no physical mechanism
in the real world to achieve the Kutta condition.

So we are led to the most ironic situation that lift, which is created by the
surface pressure distribution—an inviscid phenomenon, would not exist in a fric-
tionless (inviscid) world. In this regard, we can say that without friction we could
not have lift. However, we say this in the informed manner as discussed above.

4.6 KELVIN’S CIRCULATION THEOREM
AND THE STARTING VORTEX

In this section, we put the finishing touch to the overall philosophy of airfoil
theory before developing the quantitative aspects of the theory itself in subsequent
sections. This section also ties up a loose end introduced by the Kutta condition
described in the previous section. Specifically, the Kutta condition states that the
circulation around an airfoil is just the right value to ensure that the flow smoothly
leaves the trailing edge. Question: How does nature generate this circulation?
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Figure 4.20 Kelvin’s theorem.

Does it come from nowhere, or is circulation somehow conserved over the whole
flow field? Let us examine these matters more closely.

Consider an arbitrary inviscid, incompressible flow as sketched in Figure 4.20.
Assume that all body forces f are zero. Choose an arbitrary curve C1 and identify
the fluid elements that are on this curve at a given instant in time t1. Also, by
definition the circulation around curve C1 is �1 = − ∫

C1
V · ds. Now let these

specific fluid elements move downstream. At some later time, t2, these same
fluid elements will form another curve C2, around which the circulation is �2 =
−∫

C2
V · ds. For the conditions stated above, we can readily show that �1 = �2.

In fact, since we are following a set of specific fluid elements, we can state that
circulation around a closed curve formed by a set of contiguous fluid elements
remains constant as the fluid elements move throughout the flow. Recall from
Section 2.9 that the substantial derivative gives the time rate of change following
a given fluid element. Hence, a mathematical statement of the above discussion
is simply

D�

Dt
= 0 (4.11)

which says that the time rate of change of circulation around a closed curve
consisting of the same fluid elements is zero. Equation (4.11) along with its
supporting discussion is called Kelvin’s circulation theorem.4 Its derivation from

4 Kelvin’s theorem also holds for an inviscid compressible flow in the special case where ρ = ρ(p); that
is, the density is some single-valued function of pressure. Such is the case for isentropic flow, to be
treated in later chapters.
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Figure 4.21 The creation of the starting vortex and the resulting
generation of circulation around the airfoil.

first principles is left as Problem 4.3. Also, recall our definition and discussion of
a vortex sheet in Section 4.4. An interesting consequence of Kelvin’s circulation
theorem is proof that a stream surface which is a vortex sheet at some instant in
time remains a vortex sheet for all times.

Kelvin’s theorem helps to explain the generation of circulation around an
airfoil, as follows. Consider an airfoil in a fluid at rest, as shown in Figure 4.21a.
Because V = 0 everywhere, the circulation around curve C1 is zero. Now start
the flow in motion over the airfoil. Initially, the flow will tend to curl around the
trailing edge, as explained in Section 4.5 and illustrated at the left of Figure 4.17.
In so doing, the velocity at the trailing edge theoretically becomes infinite. In real
life, the velocity tends toward a very large finite number. Consequently, during
the very first moments after the flow is started, a thin region of very large velocity
gradients (and therefore high vorticity) is formed at the trailing edge. This high-
vorticity region is fixed to the same fluid elements, and consequently it is flushed
downstream as the fluid elements begin to move downstream from the trailing
edge. As it moves downstream, this thin sheet of intense vorticity is unstable, and it
tends to roll up and form a picture similar to a point vortex. This vortex is called the
starting vortex and is sketched in Figure 4.21b. After the flow around the airfoil has
come to a steady state where the flow leaves the trailing edge smoothly (the Kutta
condition), the high velocity gradients at the trailing edge disappear and vorticity
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is no longer produced at that point. However, the starting vortex has already been
formed during the starting process, and it moves steadily downstream with the
flow forever after. Figure 4.21b shows the flow field sometime after steady flow has
been achieved over the airfoil, with the starting vortex somewhere downstream.
The fluid elements that initially made up curve C1 in Figure 4.21a have moved
downstream and now make up curve C2, which is the complete circuit abcda
shown in Figure 4.21b. Thus, from Kelvin’s theorem, the circulation �2 around
curve C2 (which encloses both the airfoil and the starting vortex) is the same
as that around curve C1, namely, zero. �2 = �1 = 0. Now let us subdivide C2

into two loops by making the cut bd, thus forming curves C3 (circuit bcdb) and
C4 (circuit abda). Curve C3 encloses the starting vortex, and curve C4 encloses
the airfoil. The circulation �3 around curve C3 is due to the starting vortex; by
inspecting Figure 4.21b, we see that �3 is in the counterclockwise direction (i.e.,
a negative value). The circulation around curve C4 enclosing the airfoil is �4.
Since the cut bd is common to both C3 and C4, the sum of the circulations around
C3 and C4 is simply equal to the circulation around C2:

�3 + �4 = �2

However, we have already established that �2 = 0. Hence,

�4 = −�3

that is, the circulation around the airfoil is equal and opposite to the circulation
around the starting vortex.

This brings us to the summary as well as the crux of this section. As the flow
over an airfoil is started, the large velocity gradients at the sharp trailing edge result
in the formation of a region of intense vorticity which rolls up downstream of the
trailing edge, forming the starting vortex. This starting vortex has associated with
it a counterclockwise circulation. Therefore, as an equal-and-opposite reaction, a
clockwise circulation around the airfoil is generated. As the starting process con-
tinues, vorticity from the trailing edge is constantly fed into the starting vortex,
making it stronger with a consequent larger counterclockwise circulation. In turn,
the clockwise circulation around the airfoil becomes stronger, making the flow at
the trailing edge more closely approach the Kutta condition, thus weakening the
vorticity shed from the trailing edge. Finally, the starting vortex builds up to just
the right strength such that the equal-and-opposite clockwise circulation around
the airfoil leads to smooth flow from the trailing edge (the Kutta condition is
exactly satisfied). When this happens, the vorticity shed from the trailing edge
becomes zero, the starting vortex no longer grows in strength, and a steady
circulation exists around the airfoil.

EXAMPLE 4.4

For the NACA 2412 airfoil at the conditions given in Example 4.1, calculate the strength
of the steady-state starting vortex.
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■ Solution
From the given conditions in Example 4.1,

L ′ = 1254 N/m

V∞ = 70 m/s

ρ∞ = 1.23 kg/m3

From the Kutta-Joukowski theorem, Equation (3.140),

L ′ = ρ∞V∞�

the circulation associated with the flow over the airfoil is

� = L ′

ρ∞V∞
= 1254

(1.23)(70)
= 14.56

m2

s

Referring to Figure 4.21, the steady-state starting vortex has strength equal and opposite
to the circulation around the airfoil. Hence,

Strength of starting vortex = −14.56 m2

s

Note: For practical calculations in aerodynamics, an actual number for circulation is rarely
needed. Circulation is a mathematical quantity defined by Equation (2.136), and it is an
essential theoretical concept within the framework of the circulation theory of lift. For
example, in Section 4.7, an analytical expression for circulation is derived as Equation
(4.30), and then immediately inserted into the Kutta-Joukowski theorem, Equation (4.31),
yielding a formula for the lift coefficient, Equation (4.33). Nowhere do we need to calcu-
late an actual number for �. In the present example, however, the strength of the starting
vortex is indeed given by its circulation, and hence to compare the strengths of various
starting vortices, calculating numbers for � is relevant. Even this can be considered only
an academic exercise. In this author’s experience, no practical aerodynamic calculation re-
quires the strength of a starting vortex. The starting vortex is simply a theoretical construct
that is consistent with the generation of circulation around a lifting two-dimensional body.

4.7 CLASSICAL THIN AIRFOIL THEORY:
THE SYMMETRIC AIRFOIL

Some experimentally observed characteristics of airfoils and a philosophy for
the theoretical prediction of these characteristics have been discussed in the pre-
ceding sections. Referring to our chapter road map in Figure 4.7, we have now
completed the central branch. In this section, we move to the right-hand branch
of Figure 4.7, namely, a quantitative development of thin airfoil theory. The basic
equations necessary for the calculation of airfoil lift and moments are established
in this section, with an application to symmetric airfoils. The case of cambered
airfoils will be treated in Section 4.8.
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For the time being, we deal with thin airfoils; for such a case, the airfoil
can be simulated by a vortex sheet placed along the camber line, as discussed
in Section 4.4. Our purpose is to calculate the variation of γ (s) such that the
camber line becomes a streamline of the flow and such that the Kutta condition
is satisfied at the trailing edge; that is, γ (TE) = 0 [see Equation (4.10)]. Once
we have found the particular γ (s) that satisfies these conditions, then the total
circulation � around the airfoil is found by integrating γ (s) from the leading edge
to the trailing edge. In turn, the lift is calculated from � via the Kutta-Joukowski
theorem.

Consider a vortex sheet placed on the camber line of an airfoil, as sketched in
Figure 4.22a. The freestream velocity is V∞, and the airfoil is at the angle of attack
α. The x axis is oriented along the chord line, and the z axis is perpendicular to the
chord. The distance measured along the camber line is denoted by s. The shape
of the camber line is given by z = z(x). The chord length is c. In Figure 4.22a,
w′ is the component of velocity normal to the camber line induced by the vortex
sheet; w′ = w′(s). For a thin airfoil, we rationalized in Section 4.4 that the
distribution of a vortex sheet over the surface of the airfoil, when viewed from a
distance, looks almost the same as a vortex sheet placed on the camber line. Let
us stand back once again and view Figure 4.22a from a distance. If the airfoil

Figure 4.22 Placement of the vortex sheet for thin airfoil analysis.
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is thin, the camber line is close to the chord line, and viewed from a distance,
the vortex sheet appears to fall approximately on the chord line. Therefore, once
again, let us reorient our thinking and place the vortex sheet on the chord line,
as sketched in Figure 4.22b. Here, γ = γ (x). We still wish the camber line to
be a streamline of the flow, and γ = γ (x) is calculated to satisfy this condition
as well as the Kutta condition γ (c) = 0. That is, the strength of the vortex sheet
on the chord line is determined such that the camber line (not the chord line) is a
streamline.

For the camber line to be a streamline, the component of velocity normal to
the camber line must be zero at all points along the camber line. The velocity at
any point in the flow is the sum of the uniform freestream velocity and the velocity
induced by the vortex sheet. Let V∞,n be the component of the freestream velocity
normal to the camber line. Thus, for the camber line to be a streamline,

V∞,n + w′(s) = 0 (4.12)

at every point along the camber line.
An expression for V∞,n in Equation (4.12) is obtained by the inspection of

Figure 4.23. At any point P on the camber line, where the slope of the camber
line is dz/dx , the geometry of Figure 4.23 yields

V∞,n = V∞ sin
[
α + tan−1

(
− dz

dx

)]
(4.13)

For a thin airfoil at small angle of attack, both α and tan−1(−dz/dx) are small
values. Using the approximation that sin θ ≈ tan θ ≈ θ for small θ , where θ is in

Figure 4.23 Determination of the component of freestream velocity
normal to the camber line.
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radians, Equation (4.13) reduces to

V∞,n = V∞

(
α − dz

dx

)
(4.14)

Equation (4.14) gives the expression for V∞,n to be used in Equation (4.12). Keep
in mind that, in Equation (4.14), α is in radians.

Returning to Equation (4.12), let us develop an expression for w′(s) in terms
of the strength of the vortex sheet. Refer again to Figure 4.22b. Here, the vortex
sheet is along the chord line, and w′(s) is the component of velocity normal to
the camber line induced by the vortex sheet. Let w(x) denote the component of
velocity normal to the chord line induced by the vortex sheet, as also shown in
Figure 4.22b. If the airfoil is thin, the camber line is close to the chord line, and
it is consistent with thin airfoil theory to make the approximation that

w′(s) ≈ w(x) (4.15)

An expression for w(x) in terms of the strength of the vortex sheet is easily
obtained from Equation (4.1), as follows. Consider Figure 4.24, which shows
the vortex sheet along the chord line. We wish to calculate the value of w(x) at
the location x . Consider an elemental vortex of strength γ dξ located at a distance
ξ from the origin along the chord line, as shown in Figure 4.24. The strength of
the vortex sheet γ varies with the distance along the chord; that is, γ = γ (ξ).
The velocity dw at point x induced by the elemental vortex at point ξ is given by
Equation (4.1) as

dw = − γ (ξ) dξ

2π(x − ξ)
(4.16)

In turn, the velocity w(x) induced at point x by all the elemental vortices along
the chord line is obtained by integrating Equation (4.16) from the leading edge
(ξ = 0) to the trailing edge (ξ = c):

w(x) = −
∫ c

0

γ (ξ) dξ

2π(x − ξ)
(4.17)

Combined with the approximation stated by Equation (4.15), Equation (4.17)
gives the expression for w′(s) to be used in Equation (4.12).

Figure 4.24 Calculation of the induced velocity at the chord
line.
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Recall that Equation (4.12) is the boundary condition necessary for the camber
line to be a streamline. Substituting Equations (4.14), (4.15), and (4.17) into (4.12),
we obtain

V∞

(
α − dz

dx

)
−

∫ c

0

γ (ξ) dξ

2π(x − ξ)
= 0

or 1

2π

∫ c

0

γ (ξ) dξ

x − ξ
= V∞

(
α − dz

dx

)
(4.18)

the fundamental equation of thin airfoil theory; it is simply a statement that the
camber line is a streamline of the flow.

Note that Equation (4.18) is written at a given point x on the chord line,
and that dz/dx is evaluated at that point x . The variable ξ is simply a dummy
variable of integration which varies from 0 to c along the chord line, as shown
in Figure 4.24. The vortex strength γ = γ (ξ) is a variable along the chord line.
For a given airfoil at a given angle of attack, both α and dz/dx are known values
in Equation (4.18). Indeed, the only unknown in Equation (4.18) is the vortex
strength γ (ξ). Hence, Equation (4.18) is an integral equation, the solution of
which yields the variation of γ (ξ) such that the camber line is a streamline of
the flow. The central problem of thin airfoil theory is to solve Equation (4.18) for
γ (ξ), subject to the Kutta condition, namely, γ (c) = 0.

In this section, we treat the case of a symmetric airfoil. As stated in Section 4.2,
a symmetric airfoil has no camber; the camber line is coincident with the chord
line. Hence, for this case, dz/dx = 0, and Equation (4.18) becomes

1

2π

∫ c

0

γ (ξ) dξ

x − ξ
= V∞α (4.19)

In essence, within the framework of thin airfoil theory, a symmetric airfoil is
treated the same as a flat plate; note that our theoretical development does not ac-
count for the airfoil thickness distribution. Equation (4.19) is an exact expression
for the inviscid, incompressible flow over a flat plate at a small angle of attack.

To help deal with the integral in Equations (4.18) and (4.19), let us transform
ξ into θ via the following transformation:

ξ = c

2
(1 − cos θ) (4.20)

Since x is a fixed point in Equations (4.18) and (4.19), it corresponds to a particular
value of θ , namely, θ0, such that

x = c

2
(1 − cos θ0) (4.21)

Also, from Equation (4.20),

dξ = c

2
sin θ dθ (4.22)
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Substituting Equations (4.20) to (4.22) into (4.19), and noting that the limits of
integration become θ = 0 at the leading edge (where ξ = 0) and θ = π at the
trailing edge (where ξ = c), we obtain

1

2π

∫ π

0

γ (θ) sin θ dθ

cos θ − cos θ0
= V∞α (4.23)

A rigorous solution of Equation (4.23) for γ (θ) can be obtained from the math-
ematical theory of integral equations, which is beyond the scope of this book.
Instead, we simply state that the solution is

γ (θ) = 2αV∞
(1 + cos θ)

sin θ
(4.24)

We can verify this solution by substituting Equation (4.24) into (4.23) yielding

1

2π

∫ π

0

γ (θ) sin θ dθ

cos θ − cos θ0
= V∞α

π

∫ π

0

(1 + cos θ) dθ

cos θ − cos θ0
(4.25)

The following standard integral appears frequently in airfoil theory and is derived
in Appendix E of Reference 9:∫ π

0

cos nθ dθ

cos θ − cos θ0
= π sin nθ0

sin θ0
(4.26)

Using Equation (4.26) in the right-hand side of Equation (4.25), we find that

V∞α

π

∫ π

0

(1 + cos θ) dθ

cos θ − cos θ0
= V∞α

π

(∫ π

0

dθ

cos θ − cos θ0
+

∫ π

0

cos θ dθ

cos θ − cos θ0

)

= V∞α

π
(0 + π) = V∞α (4.27)

Substituting Equation (4.27) into (4.25), we have

1

2π

∫ π

0

γ (θ) sin θ dθ

cos θ − cos θ0
= V∞α

which is identical to Equation (4.23). Hence, we have shown that Equation (4.24)
is indeed the solution to Equation (4.23). Also, note that at the trailing edge, where
θ = π , Equation (4.24) yields

γ (π) = 2αV∞
0

0

which is an indeterminant form. However, using L’Hospital’s rule on Equa-
tion (4.24),

γ (π) = 2αV∞
− sin π

cos π
= 0

Thus, Equation (4.24) also satisfies the Kutta condition.
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We are now in a position to calculate the lift coefficient for a thin, symmetric
airfoil. The total circulation around the airfoil is

� =
∫ c

0
γ (ξ) dξ (4.28)

Using Equations (4.20) and (4.22), Equation (4.28) transforms to

� = c

2

∫ π

0
γ (θ) sin θ dθ (4.29)

Substituting Equation (4.24) into (4.29), we obtain

� = αcV∞
∫ π

0
(1 + cos θ) dθ = παcV∞ (4.30)

Substituting Equation (4.30) into the Kutta-Joukowski theorem, we find that the
lift per unit span is

L ′ = ρ∞V∞� = παcρ∞V 2
∞ (4.31)

The lift coefficient is

cl = L ′

q∞S
(4.32)

where S = c(1)

Substituting Equation (4.31) into (4.32), we have

cl = παcρ∞V 2
∞

1
2ρ∞V 2∞c(1)

or cl = 2πα (4.33)

and
Lift slope = dcl

dα
= 2π (4.34)

Equations (4.33) and (4.34) are important results; they state the theoretical re-
sult that the lift coefficient is linearly proportional to angle of attack, which is
supported by the experimental results discussed in Section 4.3. They also state
that the theoretical lift slope is equal to 2π rad−1, which is 0.11 degree−1. The
experimental lift coefficient data for an NACA 0012 symmetric airfoil are given
in Figure 4.25; note that Equation (4.33) accurately predicts cl over a large range
of angle of attack. (The NACA 0012 airfoil section is commonly used on airplane
tails and helicopter blades.)

The moment about the leading edge can be calculated as follows. Consider
the elemental vortex of strength γ (ξ) dξ located a distance ξ from the leading
edge, as sketched in Figure 4.26. The circulation associated with this elemental
vortex is d� = γ (ξ) dξ . In turn, the increment of lift dL contributed by the
elemental vortex is dL = ρ∞V∞ d�. This increment of lift creates a moment
about the leading edge dM = −ξ(dL). The total moment about the leading edge
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Figure 4.25 Comparison between theory and experiment for
the lift and moment coefficients for an NACA 0012 airfoil.
(Data Source: Abbott, I. H., and A. E. von Doenhoff: Theory
of Wing Sections, McGraw-Hill Book Company, New York,
1949; also, Dover Publications, Inc., New York, 1959.)

Figure 4.26 Calculation of moments about the leading edge.

(LE) (per unit span) due to the entire vortex sheet is therefore

M ′
LE = −

∫ c

0
ξ(dL) = −ρ∞V∞

∫ c

0
ξγ (ξ) dξ (4.35)

Transforming Equation (4.35) via Equations (4.20) and (4.22), and performing
the integration, we obtain (the details are left for Problem 4.4):

M ′
LE = −q∞c2 πα

2
(4.36)
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The moment coefficient is

cm,le = M ′
LE

q∞Sc

where S = c(1). Hence,

cm,le = M ′
LE

q∞c2
= −πα

2
(4.37)

However, from Equation (4.33),

πα = cl

2
(4.38)

Combining Equations (4.37) and (4.38), we obtain

cm,le = −cl

4
(4.39)

From Equation (1.22), the moment coefficient about the quarter-chord point is

cm,c/4 = cm,le + cl

4
(4.40)

Combining Equations (4.39) and (4.40), we have

cm,c/4 = 0 (4.41)

In Section 1.6, a definition is given for the center of pressure as that point about
which the moments are zero. Clearly, Equation (4.41) demonstrates the theoretical
result that the center of pressure is at the quarter-chord point for a symmetric
airfoil.

By the definition given in Section 4.3, that point on an airfoil where moments
are independent of angle of attack is called the aerodynamic center. From Equa-
tion (4.41), the moment about the quarter chord is zero for all values of α. Hence,
for a symmetric airfoil, we have the theoretical result that the quarter-chord point
is both the center of pressure and the aerodynamic center.

The theoretical result for cm,c/4 = 0 in Equation (4.41) is supported by the
experimental data given in Figure 4.25. Also, note that the experimental value
of cm,c/4 is constant over a wide range of α, thus demonstrating that the real
aerodynamic center is essentially at the quarter chord.

Let us summarize the above results. The essence of thin airfoil theory is to
find a distribution of vortex sheet strength along the chord line that will make the
camber line a streamline of the flow while satisfying the Kutta condition γ (TE) =
0. Such a vortex distribution is obtained by solving Equation (4.18) for γ (ξ), or
in terms of the transformed independent variable θ , solving Equation (4.23) for
γ (θ) [recall that Equation (4.23) is written for a symmetric airfoil]. The resulting
vortex distribution γ (θ) for a symmetric airfoil is given by Equation (4.24). In
turn, this vortex distribution, when inserted into the Kutta-Joukowski theorem,
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gives the following important theoretical results for a symmetric airfoil:

1. cl = 2πα.
2. Lift slope = 2π .
3. The center of pressure and the aerodynamic center are both located at the

quarter-chord point.

EXAMPLE 4.5

Consider a thin flat plate at 5 deg. angle of attack. Calculate the: (a) lift coefficient,
(b) moment coefficient about the leading edge, (c) moment coefficient about the quarter-
chord point, and (d) moment coefficient about the trailing edge.

■ Solution
Recall that the results obtained in Section 4.7, although couched in terms of a thin sym-
metric airfoil, apply in particular to a flat plate with zero thickness.
(a) From Equation (4.33),

c� = 2πα

where α is in radians

α = 5

57.3
= 0.0873 rad

c� = 2π(0.0873) = 0.5485

(b) From Equation (4.39),

cm,�e = −c�

4
= −0.5485

4
= −0.137

(c) From Equation (4.41),

cm,c/4 = 0

(d) Figure 4.27 is a sketch of the force and moment system on the plate. We place the
lift at the quarter-chord point, along with the moment about the quarter-chord point.

c/4 3
4 c

c

TE

5�

V�

L�

Plate aMc/4

Figure 4.27 Flat plate at 5-degree angle of attack.
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This represents the force and moment system on the plate. Recall from the discussion in
Section 1.6 that the force and moment system can be represented by the lift acting through
any point on the plate, and giving the moment about that point. Here, for convenience, we
place the lift at the quarter-chord point.

The lift acts perpendicular to V∞. [Part of the statement of the Kutta-Joukowski
theorem given by Equation (3.140) is that the direction of the force associated with the
circulation � is perpendicular to V∞.] From Figure 4.27, the moment arm from L ′ to the
trailing edge is the length a, where

a = (
3
4 c

)
cos α = (

3
4 c

)
cos 5◦

One of the assumptions of thin airfoil theory is that the angle of attack is small, and hence
we can assume that cos α ≈ 1. Therefore, the moment arm from the point of action of the
lift to the trailing edge is reasonably given by 3

4 c. (Note that, in the previous Figure 4.26,
the assumption of small α is already implicit because the moment arm is drawn parallel
to the plate.)

Examining Figure 4.27, the moment about the trailing edge is

M ′
te =

(
3

4
c

)
L ′ + M ′

c/4

cm,te = M ′
te

q∞c2 =
(

3

4
c

)
L ′

q∞c2 +
M ′

c/4

q∞c2

cm,te = 3

4
c� + cm,c/4

Since cm,c/4 = 0 we have

cm,te = 3

4
c�

cm,te = 3

4
(0.5485) = 0.411

4.8 THE CAMBERED AIRFOIL
Thin airfoil theory for a cambered airfoil is a generalization of the method for a
symmetric airfoil discussed in Section 4.7. To treat the cambered airfoil, return
to Equation (4.18):

1

2π

∫ c

0

γ (ξ) dξ

x − ξ
= V∞

(
α − dz

dx

)
(4.18)

For a cambered airfoil, dz/dx is finite, and this makes the analysis more elaborate
than in the case of a symmetric airfoil, where dz/dx = 0. Once again, let us
transform Equation (4.18) via Equations (4.20) to (4.22), obtaining

1

2π

∫ π

0

γ (θ) sin θ dθ

cos θ − cos θ0
= V∞

(
α − dz

dx

)
(4.42)
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We wish to obtain a solution for γ (θ) from Equation (4.42), subject to the Kutta
condition γ (π) = 0. Such a solution for γ (θ) will make the camber line a
streamline of the flow. However, as before a rigorous solution of Equation (4.42)
for γ (θ) is beyond the scope of this book. Rather, the result is stated below:

γ (θ) = 2V∞

(
A0

1 + cos θ

sin θ
+

∞∑
n=1

An sin nθ

)
(4.43)

Note that the above expression for γ (θ) consists of a leading term very similar to
Equation (4.24) for a symmetric airfoil, plus a Fourier sine series with coefficients
An . The values of An depend on the shape of the camber line dz/dx , and A0

depends on both dz/dx and α, as shown below.
The coefficients A0 and An(n = 1, 2, 3, . . .) in Equation (4.43) must be

specific values in order that the camber line be a streamline of the flow. To find
these specific values, substitute Equations (4.43) into Equation (4.42):

1

π

∫ π

0

A0(1 + cos θ) dθ

cos θ − cos θ0
+ 1

π

∞∑
n=1

∫ π

0

An sin nθ sin θ dθ

cos θ − cos θ0
= α − dz

dx
(4.44)

The first integral can be evaluated from the standard form given in Equation (4.26).
The remaining integrals can be obtained from another standard form, which is
derived in Appendix E of Reference 9, and which is given below:∫ π

0

sin nθ sin θ dθ

cos θ − cos θ0
= −π cos nθ0 (4.45)

Hence, using Equations (4.26) and (4.45), we can reduce Equation (4.44) to

A0 −
∞∑

n=1

An cos nθ0 = α − dz

dx

or dz

dx
= (α − A0) +

∞∑
n=1

An cos nθ0 (4.46)

Recall that Equation (4.46) was obtained directly from Equation (4.42), which
is the transformed version of the fundamental equation of thin airfoil theory,
Equation (4.18). Furthermore, recall that Equation (4.18) is evaluated at a given
point x along the chord line, as sketched in Figure 4.24. Hence, Equation (4.46)
is also evaluated at the given point x ; here, dz/dx and θ0 correspond to the same
point x on the chord line. Also, recall that dz/dx is a function of θ0, where
x = (c/2)(1 − cos θ0) from Equation (4.21).

Examine Equation (4.46) closely. It is in the form of a Fourier cosine se-
ries expansion for the function of dz/dx . In general, the Fourier cosine series
representation of a function f (θ) over an interval 0 ≤ θ ≤ π is given by

f (θ) = B0 +
∞∑

n=1

Bn cos nθ (4.47)
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where, from Fourier analysis, the coefficients B0 and Bn are given by

B0 = 1

π

∫ π

0
f (θ) dθ (4.48)

and Bn = 2

π

∫ π

0
f (θ) cos nθ dθ (4.49)

(See, e.g., page 217 of Reference 6.) In Equation (4.46), the function dz/dx
is analogous to f (θ) in the general form given in Equation (4.47). Thus, from
Equations (4.48) and (4.49), the coefficients in Equation (4.46) are given by

α − A0 = 1

π

∫ π

0

dz

dx
dθ0

or A0 = α − 1

π

∫ π

0

dz

dx
dθ0 (4.50)

and An = 2

π

∫ π

0

dz

dx
cos nθ0 dθ0 (4.51)

Keep in mind that in the above, dz/dx is a function of θ0. Note from Equa-
tion (4.50) that A0 depends on both α and the shape of the camber line (through
dz/dx), whereas from Equation (4.51) the values of An depend only on the shape
of the camber line.

Pause for a moment and think about what we have done. We are considering
the flow over a cambered airfoil of given shape dz/dx at a given angle of attack
α. In order to make the camber line a streamline of the flow, the strength of the
vortex sheet along the chord line must have the distribution γ (θ) given by Equa-
tion (4.43), where the coefficients A0 and An are given by Equations (4.50) and
(4.51), respectively. Also, note that Equation (4.43) satisfies the Kutta condition
γ (π) = 0. Actual numbers for A0 and An can be obtained for a given shape
airfoil at a given angle of attack simply by carrying out the integrations indicated
in Equations (4.50) and (4.51). For an example of such calculations applied to an
NACA 23012 airfoil, see Example 4.5 at the end of this section. Also, note that
when dz/dx = 0, Equation (4.43) reduces to Equation (4.24) for a symmetric
airfoil. Hence, the symmetric airfoil is a special case of Equation (4.43).

Let us now obtain expressions for the aerodynamic coefficients for a cambered
airfoil. The total circulation due to the entire vortex sheet from the leading edge
to the trailing edge is

� =
∫ c

0
γ (ξ) dξ = c

2

∫ π

0
γ (θ) sin θ dθ (4.52)

Substituting Equation (4.43) for γ (θ) into Equation (4.52), we obtain

� = cV∞

[
A0

∫ π

0
(1 + cos θ) dθ +

∞∑
n=1

An

∫ π

0
sin nθ sin θ dθ

]
(4.53)
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From any standard table of integrals,∫ π

0
(1 + cos θ) dθ = π

and
∫ π

0
sin nθ sin θ dθ =

{
π/2 for n = 1
0 for n �= 1

Hence, Equation (4.53) becomes

� = cV∞

(
π A0 + π

2
A1

)
(4.54)

From Equation (4.54), the lift per unit span is

L ′ = ρ∞V∞� = ρ∞V 2
∞c

(
π A0 + π

2
A1

)
(4.55)

In turn, Equation (4.55) leads to the lift coefficient in the form

cl = L ′
1
2ρ∞V 2∞c(1)

= π(2A0 + A1) (4.56)

Recall that the coefficients A0 and A1 in Equation (4.56) are given by Equa-
tions (4.50) and (4.51), respectively. Hence, Equation (4.56) becomes

cl = 2π

[
α + 1

π

∫ π

0

dz

dx
(cos θ0 − 1) dθ0

]
(4.57)

and Lift slope ≡ dcl

dα
= 2π (4.58)

Equations (4.57) and (4.58) are important results. Note that, as in the case
of the symmetric airfoil, the theoretical lift slope for a cambered airfoil is 2π .
It is a general result from thin airfoil theory that dcl/dα = 2π for any shape
airfoil. However, the expression for cl itself differs between a symmetric and a
cambered airfoil, the difference being the integral term in Equation (4.57). This
integral term has physical significance, as follows. Return to Figure 4.9, which
illustrates the lift curve for an airfoil. The angle of zero lift is denoted by αL=0

and is a negative value. From the geometry shown in Figure 4.9, clearly

cl = dcl

dα
(α − αL=0) (4.59)

Substituting Equation (4.58) into (4.59), we have

cl = 2π(α − αL=0) (4.60)
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Comparing Equations (4.60) and (4.57), we see that the integral term in Equa-
tion (4.57) is simply the negative of the zero-lift angle; that is,

αL=0 = − 1

π

∫ π

0

dz

dx
(cos θ0 − 1) dθ0 (4.61)

Hence, from Equation (4.61), thin airfoil theory provides a means to predict the
angle of zero lift. Note that Equation (4.61) yields αL=0 = 0 for a symmetric
airfoil, which is consistent with the results shown in Figure 4.25. Also, note that
the more highly cambered the airfoil, the larger will be the absolute magnitude
of αL=0.

Returning to Figure 4.26, the moment about the leading edge can be ob-
tained by substituting γ (θ) from Equation (4.43) into the transformed version of
Equation (4.35). The details are left for Problem 4.9. The result for the moment
coefficient is

cm,le = −π

2

(
A0 + A1 − A2

2

)
(4.62)

Substituting Equation (4.56) into (4.62), we have

cm,le = −
[

cl

4
+ π

4
(A1 − A2)

]
(4.63)

Note that, for dz/dx = 0, A1 = A2 = 0 and Equation (4.63) reduces to Equa-
tion (4.39) for a symmetric airfoil.

The moment coefficient about the quarter chord can be obtained by substi-
tuting Equation (4.63) into (4.40), yielding

cm,c/4 = π

4
(A2 − A1) (4.64)

Unlike the symmetric airfoil, where cm,c/4 = 0, Equation (4.64) demonstrates that
cm,c/4 is finite for a cambered airfoil. Therefore, the quarter chord is not the center
of pressure for a cambered airfoil. However, note that A1 and A2 depend only on
the shape of the camber line and do not involve the angle of attack. Hence, from
Equation (4.64), cm,c/4 is independent of α. Thus, the quarter-chord point is the
theoretical location of the aerodynamic center for a cambered airfoil.

The location of the center of pressure can be obtained from Equation (1.21):

xcp = − M ′
LE

L ′ = −cm,lec

cl
(4.65)

Substituting Equation (4.63) into (4.65), we obtain

xcp = c

4

[
1 + π

cl
(A1 − A2)

]
(4.66)



CHAPTER 4 Incompressible Flow over Airfoils 361

Equation (4.66) demonstrates that the center of pressure for a cambered airfoil
varies with the lift coefficient. Hence, as the angle of attack changes, the center
of pressure also changes. Indeed, as the lift approaches zero, xcp moves toward
infinity; that is, it leaves the airfoil. For this reason, the center of pressure is not
always a convenient point at which to draw the force system on an airfoil. Rather,
the force-and-moment system on an airfoil is more conveniently considered at
the aerodynamic center. (Return to Figure 1.25 and the discussion at the end of
Section 1.6 for the referencing of the force-and-moment system on an airfoil.)

EXAMPLE 4.6

Consider an NACA 23012 airfoil. The mean camber line for this airfoil is given by

z

c
= 2.6595

[( x

c

)3
− 0.6075

( x

c

)2
+ 0.1147

( x

c

)]
for 0 ≤ x

c
≤ 0.2025

and
z

c
= 0.02208

(
1 − x

c

)
for 0.2025 ≤ x

c
≤ 1.0

Calculate (a) the angle of attack at zero lift, (b) the lift coefficient when α = 4◦, (c) the
moment coefficient about the quarter chord, and (d) the location of the center of pressure
in terms of xcp/c, when α = 4◦. Compare the results with experimental data.

■ Solution
We will need dz/dx . From the given shape of the mean camber line, this is

dz

dx
= 2.6595

[
3
( x

c

)2
− 1.215

( x

c

)
+ 0.1147

]
for 0 ≤ x

c
≤ 0.2025

and
dz

dx
= −0.02208 for 0.2025 ≤ x

c
≤ 1.0

Transforming from x to θ , where x = (c/2)(1 − cos θ), we have

dz

dx
= 2.6595

[
3

4
(1 − 2 cos θ + cos2 θ) − 0.6075(1 − cos θ) + 0.1147

]
or = 0.6840 − 2.3736 cos θ + 1.995 cos2 θ for 0 ≤ θ ≤ 0.9335 rad

and = −0.02208 for 0.9335 ≤ θ ≤ π

(a) From Equation (4.61),

αL=0 = − 1

π

∫ π

0

dz

dx
(cos θ − 1) dθ

(Note: For simplicity, we have dropped the subscript zero from θ ; in Equation (4.61), θ0

is the variable of integration—it can just as well be symbolized as θ for the variable of
integration.) Substituting the equation for dz/dx into Equation (4.61), we have

αL=0 = − 1

π

∫ 0.9335

0
(−0.6840 + 3.0576 cos θ − 4.3686 cos2 θ + 1.995 cos3 θ) dθ

(E.1)

− 1

π

∫ π

0.9335
(0.02208 − 0.02208 cos θ) dθ
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From a table of integrals, we see that∫
cos θ dθ = sin θ

∫
cos2 θ dθ = 1

2 sin θ cos θ + 1
2θ

∫
cos3 θ dθ = 1

3 sin θ(cos2 θ + 2)

Hence, Equation (E.1) becomes

αL=0 = − 1

π
[−2.8683θ + 3.0576 sin θ − 2.1843 sin θ cos θ

+ 0.665 sin θ(cos2 θ + 2)]0.9335
0

− 1

π
[0.02208θ − 0.02208 sin θ ]π0.9335

Hence, αL=0 = − 1

π
(−0.0065 + 0.0665) = −0.0191 rad

or αL=0 = −1.09◦

(b) α = 4◦ = 0.0698 rad
From Equation (4.60),

cl = 2π(α − αL=0) = 2π(0.0698 + 0.0191) = 0.559

(c) The value of cm,c/4 is obtained from Equation (4.64). For this, we need the two Fourier
coefficients A1 and A2. From Equation (4.51),

A1 = 2

π

∫ π

0

dz

dx
cos θ dθ

A1 = 2

π

∫ 0.9335

0
(0.6840 cos θ − 2.3736 cos2 θ + 1.995 cos3 θ) dθ

+ 2

π

∫ π

0.9335
(−0.02208 cos θ) dθ

= 2

π
[0.6840 sin θ − 1.1868 sin θ cos θ − 1.1868θ + 0.665 sin θ(cos2 θ + 2)]0.9335

0

+ 2

π
[−0.02208 sin θ ]π0.09335

= 2

π
(0.1322 + 0.0177) = 0.0954
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From Equation (4.51),

A2 = 2

π

∫ π

0

dz

dx
cos 2θ dθ = 2

π

∫ π

0

dz

dx
(2 cos2 θ − 1) dθ

= 2

π

∫ 0.9335

0
(−0.6840 + 2.3736 cos θ − 0.627 cos2 θ

− 4.747 cos3 θ + 3.99 cos4 θ) dθ

+ 2

π

∫ π

0.9335
(0.02208 − 0.0446 cos2 θ) dθ

Note: ∫
cos4 θ dθ = 1

4 cos3 θ sin θ + 3
8 (sin θ cos θ + θ)

Thus,

A2 = 2

π

{
−0.6840 θ + 2.3736 sin θ − 0.628

(
1

2

)
(sin θ cos θ + θ)

− 4.747

(
1

3

)
sin θ(cos2 θ + 2) + 3.99

[
1

4
cos3 sin θ + 3

8
(sin θ cos θ + θ)

]}0.9335

0

+ 2

π

[
0.02208θ − 0.0446

(
1

2

)
(sin θ cos θ + θ)

]π

0.9335

= 2

π
(0.11384 + 0.01056) = 0.0792

From Equation (4.64),

cm,c/4 = π

4
(A2 − A1) = π

4
(0.0792 − 0.0954)

cm,c/4 = −0.0127

(d) From Equation (4.66),

xcp = c

4

[
1 + π

cl
(A1 − A2)

]

Hence,
xcp

c
= 1

4

[
1 + π

0.559
(0.0954 − 0.0792)

]
= 0.273

Comparison with Experimental Data The data for the NACA 23012 airfoil
are shown in Figure 4.28. From this, we make the following tabulation:

Calculated Experiment

αL=0 −1.09◦ −1.1◦

cl (at α = 4◦) 0.559 0.55
cm,c/4 −0.0127 −0.01
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Figure 4.28 Lift- and moment-coefficient data for an NACA 23012 airfoil, for
comparison with the theoretical results obtained in Example 4.6.
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Note that the results from thin airfoil theory for a cambered airfoil agree very well
with the experimental data. Recall that excellent agreement between thin airfoil
theory for a symmetric airfoil and experimental data has already been shown
in Figure 4.25. Hence, all of the work we have done in this section to develop
thin airfoil theory is certainly worth the effort. Moreover, this illustrates that the
development of thin airfoil theory in the early 1900s was a crowning achievement
in theoretical aerodynamics and validates the mathematical approach of replacing
the chord line of the airfoil with a vortex sheet, with the flow tangency condition
evaluated along the mean camber line.

This brings to an end our introduction to classical thin airfoil theory. Returning
to our road map in Figure 4.7, we have now completed the right-hand branch.

4.9 THE AERODYNAMIC CENTER: ADDITIONAL
CONSIDERATIONS

The definition of the aerodynamic center is given in Section 4.3; it is that point
on a body about which the aerodynamically generated moment is independent of
angle of attack. At first thought, it is hard to imagine that such a point could ex-
ist. However, the moment coefficient data in Figure 4.11, which are constant
with angle of attack, experimentally prove the existence of the aerodynamic
center. Moreover, thin airfoil theory as derived in Sections 4.7 and 4.8 clearly
shows that, within the assumptions embodied in the theory, not only does the
aerodynamic center exist but that it is located at the quarter-chord point on the
airfoil. Therefore, to Figure 1.24 which illustrates three different ways of stat-
ing the force and moment system on an airfoil, we can now add a fourth way,
namely, the specification of the lift and drag acting through the aerodynamic cen-
ter, and the value of the moment about the aerodynamic center. This is illustrated in
Figure 4.29.

For most conventional airfoils, the aerodynamic center is close to, but not
necessarily exactly at, the quarter-chord point. Given data for the shape of the

xac

M'ac D'

L'

ac

Figure 4.29 Lift, drag, and moments about the
aerodynamic center.
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c/4

cxac

M'c/4

L'

ac

Figure 4.30 Lift and
moments about the
quarter-chord point, and a
sketch useful for locating
the aerodynamic center.

lift coefficient curve and the moment coefficient curve taken around an arbitrary
point, we can calculate the location of the aerodynamic center as follows. Consider
the lift and moment system taken about the quarter-chord point, as shown in
Figure 4.30. We designate the location of the aerodynamic center by cx̄ac measured
from the leading edge. Here, x̄ac is the location of the aerodynamic center as a
fraction of the chord length c. Taking moments about the aerodynamic center
designated by ac in Figure 4.30, we have

M ′
ac = L ′(cx̄ac − c/4) + M ′

c/4 (4.67)

Dividing Equation (4.67) by q∞Sc, we have

M ′
ac

q∞Sc
= L ′

q∞S
(x̄ac − 0.25) + M ′

c/4

q∞Sc

or cm,ac = cl(x̄ac − 0.25) + cm,c/4 (4.68)

Differentiating Equation (4.68) with respect to angle of attack α, we have

dcm,ac

dα
= dcl

dα
(x̄ac − 0.25) + dcm,c/4

dα
(4.69)

However, in Equation (4.69), dcm,ac/dα is zero by definition of the aerodynamic
center. Hence, Equation (4.69) becomes

0 = dcl

dα
(x̄ac − 0.25) + dcm,c/4

dα
(4.70)

For airfoils below the stalling angle of attack, the slopes of the lift coefficient and
moment coefficient curves are constant. Designating these slopes by

dcl

dα
≡ a0; dcm,c/4

dα
≡ m0
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Equation (4.70) becomes

0 = a0(x̄ac − 0.25) + m0

or x̄ac = −m0

a0
+ 0.25 (4.71)

Hence, Equation (4.71) proves that, for a body with linear lift and moment curves,
that is, where a0 and m0 are fixed values, the aerodynamic center exists as a
fixed point on the airfoil. Moreover, Equation (4.71) allows the calculation of the
location of this point.

EXAMPLE 4.7

Consider the NACA 23012 airfoil studied in Example 4.6. Experimental data for this
airfoil is plotted in Figure 4.28, and can be obtained from Reference 11. It shows that, at
α = 4◦, cl = 0.55 and cm,c/4 = −0.005. The zero-lift angle of attack is −1.1◦. Also,
at α = −4◦, cm,c/4 = −0.0125. (Note that the “experimental” value of cm,c/4 = −0.01
tabulated at the end of Example 4.6 is an average value over a range of angle of attack.
Since the calculated value of cm,c/4 from thin airfoil theory states that the quarter-chord
point is the aerodynamic center, it makes sense in Example 4.6 to compare the calculated
cm,c/4 with an experimental value averaged over a range of angle of attack. However, in
the present example, because cm,c/4 in reality varies with angle of attack, we use the actual
data at two different angles of attack.) From the given information, calculate the location
of the aerodynamic center for the NACA 23012 airfoil.

■ Solution
Since cl = 0.55 at α = 4◦ and cl = 0 at α = −1.1◦, the lift slope is

a0 = 0.55 − 0

4 − (−1.1)
= 0.1078 per degree

The slope of the moment coefficient curve is

m0 = −0.005 − (−0.0125)

4 − (−4)
= 9.375 × 10−4 per degree

From Equation (4.71),

x̄ac = −m0

a0
+ 0.25 = −9.375 × 10−4

0.1078
+ 0.25 = 0.241

The result agrees exactly with the measured value quoted on page 183 of Abbott and Von
Doenhoff (Reference 11).
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DESIGN BOX

The result of Example 4.7 shows that the aerodynamic
center for the NACA 23012 airfoil is located ahead
of, but very close to, the quarter-chord point. For some
other families of airfoils, the aerodynamic center is lo-
cated behind, but similarly close to, the quarter-chord
point. For a given airfoil family, the location of the
aerodynamic center depends on the airfoil thickness,
as shown in Figure 4.31. The variation of x̄ac with
thickness for the NACA 230XX family is given in
Figure 4.31a. Here, the aerodynamic center is ahead
of the quarter-chord point, and becomes progressively
farther ahead as the airfoil thickness is increased. In
contrast, the variation of x̄ac with thickness for the
NACA 64-2XX family is given in Figure 4.31b. Here,

0.22
0 4 8 12 16 20 24

0 4 8 12 16 20 24

0.24

0.26

Airfoil thickness, percent of chord

(a)  NACA 230XX Airfoil

0.24

0.26

0.28

Airfoil thickness, percent of chord

(b)  NACA 64-2XX Airfoil

xac

xac

Figure 4.31 Variation of the location of the aerodynamic center with airfoil thickness.
(a) NACA 230XX airfoil. (b) NACA 64-2XX airfoil.

the aerodynamic center is behind the quarter-chord
point, and becomes progressively farther behind as
the airfoil thickness is increased.

From the point of view of purely aerodynamics,
the existence of the aerodynamic center is interesting,
but the specification of the force and moment system
on the airfoil by placing the lift and drag at the aero-
dynamic center and giving the value of M ′

ac as illus-
trated in Figure 4.29, is not more useful than placing
the lift and drag at any other point on the airfoil and
giving the value of M ′ at that point, such as shown
in Figure 1.25. However, in flight dynamics, and in
particular the consideration of the stability and con-
trol of flight vehicles, placing the lift and drag at, and
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dealing with the moment about, the aerodynamic cen-
ter, is particularly convenient. The fact that Mac for a
flight vehicle is independent of angle of attack simpli-
fies the analysis of the stability and control character-
istics, and the use of the aerodynamic center therefore
becomes important in airplane design. In the design
process, it is important to know where the aerody-
namic centers of the various components of the aircraft
(wing, tail, fuselage, etc.) are located, and above all the

location of the aerodynamic center for the complete
flight vehicle. It is for this reason that we have placed
extra emphasis on the aerodynamic center in Sec-
tion 4.9. For an introduction to stability and control see
Chapter 7 of the author’s book Introduction to Flight,
5th edition, McGraw-Hill, Boston, 2005. For more in-
formation about the aerodynamic center, and its use
in airplane design, see the author’s book Aircraft Per-
formance and Design, McGraw-Hill, Boston, 1999.

4.10 LIFTING FLOWS OVER ARBITRARY BODIES:
THE VORTEX PANEL NUMERICAL METHOD

The thin airfoil theory described in Sections 4.7 and 4.8 is just what it says—it
applies only to thin airfoils at small angles of attack. (Make certain that you under-
stand exactly where in the development of thin airfoil theory these assumptions
are made and the reasons for making them.) The advantage of thin airfoil theory
is that closed-form expressions are obtained for the aerodynamic coefficients.
Moreover, the results compare favorably with experimental data for airfoils of
about 12 percent thickness or less. However, the airfoils on many low-speed air-
planes are thicker than 12 percent. Moreover, we are frequently interested in high
angles of attack, such as occur during takeoff and landing. Finally, we are some-
times concerned with the generation of aerodynamic lift on other body shapes,
such as automobiles or submarines. Hence, thin airfoil theory is quite restrictive
when we consider the whole spectrum of aerodynamic applications. We need a
method that allows us to calculate the aerodynamic characteristics of bodies of
arbitrary shape, thickness, and orientation. Such a method is described in this
section. Specifically, we treat the vortex panel method, which is a numerical tech-
nique that has come into widespread use since the early 1970s. In reference to
our road map in Figure 4.7, we now move to the left-hand branch. Also, since
this chapter deals with airfoils, we limit our attention to two-dimensional bodies.

The vortex panel method is directly analogous to the source panel method
described in Section 3.17. However, because a source has zero circulation, source
panels are useful only for nonlifting cases. In contrast, vortices have circulation,
and hence vortex panels can be used for lifting cases. (Because of the similarities
between source and vortex panel methods, return to Section 3.17 and review the
basic philosophy of the source panel method before proceeding further.)

The philosophy of covering a body surface with a vortex sheet of such a
strength to make the surface a streamline of the flow was discussed in Section 4.4.
We then went on to simplify this idea by placing the vortex sheet on the camber
line of the airfoil as shown in Figure 4.16, thus establishing the basis for thin
airfoil theory. We now return to the original idea of wrapping the vortex sheet
over the complete surface of the body, as shown in Figure 4.15. We wish to find
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γ (s) such that the body surface becomes a streamline of the flow. There exists
no closed-form analytical solution for γ (s); rather, the solution must be obtained
numerically. This is the purpose of the vortex panel method.

Let us approximate the vortex sheet shown in Figure 4.15 by a series of
straight panels, as shown earlier in Figure 3.40. (In Chapter 3, Figure 3.40 was
used to discuss source panels; here, we use the same sketch for discussion of
vortex panels.) Let the vortex strength γ (s) per unit length be constant over a
given panel, but allow it to vary from one panel to the next. That is, for the
n panels shown in Figure 3.40, the vortex panel strengths per unit length are
γ1, γ2, . . . , γ j , . . . , γn . These panel strengths are unknowns; the main thrust of
the panel technique is to solve for γ j , j = 1 to n, such that the body surface
becomes a streamline of the flow and such that the Kutta condition is satisfied.
As explained in Section 3.17, the midpoint of each panel is a control point at
which the boundary condition is applied; that is, at each control point, the normal
component of the flow velocity is zero.

Let P be a point located at (x, y) in the flow, and let rpj be the distance from
any point on the j th panel to P , as shown in Figure 3.40. The radius rpj makes
the angle θpj with respect to the x axis. The velocity potential induced at P due
to the j th panel, �φ j , is, from Equation (4.3),

�φ j = − 1

2π

∫
j
θpjγ j ds j (4.72)

In Equation (4.72), γ j is constant over the j th panel, and the integral is taken over
the j th panel only. The angle θpj is given by

θpj = tan−1 y − y j

x − x j
(4.73)

In turn, the potential at P due to all the panels is Equation (4.72) summed over
all the panels:

φ(P) =
n∑

j=1

φ j = −
n∑

j=1

γ j

2π

∫
j
θpj ds j (4.74)

Since point P is just an arbitrary point in the flow, let us put P at the control point
of the i th panel shown in Figure 3.40. The coordinates of this control point are
(xi , yi ). Then Equations (4.73) and (4.74) become

θi j = tan−1 yi − y j

xi − x j

and φ(xi , yi ) = −
n∑

j=1

γ j

2π

∫
j
θi j ds j (4.75)

Equation (4.75) is physically the contribution of all the panels to the potential at
the control point of the i th panel.
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At the control points, the normal component of the velocity is zero; this
velocity is the superposition of the uniform flow velocity and the velocity induced
by all the vortex panels. The component of V∞ normal to the i th panel is given
by Equation (3.148):

V∞,n = V∞ cos βi (3.148)

The normal component of velocity induced at (xi , yi ) by the vortex panels is

Vn = ∂

∂ni
[φ(xi , yi )] (4.76)

Combining Equations (4.75) and (4.76), we have

Vn = −
n∑

j=1

γ j

2π

∫
j

∂θi j

∂ni
ds j (4.77)

where the summation is over all the panels. The normal component of the flow
velocity at the i th control point is the sum of that due to the freestream [Equa-
tion (3.148)] and that due to the vortex panels [Equation (4.77)]. The boundary
condition states that this sum must be zero:

V∞,n + Vn = 0 (4.78)

Substituting Equations (3.148) and (4.77) into (4.78), we obtain

V∞ cos βi −
n∑

j=1

γ j

2π

∫
j

∂θi j

∂ni
ds j = 0 (4.79)

Equation (4.79) is the crux of the vortex panel method. The values of the integrals
in Equation (4.79) depend simply on the panel geometry; they are not properties
of the flow. Let Ji, j be the value of this integral when the control point is on the
i th panel. Then Equation (4.79) can be written as

V∞ cos βi −
n∑

j=1

γ j

2π
Ji, j = 0 (4.80)

Equation (4.80) is a linear algebraic equation with n unknowns, γ1, γ2, . . . , γn .
It represents the flow boundary condition evaluated at the control point of the
i th panel. If Equation (4.80) is applied to the control points of all the panels, we
obtain a system of n linear equations with n unknowns.

To this point, we have been deliberately paralleling the discussion of the
source panel method given in Section 3.17; however, the similarity stops here. For
the source panel method, the n equations for the n unknown source strengths are
routinely solved, giving the flow over a nonlifting body. In contrast, for the lifting
case with vortex panels, in addition to the n equations given by Equation (4.80)
applied at all the panels, we must also satisfy the Kutta condition. This can be
done in several ways. For example, consider Figure 4.32, which illustrates a detail
of the vortex panel distribution at the trailing edge. Note that the length of each
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Figure 4.32 Vortex panels at the
trailing edge.

Figure 4.33 Airfoil as a solid body, with zero velocity
inside the profile.

panel can be different; their length and distribution over the body are up to your
discretion. Let the two panels at the trailing edge (panels i and i −1 in Figure 4.32)
be very small. The Kutta condition is applied precisely at the trailing edge and is
given by γ (TE) = 0. To approximate this numerically, if points i and i − 1 are
close enough to the trailing edge, we can write

γi = −γi−1 (4.81)

such that the strengths of the two vortex panels i and i − 1 exactly cancel at
the point where they touch at the trailing edge. Thus, in order to impose the
Kutta condition on the solution of the flow, Equation (4.81) (or an equivalent
expression) must be included. Note that Equation (4.80) evaluated at all the panels
and Equation (4.81) constitute an overdetermined system of n unknowns with
n + 1 equations. Therefore, to obtain a determined system, Equation (4.80) is not
evaluated at one of the control points on the body. That is, we choose to ignore
one of the control points, and we evaluate Equation (4.80) at the other n − 1
control points. This, in combination with Equation (4.81), now gives a system of
n linear algebraic equations with n unknowns, which can be solved by standard
techniques.

At this stage, we have conceptually obtained the values of γ1, γ2, . . . , γn

which make the body surface a streamline of the flow and which also satisfy
the Kutta condition. In turn, the flow velocity tangent to the surface can be ob-
tained directly from γ . To see this more clearly, consider the airfoil shown in
Figure 4.33. We are concerned only with the flow outside the airfoil and on its
surface. Therefore, let the velocity be zero at every point inside the body, as shown
in Figure 4.33. In particular, the velocity just inside the vortex sheet on the surface
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is zero. This corresponds to u2 = 0 in Equation (4.8). Hence, the velocity just
outside the vortex sheet is, from Equation (4.8),

γ = u1 − u2 = u1 − 0 = u1

In Equation (4.8), u denotes the velocity tangential to the vortex sheet. In terms of
the picture shown in Figure 4.33, we obtain Va = γa at point a, Vb = γb at point
b, etc. Therefore, the local velocities tangential to the airfoil surface are equal
to the local values of γ . In turn, the local pressure distribution can be obtained
from Bernoulli’s equation.

The total circulation and the resulting lift are obtained as follows. Let s j be
the length of the j th panel. Then the circulation due to the j th panel is γ j s j . In
turn, the total circulation due to all the panels is

� =
n∑

j=1

γ j s j (4.82)

Hence, the lift per unit span is obtained from

L ′ = ρ∞V∞
n∑

j=1

γ j s j (4.83)

The presentation in this section is intended to give only the general flavor of
the vortex panel method. There are many variations of the method in use today,
and you are encouraged to read the modern literature, especially as it appears in
the AIAA Journal and the Journal of Aircraft since 1970. The vortex panel method
as described in this section is termed a “first-order” method because it assumes
a constant value of γ over a given panel. Although the method may appear to be
straightforward, its numerical implementation can sometimes be frustrating. For
example, the results for a given body are sensitive to the number of panels used,
their various sizes, and the way they are distributed over the body surface (i.e., it is
usually advantageous to place a large number of small panels near the leading and
trailing edges of an airfoil and a smaller number of larger panels in the middle).
The need to ignore one of the control points in order to have a determined system
in n equations for n unknowns also introduces some arbitrariness in the numerical
solution. Which control point do you ignore? Different choices sometimes yield
different numerical answers for the distribution of γ over the surface. Moreover,
the resulting numerical distributions for γ are not always smooth, but rather, they
have oscillations from one panel to the next as a result of numerical inaccura-
cies. The problems mentioned above are usually overcome in different ways by
different groups who have developed relatively sophisticated panel programs for
practical use. For example, what is more common today is to use a combination
of both source and vortex panels (source panels to basically simulate the airfoil
thickness and vortex panels to introduce circulation) in a panel solution. This
combination helps to mitigate some of the practical numerical problems just dis-
cussed. Again, you are encouraged to consult the literature for more information.
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Figure 4.34 Linear distribution of γ over each panel—a second-order panel
method.

Figure 4.35 Pressure coefficient distribution over an NACA 0012 airfoil; comparison
between second-order vortex panel method and NACA theoretical results from Reference 11.
The numerical panel results were obtained by one of the author’s graduate students,
Dr. Tae-Hwan Cho.

Such accuracy problems have also encouraged the development of higher-
order panel techniques. For example, a “second-order” panel method assumes a
linear variation of γ over a given panel, as sketched in Figure 4.34. Here, the
value of γ at the edges of each panel is matched to its neighbors, and the values
γ1, γ2, γ3, etc. at the boundary points become the unknowns to be solved. The
flow-tangency boundary condition is still applied at the control point of each
panel, as before. Some results using a second-order vortex panel technique are
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given in Figure 4.35, which shows the distribution of pressure coefficients over
the upper and lower surfaces of an NACA 0012 airfoil at a 9◦ angle of attack.
The circles and squares are numerical results from a second-order vortex panel
technique developed at the University of Maryland, and the solid lines are from
NACA results given in Reference 11. Excellent agreement is obtained.

Again, you are encouraged to consult the literature before embarking on any
serious panel solutions of your own. For example, Reference 14 is a classic paper
on panel methods, and Reference 15 highlights many of the basic concepts of
panel methods along with actual computer program statement listings for simple
applications. Reference 62 is a modern compilation of papers, several of which
deal with current panel techniques. Finally, Katz and Plotkin (Reference 63) give
perhaps the most thorough discussion of panel techniques and their foundations
to date.

4.11 MODERN LOW-SPEED AIRFOILS
The nomenclature and aerodynamic characteristics of standard NACA airfoils are
discussed in Sections 4.2 and 4.3; before progressing further, you should review
these sections in order to reinforce your knowledge of airfoil behavior, especially
in light of our discussions on airfoil theory. Indeed, the purpose of this section is
to provide a modern sequel to the airfoils discussed in Sections 4.2 and 4.3.

During the 1970s, NASA designed a series of low-speed airfoils that have
performance superior to the earlier NACA airfoils. The standard NACA airfoils
were based almost exclusively on experimental data obtained during the 1930s
and 1940s. In contrast, the new NASA airfoils were designed on a computer using
a numerical technique similar to the source and vortex panel methods discussed
earlier, along with numerical predictions of the viscous flow behavior (skin fric-
tion and flow separation). Wind-tunnel tests were then conducted to verify the
computer-designed profiles and to obtain the definitive airfoil properties. Out of
this work first came the general aviation–Whitcomb [GA(W)-1] airfoil, which has
since been redesignated the LS(1)-0417 airfoil. The shape of this airfoil is given
in Figure 4.36, obtained from Reference 16. Note that it has a large leading-edge
radius (0.08c in comparison to the standard 0.02c) in order to flatten the usual peak
in pressure coefficient near the nose. Also, note that the bottom surface near the
trailing edge is cusped in order to increase the camber and hence the aerodynamic

Figure 4.36 Profile for the NASA LS(1)-0417 airfoil. When
first introduced, this airfoil was labeled the GA(W)-1 airfoil,
a nomenclature which has now been superseded. (From
McGhee, R. J., and W. D. Beasley: Low-Speed Aerodynamic
Characteristics of a 17-Percent-Thick Airfoil Section
Designed for General Aviation Applications, NASA TN
D-7428, December 1973.)
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Figure 4.37 Comparison of the modern NASA LS(1)-0417 airfoil with the
standard NACA 2412 airfoil.

loading in that region. Both design features tend to discourage flow separation
over the top surface at high angle of attack, hence yielding higher values of the
maximum lift coefficient. The experimentally measured lift and moment proper-
ties (from Reference 16) are given in Figure 4.37, where they are compared with
the properties for an NACA 2412 airfoil, obtained from Reference 11. Note that
cl,max for the NASA LS(1)-0417 is considerably higher than for the NACA 2412.

The NASA LS(1)-0417 airfoil has a maximum thickness of 17 percent and a
design lift coefficient of 0.4. Using the same camber line, NASA has extended this
airfoil into a family of low-speed airfoils of different thicknesses, for example, the
NASA LS(1)-0409 and the LS(1)-0413. (See Reference 17 for more details.) In
comparison with the standard NACA airfoils having the same thicknesses, these
new LS(1)-04xx airfoils all have:

1. Approximately 30 percent higher cl,max.
2. Approximately a 50 percent increase in the ratio of lift to drag (L/D) at a

lift coefficient of 1.0. This value of cl = 1.0 is typical of the climb lift
coefficient for general aviation aircraft, and a high value of L/D greatly
improves the climb performance. (See Reference 2 for a general
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introduction to airplane performance and the importance of a high L/D
ratio to airplane efficiency.)

It is interesting to note that the shape of the airfoil in Figure 4.36 is very similar
to the supercritical airfoils to be discussed in Chapter 11. The development of the
supercritical airfoil by NASA aerodynamicist Richard Whitcomb in 1965 resulted
in a major improvement in airfoil drag behavior at high subsonic speeds, near
Mach 1. The supercritical airfoil was a major breakthrough in high-speed aerody-
namics. The LS(1)-0417 low-speed airfoil shown in Figure 4.36, first introduced
as the GA(W)-1 airfoil, was a later spin-off from supercritical airfoil research.
It is also interesting to note that the first production aircraft to use the NASA
LS(1)-0417 airfoil was the Piper PA-38 Tomahawk, introduced in the late 1970s.

In summary, new airfoil development is alive and well in the aeronautics
of the late twentieth century. Moreover, in contrast to the purely experimental
development of the earlier airfoils, we now enjoy the benefit of powerful computer
programs using panel methods and advanced viscous flow solutions for the design
of new airfoils. Indeed, in the 1980s NASA established an official Airfoil Design
Center at The Ohio State University, which services the entire general aviation
industry with over 30 different computer programs for airfoil design and analysis.
For additional information on such new low-speed airfoil development, you are
urged to read Reference 16, which is the classic first publication dealing with
these airfoils, as well as the concise review given in Reference 17.

DESIGN BOX

This chapter deals with incompressible flow over
airfoils. Moreover, the analytical thin airfoil theory
and the numerical panel methods discussed here are
techniques for calculating the aerodynamic charac-
teristics for a given airfoil of specified shape. Such
an approach is frequently called the direct problem,
wherein the shape of the body is given, and the sur-
face pressure distribution (for example) is calculated.
For design purposes, it is desirable to turn this pro-
cess inside-out; it is desirable to specify the surface
pressure distribution—a pressure distribution that will
achieve enhanced airfoil performance—and calculate
the shape of the airfoil that will produce the spec-
ified pressure distribution. This approach is called
the inverse problem. Before the advent of the high-
speed digital computer, and the concurrent rise of
the discipline of computational fluid dynamics in the
1970s (see Section 2.17.2), the analytical solution
of the inverse problem was difficult, and was not

used by the practical airplane designer. Instead, for
most of the airplanes designed before and during the
twentieth century, the choice of an airfoil shape was
based on reasonable experimental data (at best), and
guesswork (at worst). This story is told in some de-
tail in Reference 58. The design problem was made
more comfortable with the introduction of the vari-
ous families of NACA airfoils, beginning in the early
1930s. A logical method was used for the geomet-
rical design of these airfoils, and definitive experi-
mental data on the NACA airfoils were made avail-
able (such as shown in Figures 4.10, 4.11, and 4.28).
For this reason, many airplanes designed during the
middle of the twentieth century used standard NACA
airfoil sections. Even today, the NACA airfoils are
sometimes the most expeditious choice of the air-
plane designer, as indicated by the tabulation (by no
means complete) in Section 4.2 of airplanes using such
airfoils.
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Figure 4.38 Unstructured mesh for the numerical calculation of the flow over an airfoil.
(Data Source: Anderson, W. Kyle, and Bonhaus, Daryl L.: “Airfoil Design on Unstructured
Grids for Turbulent Flows,” AIAA J., vol. 37, no. 2, Feb. 1999, pp. 185–191.)

However, today the power of computational fluid
dynamics (CFD) is revolutionizing airfoil design and
analysis. The inverse problem, and indeed the next
step—the overall automated procedure that results in
a completely optimized airfoil shape for a given design
point—are being made tractable by CFD. An example
of such work is illustrated in Figures 4.38 and 4.39,
taken from the recent work of Kyle Anderson and
Daryl Bonhaus (Reference 64). Here, CFD solutions
of the continuity, momentum, and energy equations
for a compressible, viscous flow (the Navier-Stokes
equations, as denoted in Section 2.17.2) are carried
out for the purpose of airfoil design. Using a finite

volume CFD technique, and the grid shown in Fig-
ure 4.38, the inverse problem is solved. The specified
pressure distribution over the top and bottom surfaces
of the airfoil is given by the circles in Figure 4.39a. The
optimization technique is iterative and requires start-
ing with a pressure distribution that is not the desired,
specified one; the initial distribution is given by the
solid curves in Figure 4.39a, and the airfoil shape cor-
responding to this initial pressure distribution is shown
by the solid curve in Figure 4.39b. (In Figure 4.39b,
the airfoil shape appears distorted because an ex-
panded scale is used for the ordinate.) After 10 de-
sign cycles, the optimized airfoil shape that supports
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Figure 4.39 An example of airfoil optimized design using computational fluid dynamics.
(Data Source: Anderson, W. Kyle, and Bonhaus, Daryl L.: “Airfoil Design on Unstructured
Grids for Turbulent Flows,” AIAA J., vol. 37, no. 2, Feb. 1999, pp. 185–191.)

the specified pressure distribution is obtained, as given
by the circles in Figure 4.39b. The initial airfoil shape
is also shown in constant scale in Figure 4.38.

The results given in Figures 4.38 and 4.39 are
shown here simply to provide the flavor of modern air-
foil design and analysis. This is reflective of the wave
of future airfoil design procedures, and you are en-
couraged to read the contemporary literature in order
to keep up with this rapidly evolving field. However,

keep in mind that the simpler analytical approach of
thin airfoil theory discussed in the present chapter, and
especially the simple practical results of this theory,
will continue to be part of the whole “toolbox” of pro-
cedures to be used by the designer in the future. The
fundamentals embodied in thin airfoil theory will con-
tinue to be part of the fundamentals of aerodynamics
and will always be there as a partner with the modern
CFD techniques.

4.12 VISCOUS FLOW: AIRFOIL DRAG
This is another “stand-alone” viscous flow section in the same spirit as Sec-
tion 1.11. It does not break the continuity of our discussions on inviscid flow;
rather, it is designed to complement them. Before reading further, you are en-
couraged to review the introduction to boundary layers given in Section 1.11.

The lift on an airfoil is primarily due to the pressure distribution exerted on its
surface; the shear stress distribution acting on the airfoil, when integrated in the
lift direction, is usually negligible. The lift, therefore, can be accurately calculated
assuming inviscid flow in conjunction with the Kutta condition at the trailing edge.
When used to predict drag, however, this same approach yields zero drag, a result
that goes against common sense, and is called d’Alembert’s paradox after Jean
le Rond d’Alembert, the eighteenth-century French mathematician and scientist
who first made such drag calculations for inviscid flows over two-dimensional
bodies (see Sections 3.13 and 3.20).
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Figure 4.40 Subsonic airfoil drag is due to two components: (a) shear stress acting on
the surface, and (b) pressure drag due to flow separation.

Figure 4.41 Estimation of skin-friction drag on an airfoil from that on a
flat plate.

The paradox is immediately removed when viscosity (friction) is included in
the flow. Indeed, viscosity in the flow is totally responsible for the aerodynamic
drag on an airfoil. It acts through two mechanisms:

1. Skin-friction drag, due to the shear stress acting on the surface
(Figure 4.40a), and

2. Pressure drag due to flow separation, sometimes called form drag
(Figure 4.40b).

That shear stress creates drag is self-evident from Figure 4.40a. The pressure drag
created by flow separation (Figure 4.40b) is a more subtle phenomenon and will
be discussed toward the end of this section.

4.12.1 Estimating Skin-Friction Drag: Laminar Flow

As a first approximation, we assume that skin-friction drag on an airfoil is essen-
tially the same as the skin-friction drag on a flat plate at zero angle of attack, as
illustrated in Figure 4.41. Obviously, this approximation becomes more accurate
the thinner the airfoil and the smaller the angle of attack. Consistent with the rest
of this chapter, we will continue to deal with low-speed incompressible flow.
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Figure 4.42 Total friction drag on a flat plate.

We first deal with the case of completely laminar flow over the airfoil (and
hence the flat plate) in Figure 4.41. There is an exact analytical solution for the
laminar boundary-layer flow over a flat plate. The details of this solution are given
in Section 18.2, where we present boundary-layer theory in some detail. For the
present section, we will use just the results of Section 18.2.

The boundary-layer thickness for incompressible laminar flow over a flat plate
at zero angle of attack is given by Equation (18.23), repeated and renumbered
below:

δ = 5.0x√
Rex

(4.84)

where Rex is the Reynolds number based on distance x measured from the leading
edge (Figure 4.42),

Rex = ρeV∞x

μ∞
Note from Equation (4.84) that δ ∝ √

x , that is, the boundary-layer thickness
grows parabolically with distance from the leading edge.

The local shear stress, integrated over both the top and bottom surfaces of
the flat plate shown in Figure 4.41, yields the net friction drag, D f , on the plate,
illustrated in Figure 4.42. To begin with, however, let us consider just one surface
of the plate, either the top surface or the bottom surface. The shear stress distri-
bution over the top surface is the same as that over the bottom surface. Let us
choose the top surface. The integral of the shear stress over the top surface gives
the net friction drag on that surface, D f,top. Clearly, the net friction drag due to
the shear stress integrated over the bottom surface, D f,bottom, is the same value,
D f,bottom = D f,top. Hence, the total skin friction drag, D f , is

D f = 2D f,top = 2D f,bottom

Define the skin-friction drag coefficient for the flow over one surface as

C f ≡ D f,top

q∞S
= D f,bottom

q∞S
(4.85)

The skin-friction drag coefficient is a function of the Reynolds number, and is
given by Equation (18.22), repeated and renumbered below,

C f = 1.328√
Rec

(4.86)
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where Rec is the Reynolds number based on the chord length c shown in Fig-
ure 4.42

Rec = ρ∞V∞c

μ∞
EXAMPLE 4.8

Consider the NACA 2412 airfoil, data for which is given in Figures 4.10 and 4.11. The
data are given for two values of the Reynolds number based on chord length. For the case
where Rec = 3.1 × 106, estimate: (a) the laminar boundary layer thickness at the trailing
edge for a chord length of 1.5 m and (b) the net laminar skin-friction drag coefficient for
the airfoil.

■ Solution
(a) From Equation (4.84) applied at the trailing edge, where x = c, we have

δ = 5.0c√
Rec

= (5.0)(1.5)√
3.1 × 106

= 0.00426 m

Notice how thin the boundary layer is; at the trailing edge, where its thickness is the
largest, the boundary layer is only 0.426 cm thick.
(b) From Equation (4.86),

C f = 1.328√
Rec

= 1.328√
3.1 × 106

= 7.54 × 10−4

Recall that the above result is for a single surface, either the top or bottom of the plate.
Taking both surfaces into account:

Net C f = 2(7.54 × 10−4) = 0.0015

From the data in Figure 4.11, we see that at zero angle of attack for Re = 3.1×106,
the airfoil drag coefficient is 0.0068. This measured value is about 4.5 times higher
than the value of 0.0015 we just calculated. But wait a moment! For the relatively
high Reynolds number of 3.1 × 106, the boundary layer over the airfoil will
be turbulent, not laminar. So our laminar flow calculation is not an appropriate
estimate for the boundary layer thickness and the airfoil drag coefficient. Let us
take the next step.

4.12.2 Estimating Skin-Friction Drag: Turbulent Flow

In contrast to the situation for laminar flow, there are no exact analytical solutions
for turbulent flow. This sad state of affairs is discussed in Chapter 19. The analysis
of any turbulent flow requires some amount of empirical data. All analyses of
turbulent flow are approximate.

The analysis of the turbulent boundary layer over a flat plate is no excep-
tion. From Chapter 19 we lift the following approximate results for the incom-
pressible turbulent flow over a flat plate. From Equation (19.1) repeated and
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renumbered below:

δ = 0.37x

Re1/5
x

(4.87)

and from Equation (19.2) repeated and renumbered below:

C f = 0.074

Re1/5
c

(4.88)

We emphasize again that Equations (4.87) and (4.88) are only approximate results,
and they represent only one set of results among a myriad of different turbulent
flow analyses for the flat plate boundary layer. Nevertheless, Equations (4.87) and
(4.88) give us some reasonable means to estimate the boundary-layer thickness
and skin-friction drag coefficient for turbulent flow. Note that, in contrast to the
inverse square root variation with Reynolds number for laminar flow, the turbulent
flow results show an inverse fifth root variation with Reynolds number.

EXAMPLE 4.9

Repeat Example 4.8 assuming a turbulent boundary layer over the airfoil.

■ Solution
Once again we replace the airfoil with a flat plate at zero angle of attack.

(a) The boundary-layer thickness at the trailing edge, where x = c and Rex = Rec =
3.1 × 106, is given by Equation (4.87):

δ = 0.37x

Re1/5
x

= 0.37(1.5)

(3.1 × 106)1/5 = 0.0279 m

The turbulent boundary layer is still thin, 2.79 cm at the trailing edge, but by comparison
is much thicker than the laminar boundary layer thickness of 0.426 cm from Example 4.8.

(b) The skin-friction drag coefficient (based on one side of the flat plate) is given by
Equation (4.88):

C f = 0.074

Re1/5
c

= 0.074

(3.1 × 106)1/5 = 0.00372

The net skin-friction drag coefficient, taking into account both the top and bottom surfaces
of the flat plate, is

Net C f = 2(0.00372) = 0.00744

This result is a factor of five larger than for the laminar boundary layer, and serves as an
illustration of the considerable increase in skin friction caused by a turbulent boundary
layer in comparison to that caused by a laminar boundary layer.

The result for the skin friction drag coefficient in Example 4.9 is larger than
the measured drag coefficient of the airfoil of 0.0068, which is the sum of both
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skin friction drag and pressure drag due to flow separation. So our result in this
example clearly overestimates the skin friction drag coefficient for the airfoil. But
wait a minute! In actuality, the boundary layer over a body always starts out as
a laminar boundary for some distance from the leading edge, and then transists
to a turbulent boundary layer at some point downstream of the leading edge. The
skin-friction drag is therefore a combination of laminar skin friction over the
forward part of the airfoil, and turbulent skin friction over the remaining part. Let
us examine this situation.

4.12.3 Transition

In Section 4.12.1 we assumed that the flow over a flat plate was all laminar.
Similarly, in Section 4.12.2 we assumed all turbulent flow. In reality, the flow
always starts out from the leading edge as laminar. Then at some point downstream
of the leading edge, the laminar boundary layer becomes unstable and small
“bursts” of turbulence begin to grow in the flow. Finally, over a certain region
called the transition region, the boundary layer becomes completely turbulent.
For purposes of analysis, we usually draw the picture shown in Figure 4.43,
where a laminar boundary layer starts out from the leading edge of the flat plate
and grows parabolically downstream. Then at the transition point, it becomes a
turbulent boundary layer growing at a faster rate, on the order of x4/5 downstream.
The value of x where transition is said to take place is the critical value xcr. In
turn, xcr allows the definition of a critical Reynolds number for transition as

Rexcr = ρ∞V∞xcr

μ∞
(4.89)

Transition is discussed in more detail in Section 15.2. Volumes of literature
have been written on the phenomenon of transition from laminar to turbulent
flow. Obviously, because τw is different for the two flows—as clearly illustrated
by comparing the results of Examples 4.8 and 4.9—knowledge of where on the
surface transition occurs is vital to an accurate prediction of skin friction drag.
The location of the transition point (in reality, a finite region) depends on many
quantities as discussed in Section 15.2. However, if the critical Reynolds number
is given to you (usually from experiments for a given type of flow over a given

xcr

Laminar

Turbulent

Transition

V�

Figure 4.43 Transition from laminar to turbulent flow. The
boundary layer thickness is exaggerated for clarity.
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body), then the location of transition, xcr, for that type of flow can be obtained
directly from the definition, Equation (4.89).

For example, assume that you have an airfoil of given surface roughness (one
of the factors that affect the location of transition) in a flow at a freestream velocity
of 50 m/s and you wish to predict how far from the leading edge the transition
will take place. After searching through the literature for low-speed flows over
such surfaces, you may find that the critical Reynolds number determined from
experience is approximately Rexcr = 5 × 105. Applying this “experience” to your
problem, using Equation (4.89), and assuming the thermodynamic conditions
correspond to standard sea level, where ρ∞ = 1.23 kg/m3 and (from Section 1.11)
μ∞ = 1.789 × 10−5 kg/(m)(s), you find

xcr = μ∞Rexcr

ρ∞V∞
= (1.789 × 10−5)(5 × 105)

(1.23)(50)
= 0.145 m

Note that the region of laminar flow in this example extends from the leading edge
to 14.5 cm downstream from the leading edge. If now you double the freestream
velocity to 100 m/s, the transition point is still governed by the critical Reynolds
number, Rexcr = 5 × 105. Thus,

xcr = (1.789 × 10−5)(5 × 105)

(1.23)(100)
= 0.0727 m

Hence, when the velocity is doubled, the transition point moves forward one-half
the distance to the leading edge.

In summary, once you know the critical Reynolds number, you can find xcr

from Equation (4.89). However, an accurate value for Rexcr applicable to your
problem must come from somewhere—experiment, free flight, or some semi-
empirical theory—and this may be difficult to obtain. This situation provides a
little insight into why basic studies of transition and turbulence are needed to
advance our understanding of such flows and to allow us to apply more valid
reasoning to the prediction of transition in practical problems.

EXAMPLE 4.10

For the NACA 2412 airfoil and the conditions in Example 4.7, calculate the net skin
friction drag coefficient assuming that the critical Reynolds number is 500,000.

■ Solution
Consider Figure 4.44, which shows a flat plate with a laminar boundary layer extending
from the leading edge over the distance x1 to the transition point (region 1), and a turbulent
boundary extending over the distance x2 from the transition point to the trailing edge
(region 2). The critical Reynolds number is

Rexcr = ρ∞V∞xcr

μ∞
= 5 × 105
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Figure 4.44 Laminar (region 1) and turbulent (region 2) flow
over a flat plate.

where in Figure 4.44, xcr = x1. Hence

Rexcr = ρ∞V∞x1

μ∞
= 5 × 105

The Reynolds number based on chord length is given as

Rec = ρ∞V∞c

μ∞
= 3.1 × 106

Thus

Rexcr

Rec
= 5 × 105

3.1 × 106 = 0.1613 = (ρ∞V∞x1/μ∞)

(ρ∞V∞c/μ∞)
= x1

c

This locates the transition point relative to the chord length, that is, in Figure 4.44, we
have

x1

c
= 0.1613

Because the Reynolds number in the equations for skin friction drag coefficient is
always based on length measured from the leading edge, we cannot simply calculate
the turbulent skin friction drag coefficient for region 2 by using Equation (4.88) with a
Reynolds number based on x2. Rather, we must carry out the following procedure.

Assuming all turbulent flow over the entire length of the plate, the drag (on one side
of the plate) is (D f,c)turbulent, where

(D f,c)turbulent = q∞S(C f,c)turbulent

As usual, we are dealing with the drag per unit span, hence S = c(1).

(D f,c)turbulent = q∞c(C f,c)turbulent

The turbulent drag on just region 1 is (D f,1)turbulent:

(D f,1)turbulent = q∞S(C f,1)turbulent

Here, S = (x1)(1):

(D f,1)turbulent = q∞x1(C f,1)turbulent
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Thus, the turbulent drag just on region 2, (D f,2)turbulent, is

(D f,2)turbulent = (D f,c)turbulent − (D f,1)turbulent

(D f,2)turbulent = q∞c(C f,c)turbulent − q∞x1(C f,1)turbulent

The laminar drag on region 1 is (D f,1)laminar

(D f,1)laminar = q∞S(C f,1)laminar = q∞x1(C f,1)laminar

The total skin-friction drag on the plate, D f , is then

D f = (D f,1)laminar + (D f,2)turbulent

or, D f = q∞x1(C f,1)laminar + q∞c(C f,c)turbulent − q∞x1(C f,1)turbulent (4.90)

The total skin-friction drag coefficient is

C f = D f

q∞S
= D f

q∞c
(4.91)

Combining Equations (4.90) and (4.91):

C f = x1

c
(C f,1)laminar + (C f,c)turbulent − x1

c
(C f,1)turbulent (4.92)

Since x1/c = 0.1613, Equation (4.92) becomes

C f = 0.1613(C f,1)laminar + (C f,c)turbulent − 0.1613(C f,1)turbulent (4.93)

The various skin friction drag coefficients in Equation (4.93) are obtained as follows. The
Reynolds number for region 1 is

Rex1 = ρ∞V∞x1

μ∞
= x1

c

(
ρ∞V∞c

μ∞

)
= x1

c
Rec = 0.1613(3.1 × 106) = 5 × 105

(Of course, we could have written this down directly because x = x1 is the transition point,
determined from the critical Reynolds number that is given as 5 × 105.) From Equation
(4.86) for laminar flow, with the Reynolds number based on x1, we have

(C f,1)laminar = 1.328√
Rex1

= 1.328√
5 × 105

= 0.00188

The value of (C f,c)turbulent has already been calculated in Example 4.8, namely,

(C f,c)turbulent = 0.00372 (for one side)

From Equation (4.88) with the Reynolds number based on x1,

(C f,1)turbulent = 0.074

Re1/5
x1

= 0.074

(5 × 105)0.2 = 0.00536

Inserting these values into Equation (4.93), we have

C f = 0.1613(0.00188) + 0.00372 − 0.1613(0.00536) = 0.003158

Taking into account both sides of the flat plate,

Net C f = 2(0.003158) = 0.0063
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From the data in Figure 4.11, the measured airfoil drag coefficient is 0.0068, which
includes both skin friction drag and pressure drag due to flow separation. The result
from Example 4.10, therefore, is qualitatively reasonable, giving a skin friction
drag coefficient slightly less than the measured total drag coefficient. However,
our calculated result of C f = 0.0063 is for a critical Reynolds number of 500,000
for transition from laminar to turbulent flow. We do not know what the critical
Reynolds number is for the experiments on which the data in Figure 4.11 are
based. In Example 4.10, the assumption of Rexcr = 500,000 is very conservative;
more likely the actual value is closer to 1,000,000. If we assume this higher value
of Rexcr , what does it do to the calculated result for C f ? Let us take a look.

EXAMPLE 4.11

Repeat Example 4.10, but assuming the critical Reynolds number is 1 × 106.

■ Solution

x1

c
= 1 × 106

3.1 × 106 = 0.3226

Which, as we could write down immediately, is twice the length from Example 4.10
because the critical Reynolds number is twice as large. Equation (4.93) becomes

C f = 0.3226(C f,1)laminar + (C f,c)turbulent − 0.3226(C f,1)turbulent (4.94)

For region 1, we have

(C f,1)laminar = 1.328√
Rex1

= 1.328√
1 × 106

= 0.001328

The value of (C f,c)turbulent is the same as before:

(C f,c)turbulent = 0.00372

Once again, for region 1 assuming turbulent flow, we have

(C f,1)turbulent = 0.074

(Rex1)
1/5 = 0.074

(1 × 106)1/5 = 0.004669

Substituting the above results in Equation (4.94), we have

C f = 0.3226(0.001328) + 0.00372 − 0.3226(0.004669) = 0.002642

Since this result is for one side of the plate, the net skin friction drag coefficient is

Net C f = 2(0.002642) = 0.00528

Note: Comparing the results from Examples 4.10 and 4.11, we see that an
increase in Rexcr from 500,000 to 1,000,000 resulted in a skin friction drag co-
efficient that is 16 percent smaller. This difference underscores the importance
of knowing where transition takes place on a surface for the calculation of skin
friction drag.
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Also, comparing the calculated results for skin friction drag coefficient with
the measured total drag coefficient of 0.0068, from Example 4.10 the calculated
C f = 0.0063 would imply that the pressure drag due to flow separation is about
7.4 percent of the total drag. The result from Example 4.11 of C f = 0.00528
would imply that the pressure drag due to flow separation is about 22 percent of
the total drag.

Is this breakdown between skin friction and pressure drag quantitatively
reasonable? An answer can be found in the recent results of Lombardi et al.
given in Reference 88. Here, the authors calculated both the skin friction drag
coefficient and the total drag coefficient for an NACA 0012 airfoil using an
accurate computational fluid dynamic technique. More details of their calculations
are given in Section 20.4. For a Reynolds number based on chord length of 3×106,
and including a model for transition, they calculated a total drag coefficient of
0.00623 and a skin friction drag coefficient of 0.00534, indicating that the pressure
drag due to flow separation is 15 percent of the total drag. For a streamlined body,
this drag breakdown is reasonable; the drag on a streamlined two-dimensional
shape is mostly skin friction drag, and by comparison the pressure drag is small.
For example, it is reasonable to expect 80 percent of the drag to be skin friction
drag and 20 percent to be pressure drag due to flow separation.

This is not to say that pressure drag due to flow separation is unimportant;
quite the contrary, as the body becomes less streamlined (more like a blunt body),
the pressure drag becomes the dominant factor. We need to take a closer look at
this phenomenon.

4.12.4 Flow Separation

Pressure drag on an airfoil is caused by the flow separation. For a completely
attached flow over an airfoil, the pressure acting on the rear surface gives rise to
a force in the forward direction which completely counteracts the pressure acting
on the front surface producing a force in the rearward direction, resulting in zero
pressure drag. However, if the flow is partially separated over the rear surface,
the pressure on the rear surface pushing forward will be smaller than the fully
attached case, and the pressure acting on the front surface pushing backwards will
not be fully counteracted, giving rise to a net pressure drag on the airfoil—the
pressure drag due to flow separation.

What flow conditions are conducive to flow separation? To help answer this
question, consider the flow over the NASA LS(1)-0417 airfoil at zero angle of
attack, as shown in Figure 4.45. The streamlines move smoothly over the airfoil—
there is no flow separation of any consequence. A computational fluid dynamic
solution of the variation of pressure coefficient over the upper surface of the
airfoil is shown at the bottom of Figure 4.45. Starting at the stagnation point
at the leading edge, where for incompressible flow Cp = 1.0, the flow rapidly
expands around the top surface. The pressure decreases dramatically, dipping to a
minimum pressure at a location about 10 percent of the chord length downstream
of the leading edge. Then as the flow moves farther downstream, the pressure
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Figure 4.45 Pressure distribution over the top surface for attached flow over an
airfoil. Theoretical data for a modern NASA low-speed airfoil, from NASA
Conference Publication 2046, Advanced Technology Airfoil Research, vol. II,
March 1978, p. 11.

gradually increases, reaching a value slightly above freestream pressure at the
trailing edge. This region of increasing pressure is called a region of adverse
pressure gradient. By definition, an adverse pressure gradient is a region where
the pressure increases in the flow direction, that is, in Figure 4.45, the region
where dp/dx is positive. For the conditions shown in Figure 4.45, the adverse
pressure gradient is moderate; that is, dp/dx is small, and for all practical purposes
the flow remains attached to the airfoil surface except for a small region near the
trailing edge (not shown in Figure 4.45).

Now consider the same airfoil at the very high angle of attack of 18.4 degrees,
as shown in Figure 4.46. First, assume we have a purely inviscid flow with no
flow separation—a purely artificial situation. A numerical solution for the inviscid
flow gives the results shown by the dashed curve in Figure 4.46. In this artificial
situation, the pressure would drop precipitously downstream of the leading edge
to a value of C p almost −9, and then rapidly increase downstream, recovering
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Figure 4.47 Qualitative comparison of pressure distribution, lift, and drag for attached and
separated flows. Note that for separated flow, the lift decreases and the drag increases.

to a value slightly above p∞ at the trailing edge. In this recovery, the pressure
would increase rapidly, in contrast to the case shown in Figure 4.45. The adverse
pressure gradient would be severe; that is, dp/dx would be large. In such a case,
the real viscous flow tends to separate from the surface. In this real separated flow,
the actual surface pressure distribution is given in Figure 4.46 by the solid curve,
obtained from a computational fluid dynamic viscous flow calculation using the
complete Navier-Stokes equations (see Chapter 15). In comparison to the dashed
curve, the actual pressure distribution does not dip to as low a pressure minimum,
and the pressure near the trailing edge does not recover to a value above p∞.

It is important to visualize and compare the pressures acting on the surface
of the airfoil for the case shown in Figure 4.46, this comparison is sketched in
Figure 4.47. Here the airfoil at a large angle of attack (thus with flow separation) is
shown with the real surface pressure distribution symbolized by the solid arrows.
Pressure always acts normal to the surface. Hence the arrows are all locally
perpendicular to the surface. The length of the arrows is representative of the
magnitude of the pressure. A solid curve is drawn through the base of the arrows to
form an “envelope” to make the pressure distribution easier to visualize. However,
if the flow were not separated, that is, if the flow were attached, then the pressure
distribution would be that shown by the dashed arrows (and the dashed envelope).
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The solid and dashed arrows in Figure 4.47 qualitatively correspond to the solid
and dashed pressure distribution curves, respectively, in Figure 4.46.

The solid and dashed arrows in Figure 4.47 should be compared carefully.
They explain the two major consequences of separated flow over the airfoil. The
first consequence is a loss of lift. The aerodynamic lift (the vertical force shown
in Figure 4.47) is derived from the net component of the pressure distribution in
the vertical direction in Figure 4.47 (assuming that the freestream relative wind
is horizontal in this figure). High lift is obtained when the pressure on the bottom
surface is large and the pressure on the top surface is small. Separation does not
affect the bottom surface pressure distribution. However, comparing the solid and
dashed arrows on the top surface just downstream of the leading edge, we find the
solid arrows indicating a higher pressure when the flow is separated. This higher
pressure is pushing down, hence reducing the lift. This reduction in lift is also
compounded by the geometric effect that the position of the top surface of the
airfoil near the leading edge is approximately horizontal in Figure 4.47. When
the flow is separated, causing a higher pressure on this part of the airfoil surface,
the direction in which the pressure is acting is closely aligned to the vertical,
and hence, almost the full effect of the increased pressure is felt by the lift. The
combined effect of the increased pressure on the top surface near the leading edge,
and the fact that this portion of the surface is approximately horizontal, leads to
the rather dramatic loss of lift when the flow separates. Note in Figure 4.47 that
the lift for separated flow (the solid vertical vector) is smaller than the lift that
would exist if the flow were attached (the dashed vertical vector).

Now let us concentrate on that portion of the top surface near the trailing
edge. On this portion of the airfoil surface, the pressure for the separated flow
is now smaller than the pressure that would exist if the flow were attached.
Moreover, the top surface near the trailing edge geometrically is inclined more to
the horizontal, and, in fact, somewhat faces in the horizontal direction. Recall that
the drag is in the horizontal direction in Figure 4.47. Because of the inclination
of the top surface near the trailing edge, the pressure exerted on this portion of
the surface has a strong component in the horizontal direction. This component
acts toward the left, tending to counter the horizontal component of force due to
the high pressure acting on the nose of the airfoil pushing toward the right. The
net pressure drag on the airfoil is the difference between the force exerted on the
front pushing toward the right and the force exerted on the back pushing toward
the left. When the flow is separated, the pressure on the back is lower than it
would be if the flow were attached. Hence, for the separated flow, there is less
force on the back pushing toward the left, and the net drag acting toward the right
is therefore increased. Note in Figure 4.47 that the drag for separated flow (the
solid horizontal vector) is larger than the drag that would exist if the flow were
attached (the dashed horizontal vector).

Therefore, two major consequences of the flow separating over an airfoil are:

1. A drastic loss of lift (stalling).
2. A major increase in drag, caused by pressure drag due to flow separation.
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Why does a flow separate from a surface? The answer is addressed in detail in
Section 15.2. In brief, in a region of adverse pressure gradient the fluid elements
moving along a streamline have to work their way “uphill” against an increasing
pressure. Consequently, the fluid elements will slow down under the influence of
an adverse pressure gradient. For the fluid elements moving outside the boundary
layer, where the velocity (and hence kinetic energy) is high, this is not much of a
problem. The fluid elements keep moving downstream. However, consider a fluid
element deep inside the boundary layer. Its velocity is already small because it
is retarded by friction forces. The fluid element still encounters the same adverse
pressure gradient because the pressure is transmitted without change normal to
the wall, but its velocity is too low to negotiate the increasing pressure. As a
result, the element comes to a stop somewhere downstream and reverses its di-
rection. Such reversed flow causes the flow field in general to separate from the
surface, as shown at the top of Figure 4.46. This is physically how separated flow
develops.

4.12.5 Comment

In this section we estimated skin friction drag on an airfoil by using the model of
a flat plate at zero angle of attack, and calculating the skin friction drag for the
airfoil using the formulas for the flat plate such as Equation (4.86) for laminar
flow and Equation (4.88) for turbulent flow.5 How reasonable is this? How close
does the flat plate skin friction drag on a flat plate come to that on an airfoil?
How close does the local shear stress distribution over the surface of the flat plate
resemble that on the airfoil surface?

Some answers can be obtained by comparing the relatively exact computa-
tional fluid dynamic calculations of Lombardi et al. (Reference 88) for the viscous
flow over an NACA 0012 airfoil at zero angle of attack with that for a flat plate.
The variation of the local skin friction coefficient, defined as c f = τw/q∞, as a
function of distance from the leading edge is given in Figure 4.48 for both the
airfoil and the flat plate. They are remarkably close; clearly, for the purpose of the
present section the modeling of the airfoil skin friction drag by use of flat plate
results is reasonable.

With this, we end our discussion of airfoil drag at low speeds. Although the
main thrust of this chapter is the low-speed inviscid potential flow over airfoils
with the consequent prediction of lift, the present section provides some balance
by exploring the effects of viscous flow on airfoil behavior, and the consequent
production of drag. More aspects of the real flow over airfoils are given in Sec-
tion 4.13.

5 In 1921, Walter Diehl’s article in NACA TR111, entitled “The Variation of Aerofoil Lift and Drag
Coefficients with Changes in Size and Speed,” suggested that the airfoil drag coefficient varies in the
same manner as that for a flat plate at zero angle of attack. He did not say that the airfoil drag coefficient
equals that for a flat plate, but rather has the same Reynolds number variation. Diehl’s suggestion,
however, appears to be the first effort to use flat plate data in some fashion to estimate airfoil drag.
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Figure 4.48 Local skin-friction coefficient distributions over an NACA
0012 airfoil, compared with that for a flat plate.

4.13 APPLIED AERODYNAMICS: THE FLOW OVER
AN AIRFOIL—THE REAL CASE

In this chapter, we have studied the inviscid, incompressible flow over airfoils.
When compared with actual experimental lift and moment data for airfoils in
low-speed flows, we have seen that our theoretical results based on the assump-
tion of inviscid flow are quite good—with one glaring exception. In the real
case, flow separation occurs over the top surface of the airfoil when the angle
of attack exceeds a certain value—the “stalling” angle of attack. As described in
Sections 4.3 and 4.12, this is a viscous effect. As shown in Figure 4.9, the lift
coefficient reaches a local maximum denoted by cl,max, and the angle of attack at
which cl,max is achieved is the stalling angle of attack. An increase in α beyond this
value usually results in a (sometimes rather precipitous) drop in lift. At angles of
attack well below the stalling angle, the experimental data clearly show a linear
increase in cl with increasing α—a result that is predicted by the theory presented
in this chapter. Indeed, in this linear region, the inviscid flow theory is in excellent
agreement with the experiment, as reflected in Figure 4.10 and as demonstrated
by Example 4.6. However, the inviscid theory does not predict flow separation,
and consequently the prediction of cl,max and the stalling angle of attack must be
treated in some fashion by viscous flow theory. Such viscous flow analyses are
the purview of Part 4. On the other hand, the purpose of this section is to examine
the physical features of the real flow over an airfoil, and flow separation is an
inherent part of this real flow. Therefore, let us take a more detailed look at how
the flow field over an airfoil changes as the angle of attack is increased, and how
the lift coefficient is affected by such changes.

The flow fields over an NACA 4412 airfoil at different angles of attack are
shown in Figure 4.49. Here, the streamlines are drawn to scale as obtained from
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Figure 4.49 Example of leading-edge stall. Streamline patterns for an NACA 4412 airfoil at different angles of
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the experimental results of Hikaru Ito given in Reference 47. The experimental
streamline patterns were made visible by a smoke wire technique, wherein metal-
lic wires spread with oil over their surfaces were heated by an electric pulse and the
resulting white smoke creates visible streaklines in the flow field. In Figure 4.49,
the angle of attack is progressively increased as we scan from Figure 4.49a to e; to
the right of each streamline picture is an arrow, the length of which is proportional
to the value of the lift coefficient at the given angle of attack. The actual experi-
mentally measured lift curve for the airfoil is given in Figure 4.49f. Note that at
low angle of attack, such as α = 2◦ in Figure 4.49a, the streamlines are relatively
undisturbed from their freestream shapes and cl is small. As α is increased to 5◦,
as shown in Figure 4.49b, and then to 10◦, as shown in Figure 4.49c, the stream-
lines exhibit a pronounced upward deflection in the region of the leading edge,
and a subsequent downward deflection in the region of the trailing edge. Note
that the stagnation point progressively moves downstream of the leading edge
over the bottom surface of the airfoil as α is increased. Of course, cl increases as
α is increased, and, in this region, the increase is linear, as seen in Figure 4.49f.
When α is increased to slightly less than 15◦, as shown in Figure 4.49d, the
curvature of the streamlines is particularly apparent. In Figure 4.49d, the flow
field is still attached over the top surface of the airfoil. However, as α is further
increased slightly above 15◦, massive flow-field separation occurs over the top
surface, as shown in Figure 4.49e. By slightly increasing α from that shown in
Figure 4.49d to that in Figure 4.49e, the flow quite suddenly separates from the
leading edge and the lift coefficient experiences a precipitous decrease, as seen in
Figure 4.49f.

The type of stalling phenomenon shown in Figure 4.49 is called leading-edge
stall; it is characteristic of relatively thin airfoils with thickness ratios between
10 and 16 percent of the chord length. As seen above, flow separation takes place
rather suddenly and abruptly over the entire top surface of the airfoil, with the
origin of this separation occurring at the leading edge. Note that the lift curve
shown in Figure 4.49f is rather sharp-peaked in the vicinity of cl,max with a rapid
decrease in cl above the stall.

A second category of stall is the trailing-edge stall. This behavior is charac-
teristic of thicker airfoils such as the NACA 4421 shown in Figure 4.50. Here,
we see a progressive and gradual movement of separation from the trailing edge
toward the leading edge as α is increased. The lift curve for this case is shown in
Figure 4.51. The solid curve in Figure 4.51 is a repeat of the results for the NACA
4412 airfoil shown earlier in Figure 4.49f—an airfoil with a leading-edge stall.
The dot-dashed curve is the lift curve for the NACA 4421 airfoil—an airfoil with
a trailing-edge stall. In comparing these two curves, note that:

1. The trailing-edge stall yields a gradual bending-over of the lift curve at
maximum lift, in contrast to the sharp, precipitous drop in cl for the
leading-edge stall. The stall is “soft” for the trailing-edge stall.

2. The value of cl,max is not so large for the trailing-edge stall.
3. For both the NACA 4412 and 4421 airfoils, the shape of the mean camber

line is the same. From the thin airfoil theory discussed in this chapter, the
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Figure 4.50 Example of trailing-edge stall. Streamline patterns for an NACA 4421 airfoil at different angles of
attack. (The streamlines are drawn to scale from the experimental results of Nakayama, Y. (ed): Visualized Flow,
compiled by the Japan Society of Mechanical Engineers, Pergamon Press, New York, 1988.) Re = 2.1 × 105 and
V∞ = 8 m/s in air.

linear lift slope and the zero-lift angle of attack should be the same for both
airfoils; this is confirmed by the experimental data in Figure 4.51. The only
difference between the two airfoils is that one is thicker than the other.
Hence, comparing results shown in Figures 4.49 to 4.51, we conclude that
the major effect of thickness of the airfoil is its effect on the value of cl,max,
and this effect is mirrored by the leading-edge stall behavior of the thinner
airfoil versus the trailing-edge stall behavior of the thicker airfoil.

There is a third type of stall behavior, namely, behavior associated with the
extreme thinness of an airfoil. This is sometimes labeled as “thin airfoil stall.”
An extreme example of a very thin airfoil is a flat plate; the lift curve for a flat
plate is shown as the dashed curve in Figure 4.51 labeled “thin airfoil stall.” The
streamline patterns for the flow over a flat plate at various angles of attack are
given in Figure 4.52. The thickness of the flat plate is 2 percent of the chord length.
Inviscid, incompressible flow theory shows that the velocity becomes infinitely
large at a sharp convex corner; the leading edge of a flat plate at an angle of
attack is such a case. In the real flow over the plate as shown in Figure 4.52,
nature addresses this singular behavior by having the flow separate at the leading
edge, even for very low values of α. Examining Figure 4.52a, where α = 3◦,
we observe a small region of separated flow at the leading edge. This separated



Figure 4.51 Lift-coefficient curves for three airfoils with different
aerodynamic behavior: trailing-edge stall (NACA 4421 airfoil),
leading-edge stall (NACA 4412 airfoil), thin airfoil stall (flat plate).
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Figure 4.52 Example of thin airfoil stall. Streamline patterns for a flat plate at angle of attack. (The
streamlines are drawn to scale from the experimental data of Nakayama, Y. (ed): Visualized Flow, compiled
by the Japan Society of Mechanical Engineers, Pergamon Press, New York, 1988.)
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flow reattaches to the surface further downstream, forming a separation bubble
in the region near the leading edge. As α is increased, the reattachment point
moves further downstream; that is, the separation bubble becomes larger. This is
illustrated in Figure 4.52b where α = 7◦. At α = 9◦ (Figure 4.52c), the separation
bubble extends over almost the complete flat plate. Referring back to Figure 4.51,
we note that this angle of attack corresponds to cl,max for the flat plate. When α is
increased further, total flow separation is present, such as shown in Figure 4.52d.
The lift curve for the flat plate in Figure 4.51 shows an early departure from its
linear variation at about α = 3◦; this corresponds to the formation of the leading-
edge separation bubble. The lift curve gradually bends over as α is increased
further and exhibits a very gradual and “soft” stall. This is a trend similar to the
case of the trailing-edge stall, although the physical aspects of the flow are quite
different between the two cases. Of particular importance is the fact that cl,max for
the flat plate is considerably smaller than that for the two NACA airfoils compared
in Figure 4.51. Hence, we can conclude from Figure 4.51 that the value of cl,max is
critically dependent on airfoil thickness. In particular, by comparing the flat plate
with the two NACA airfoils, we see that some thickness is vital to obtaining a high
value of cl,max. However, beyond that, the amount of thickness will influence the
type of stall (leading-edge versus trailing-edge), and airfoils that are very thick
tend to exhibit reduced values of cl,max as the thickness increases. Hence, if we plot
cl,max versus thickness ratio, we expect to see a local maximum. Such is indeed
the case, as shown in Figure 4.53. Here, experimental data for cl,max for the NACA
63-2XX series of airfoils is shown as a function of the thickness ratio. Note that
as the thickness ratio increases from a small value, cl,max first increases, reaches

Figure 4.53 Effect of airfoil thickness on maximum lift
coefficient for the NACA 63-2XX series of airfoils.
(Data Source: Abbott, I. H., and A. E. von Doenhoff: Theory of
Wing Sections, McGraw-Hill Book Company, New York, 1949;
also, Dover Publications, Inc., New York, 1959).
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a maximum value at a thickness ratio of about 12 percent, and then decreases
at larger thickness ratios. The experimental data in Figure 4.53 is plotted with
the Reynolds number as a parameter. Note that cl,max for a given airfoil is clearly
a function of Re, with higher values of cl,max corresponding to higher Reynolds
numbers. Since flow separation is responsible for the lift coefficient exhibiting
a local maximum, since flow separation is a viscous phenomenon, and since a
viscous phenomenon is governed by a Reynolds number, it is no surprise that
cl,max exhibits some sensitivity to Re.

When was the significance of airfoil thickness first understood and appre-
ciated? This question is addressed in the historical note in Section 4.14, where
we will see that the aerodynamic properties of thick airfoils even transcended
technology during World War I and impacted the politics of the armistice.

Let us examine some other aspects of airfoil aerodynamics—aspects that are
not always appreciated in a first study of the subject. The simple generation of
lift by an airfoil is not the prime consideration in its design—even a barn door
at an angle of attack produces lift. Rather, there are two figures of merit that are
primarily used to judge the quality of a given airfoil:

1. The lift-to-drag ratio L/D. An efficient airfoil produces lift with a
minimum of drag; that is, the ratio of lift-to-drag is a measure of the
aerodynamic efficiency of an airfoil. The standard airfoils discussed in this
chapter have high L/D ratios—much higher than that of a barn door. The
L/D ratio for a complete flight vehicle has an important impact on its flight
performance; for example, the range of the vehicle is directly proportional
to the L/D ratio. (See Reference 2 for an extensive discussion of the role of
L/D on flight performance of an airplane.)

2. The maximum lift coefficient cl,max. An effective airfoil produces a high
value of cl,max—much higher than that produced by a barn door.

The maximum lift coefficient is worth some additional discussion here. For
a complete flight vehicle, the maximum lift coefficient CL ,max determines the
stalling speed of the aircraft as discussed in the Design Box at the end of Sec-
tion 1.8. From Equation (1.47), repeated below:

Vstall =
√

2W

ρ∞SCL ,max
(1.47)

Therefore, a tremendous incentive exists to increase the maximum lift coefficient
of an airfoil, in order to obtain either lower stalling speeds or higher payload
weights at the same speed, as reflected in Equation (1.47). Moreover, the ma-
neuverability of an airplane (i.e., the smallest possible turn radius and the fastest
possible turn rate) depends on a large value of CL ,max (see Section 6.17 of Refer-
ence 2). On the other hand, for an airfoil at a given Reynolds number, the value of
cl,max is a function primarily of its shape. Once the shape is specified, the value
of cl,max is what nature dictates, as we have already seen. Therefore, to increase
cl,max beyond such a value, we must carry out some special measures. Such
special measures include the use of flaps and/or leading-edge slats to increase
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Figure 4.54 Effect of flap deflection on streamline shapes. (The streamlines are drawn to scale from the
experimental data of Nakayama, Y. (ed): Visualized Flow, compiled by the Japan Society of Mechanical
Engineers, Pergamon Press, New York, 1988.) (a) Effect of flap deflection on lift coefficient.
(b) Streamline pattern with no flap deflection. (c) Streamline pattern with a 15◦ flap deflection.

cl,max above that for the reference airfoil itself. These are called high-lift devices,
and are discussed in more detail below.

A trailing-edge flap is simply a portion of the trailing-edge section of the
airfoil that is hinged and which can be deflected upward or downward, as sketched
in the insert in Figure 4.54a. When the flap is deflected downward (a positive angle
δ in Figure 4.54a), the lift coefficient is increased, as shown in Figure 4.54a. This
increase is due to an effective increase in the camber of the airfoil as the flap
is deflected downward. The thin airfoil theory presented in this chapter clearly
shows that the zero-lift angle of attack is a function of the amount of camber [see
Equation (4.61)], with αL=0 becoming more negative as the camber is increased.
In terms of the lift curve shown in Figure 4.54a, the original curve for no flap
deflection goes through the origin because the airfoil is symmetric; however, as
the flap is deflected downward, this lift curve simply translates to the left because
αL=0 is becoming more negative. In Figure 4.54a, the results are given for flap
deflections of ±10◦. Comparing the case for δ = 10◦ with the no-deflection
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Figure 4.55 Effect of leading-edge flap on lift
coefficient.

case, we see that, at a given angle of attack, the lift coefficient is increased by an
amount �cl due to flap deflection. Moreover, the actual value of cl,max is increased
by flap deflection, although the angle of attack at which cl,max occurs is slightly
decreased. The change in the streamline pattern when the flap is deflected is
shown in Figure 4.54b and c. Figure 4.54b is the case for α = 0 and δ = 0 (i.e., a
symmetric flow). However, when α is held fixed at zero, but the flap is deflected
by 15◦, as shown in Figure 4.54c, the flow field becomes unsymmetrical and
resembles the lifting flows shown (e.g., in Figure 4.49). That is, the streamlines
in Figure 4.54c are deflected upward in the vicinity of the leading edge and
downward near the trailing edge, and the stagnation point moves to the lower
surface of the airfoil—just by deflecting the flap downward.

High-lift devices can also be applied to the leading edge of the airfoil, as
shown in the inset in Figure 4.55. These can take the form of a leading-edge slat,
leading-edge droop, or a leading-edge flap. Let us concentrate on the leading-
edge slat, which is simply a thin, curved surface that is deployed in front of the
leading edge. In addition to the primary airflow over the airfoil, there is now a
secondary flow that takes place through the gap between the slat and the airfoil
leading edge. This secondary flow from the bottom to the top surface modifies



404 PART 2 Inviscid, Incompressible Flow

(a) (b)

(c) (d)

� � 10� � � 25�

� � 30�(�) � � 30�(�)

Figure 4.56 Effect of a leading-edge slat on the streamline pattern over an NACA 4412 airfoil.
(The streamlines are drawn to scale from the experimental data in Nakayama, Y. (ed): Visualized Flow,
compiled by the Japan Society of Mechanical Engineers, Pergamon Press, New York, 1988.)

the pressure distribution over the top surface; the adverse pressure gradient which
would normally exist over much of the top surface is mitigated somewhat by
this secondary flow, hence delaying flow separation over the top surface. Thus, a
leading-edge slat increases the stalling angle of attack, and hence yields a higher
cl,max, as shown by the two lift curves in Figure 4.55, one for the case without a
leading-edge device and the other for the slat deployed. Note that the function of
a leading-edge slat is inherently different from that of a trailing-edge flap. There
is no change in αL=0; rather, the lift curve is simply extended to a higher stalling
angle of attack, with the attendant increase in cl,max. The streamlines of a flow
field associated with an extended leading-edge slat are shown in Figure 4.56. The
airfoil is in an NACA 4412 section. (Note: The flows shown in Figure 4.56 do
not correspond exactly with the lift curves shown in Figure 4.55, although the
general behavior is the same.) The stalling angle of attack for the NACA 4412
airfoil without slat extension is about 15◦, but increases to about 30◦ when the slat
is extended. In Figure 4.56a, the angle of attack is 10◦. Note the flow through the
gap between the slat and the leading edge. In Figure 4.56b, the angle of attack is
25◦ and the flow is still attached. This prevails to an angle of attack slightly less
than 30◦, as shown in Figure 4.56c. At slightly higher than 30◦ flow separation
suddenly occurs and the airfoil stalls.

The high-lift devices used on modern, high-performance aircraft are usually a
combination of leading-edge slats (or flaps) and multielement trailing-edge flaps.
Typical airfoil configurations with these devices are sketched in Figure 4.57. Three
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A: Cruise configuration

B: Takeoff configuration

C: Landing configuration

Figure 4.57 Airfoil with leading-edge and trailing-edge high-lift
mechanisms. The trailing-edge device is a multielement flap.

configurations including the high-lift devices are shown: A—the cruise configu-
ration, with no deployment of the high-lift devices; B—a typical configuration
at takeoff, with both the leading- and trailing-edge devices partially deployed;
and C—a typical configuration at landing, with all devices fully extended. Note
that for configuration C , there is a gap between the slat and the leading edge
and several gaps between the different elements of the multielement trailing-edge
flap. The streamline pattern for the flow over such a configuration is shown in
Figure 4.58. Here, the leading-edge slat and the multielement trailing-edge flap
are fully extended. The angle of attack is 25◦. Although the main flow over the
top surface of the airfoil is essentially separated, the local flow through the gaps
in the multielement flap is locally attached to the top surface of the flap; because
of this locally attached flow, the lift coefficient is still quite high, on the order
of 4.5.

With this, we end our discussion of the real flow over airfoils. In retrospect,
we can say that the real flow at high angles of attack is dominated by flow
separation—a phenomenon that is not properly modeled by the inviscid theories
presented in this chapter. On the other hand, at lower angles of attack, such as
those associated with the cruise conditions of an airplane, the inviscid theories
presented here do an excellent job of predicting both lift and moments on an
airfoil. Moreover, in this section, we have clearly seen the importance of airfoil
thickness in determining the angle of attack at which flow separation will occur,
and hence greatly affecting the maximum lift coefficient.
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� � 25�

Figure 4.58 Effect of leading-edge and multielement flaps on the streamline
pattern around an airfoil at angle of attack of 25◦. (The streamlines are drawn to
scale from the experimental data of Nakayama, Y. (ed): Visualized Flow,
compiled by the Japan Society of Mechanical Engineers, Pergamon Press, New
York, 1988.)

4.14 HISTORICAL NOTE: EARLY AIRPLANE
DESIGN AND THE ROLE OF AIRFOIL
THICKNESS

In 1804, the first modern configuration aircraft was conceived and built by Sir
George Cayley in England—it was an elementary hand-launched glider, about a
meter in length, and with a kitelike shape for a wing as shown in Figure 4.59. (For
the pivotal role played by George Cayley in the development of the airplane, see
the extensive historical discussion in Chapter 1 of Reference 2.) Note that right
from the beginning of the modern configuration aircraft, the wing sections were
very thin—whatever thickness was present, it was strictly for structural stiffness
of the wing. Extremely thin airfoil sections were perpetuated by the work of
Horatio Phillips in England. Phillips carried out the first serious wind-tunnel
experiments in which the aerodynamic characteristics of a number of different
airfoil shapes were measured. (See Section 5.20 of Reference 2 for a presentation
of the historical development of airfoils.) Some of Phillips airfoil sections are
shown in Figure 4.60—note that they are the epitome of exceptionally thin airfoils.
The early pioneers of aviation such as Otto Lilienthal in Germany and Samuel
Pierpont Langley in America (see Chapter 1 of Reference 2) continued this thin
airfoil tradition. This was especially true of the Wright brothers, who in the period
of 1901–1902 tested hundreds of different wing sections and planform shapes in
their wind tunnel in Dayton, Ohio (recall our discussion in Section 1.1 and the
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Figure 4.59 The first modern configuration airplane in
history: George Cayley’s model glider of 1804.
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Figure 4.60 Double-surface airfoil sections by Horatio
Phillips. The six upper shapes were patented by Phillips in
1884; the lower airfoil was patented in 1891. Note the thin
profile shapes.

models shown in Figure 1.7). A sketch of some of the Wrights’ airfoil sections
is given in Figure 4.61—for the most part, very thin sections. Indeed, such a thin
airfoil section was used on the 1903 Wright Flyer, as can be readily seen in the
side view of the Flyer shown in Figure 4.62. The important point here is that all of
the early pioneering aircraft, and especially the Wright Flyer, incorporated very
thin airfoil sections—airfoil sections that performed essentially like the flat plate
results discussed in Section 4.13, and as shown in Figure 4.51 (the dashed curve)
and by the streamline pictures in Figure 4.52. Conclusion: These early airfoil
sections suffered flow-field separation at small angles of attack and, consequently,
had low values of cl,max. By the standards we apply today, these were simply very
poor airfoil sections for the production of high lift.

This situation carried into the early part of World War I. In Figure 4.63, we
see four airfoil sections that were employed on World War I aircraft. The top
three sections had thickness ratios of about 4 to 5 percent and are representative
of the type of sections used on all aircraft until 1917. For example, the SPAD XIII
(shown in Figure 3.50), the fastest of all World War I fighters, had a thin airfoil
section like the Eiffel section shown in Figure 4.63. Why were such thin airfoil
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Figure 4.61 Some typical airfoil
shapes tested by the Wright
brothers in their wind tunnel
during 1902–1903.

Figure 4.62 Front and side views of the 1903 Wright Flyer. Note the thin airfoil sections.
(Courtesy of the National Air and Space Museum).

sections considered to be the best by most designers of World War I aircraft? The
historical tradition described above might be part of the answer—a tradition that
started with Cayley. Also, there was quite clearly a mistaken notion at that time
that thick airfoils would produce high drag. Of course, today we know the opposite
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Figure 4.63 Some examples of different airfoil shapes used on World War I
aircraft. (Source: Loftin, Lawrence K., Jr.: Quest for Performance: The Evolution
of Modern Aircraft, NASA SP-468, 1985).

to be true; review our discussion of streamlined shapes in Section 1.12 for this
fact. Laurence Loftin in Reference 45 surmises that the mistaken notion might
have been fostered by early wind-tunnel tests. By the nature of the early wind
tunnels in use—small sizes and very low speeds—the data were obtained at very
low Reynolds numbers, less than 100,000 based on the airfoil-chord length. These
Reynolds numbers are to be compared with typical values in the millions for actual
airplane flight. Modern studies of low Reynolds number flows over conventional
thick airfoils (e.g., see Reference 48) clearly show high-drag coefficients, in
contrast to the lower values that occur for the high Reynolds number associated
with the flight of full-scale aircraft. Also, the reason for the World War I airplane
designer’s preference for thin airfoils might be as simple as the tendency to follow
the example of the wings of birds, which are quite thin. In any event, the design of
all English, French, and American World War I aircraft incorporated thin airfoils
and, consequently, suffered from poor high-lift performance. The fundamentals
of airfoil aerodynamics as we know them today (and as being presented in this
book) were simply not sufficiently understood by the designers during World
War I. In turn, they never appreciated what they were losing.

This situation changed dramatically in 1917. Work carried out in Germany at
the famous Göttingen aerodynamic laboratory of Ludwig Prandtl (see Section 5.8
for a biographical sketch of Prandtl) demonstrated the superiority of a thick airfoil
section, such as the Göttingen 298 section shown at the bottom of Figure 4.63. This
revolutionary development was immediately picked up by the famous designer
Anthony Fokker, who incorporated the 13-percent-thick Göttingen 298 profile in
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Figure 4.64 The World War I Fokker Dr-1 triplane, the first fighter aircraft to use a thick
airfoil. (© Ed Maker/The Denver Post via Getty Images).

his new Fokker Dr-1—the famous triplane flown by the “Red Baron,” Rittmeister
Manfred Freiher von Richthofen. A photograph of the Fokker Dr-1 is shown in
Figure 4.64. The major benefits derived from Fokker’s use of the thick airfoil
were:

1. The wing structure could be completely internal; that is the wings of the
Dr-1 were a cantilever design, which removed the need for the conventional
wire bracing that was used in other aircraft. This, in turn, eliminated the
high drag associated with these interwing wires, as discussed at the end of
Section 1.11. For this reason, the Dr-1 had a zero-lift drag coefficient of
0.032, among the lowest of World War I airplanes. (By comparison the
zero-lift drag coefficient of the French SPAD XIII was 0.037.)

2. The thick airfoil provided the Fokker Dr-1 with a high maximum lift
coefficient. Its performance was analogous to the upper curves shown in
Figure 4.51. This, in turn, provided the Dr-1 with an exceptionally high
rate-of-climb as well as enhanced maneuverability—characteristics that
were dominant in dog-fighting combat.

Anthony Fokker continued the use of a thick airfoil in his design of the D-VII,
as shown in Figure 4.65. This gave the D-VII a much greater rate-of-climb than its
two principal opponents at the end of the war—the English Sopwith Camel and
the French SPAD XIII, both of which still used very thin airfoil sections. This rate-
of-climb performance, as well as its excellent handling characteristics, singled
out the Fokker D-VII as the most effective of all German World War I fighters.
The respect given by the Allies to this machine is no more clearly indicated than
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Figure 4.65 The World War I Fokker D-VII, one of the most effective fighters of the war,
due in part to its superior aerodynamic performance allowed by a thick airfoil section.
(© Chronicle/Alamy).

by a paragraph in article IV of the armistice agreement, which lists war material
to be handed over to the Allies by Germany. In this article, the Fokker D-VII is
specifically listed—the only airplane of any type to be explicitly mentioned in
the armistice. To this author’s knowledge, this is the one and only time where a
breakthrough in airfoil technology is essentially reflected in any major political
document, though somewhat implicitly.

4.15 HISTORICAL NOTE: KUTTA, JOUKOWSKI,
AND THE CIRCULATION THEORY OF LIFT

Frederick W. Lanchester (1868–1946), an English engineer, automobile man-
ufacturer, and self-styled aerodynamicist, was the first to connect the idea of
circulation with lift. His thoughts were originally set forth in a presentation given
before the Birmingham Natural History and Philosophical Society in 1894 and
later contained in a paper submitted to the Physical Society, which turned it down.
Finally, in 1907 and 1908, he published two books, entitled Aerodynamics and
Aerodonetics, where his thoughts on circulation and lift were described in de-
tail. His books were later translated into German in 1909 and French in 1914.
Unfortunately, Lanchester’s style of writing was difficult to read and understand;
this is partly responsible for the general lack of interest shown by British scien-
tists in Lanchester’s work. Consequently, little positive benefit was derived from
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Lanchester’s writings. (See Section 5.7 for a more detailed portrait of Lanchester
and his work.)

Quite independently, and with total lack of knowledge of Lanchester’s think-
ing, M. Wilhelm Kutta (1867–1944) developed the idea that lift and circulation
are related. Kutta was born in Pitschen, Germany, in 1867 and obtained a Ph.D. in
mathematics from the University of Munich in 1902. After serving as professor
of mathematics at several German technical schools and universities, he finally
settled at the Technische Hochschule in Stuttgart in 1911 until his retirement
in 1935. Kutta’s interest in aerodynamics was initiated by the successful glider
flights of Otto Lilienthal in Berlin during the period 1890–1896 (see Chapter 1 of
Reference 2). Kutta attempted theoretically to calculate the lift on the curved wing
surfaces used by Lilienthal. In the process, he surmised from experimental data
that the flow left the trailing edge of a sharp-edged body smoothly and that this
condition fixed the circulation around the body (the Kutta condition, described
in Section 4.5). At the same time, he was convinced that circulation and lift were
connected. Kutta was reluctant to publish these ideas, but after the strong insis-
tence of his teacher, S. Finsterwalder, he wrote a paper entitled “Auftriebskrafte
in Stromenden Flussigkecten” (Lift in Flowing Fluids). This was actually a short
note abstracted from his longer graduation paper in 1902, but it represents the first
time in history where the concepts of the Kutta condition as well as the connection
of circulation with lift were officially published. Finsterwalder clearly repeated
the ideas of his student in a lecture given on September 6, 1909, in which he
stated:

On the upper surface the circulatory motion increases the translatory one, therefore
there is high velocity and consequently low pressure, while on the lower surface the
two movements are opposite, therefore there is low velocity with high pressure, with
the result of a thrust upward.

However, in his 1902 note, Kutta did not give the precise quantitative relation
between circulation and lift. This was left to Nikolai E. Joukowski (Zhukouski).
Joukowski was born in Orekhovo in central Russia on January 5, 1847. The
son of an engineer, he became an excellent student of mathematics and physics,
graduating with a Ph.D. in applied mathematics from Moscow University in
1882. He subsequently held a joint appointment as a professor of mechanics
at Moscow University and the Moscow Higher Technical School. It was at this
latter institution that Joukowski built in 1902 the first wind tunnel in Russia.
Joukowski was deeply interested in aeronautics, and he combined a rare gift for
both experimental and theoretical work in the field. He expanded his wind tunnel
into a major aerodynamics laboratory in Moscow. Indeed, during World War I,
his laboratory was used as a school to train military pilots in the principles of
aerodynamics and flight. When he died in 1921, Joukowski was by far the most
noted aerodynamicist in Russia.

Much of Joukowski’s fame was derived from a paper published in 1906,
wherein he gives, for the first time in history, the relation L ′ = ρ∞V∞�—the
Kutta-Joukowski theorem. In Joukowski’s own words:
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If an irrotational two-dimensional fluid current, having at infinity the velocity V∞
surrounds any closed contour on which the circulation of velocity is �, the force
of the aerodynamic pressure acts on this contour in a direction perpendicular to the
velocity and has the value

L ′ = ρ∞V∞�

The direction of this force is found by causing to rotate through a right angle the
vector V∞ around its origin in an inverse direction to that of the circulation.

Joukowski was unaware of Kutta’s 1902 note and developed his ideas on
circulation and lift independently. However, in recognition of Kutta’s contribution,
the equation given above has propagated through the twentieth century as the
“Kutta-Joukowski theorem.”

Hence, by 1906—just 3 years after the first successful flight of the Wright
brothers—the circulation theory of lift was in place, ready to aid aerodynamics
in the design and understanding of lifting surfaces. In particular, this principle
formed the cornerstone of the thin airfoil theory described in Sections 4.7 and
4.8. Thin airfoil theory was developed by Max Munk, a colleague of Prandtl
in Germany, during the first few years after World War I. However, the very
existence of thin airfoil theory, as well as its amazingly good results, rests upon
the foundation laid by Lanchester, Kutta, and Joukowski a decade earlier.

4.16 SUMMARY
Return to the road map given in Figure 4.7. Make certain that you feel comfortable
with the material represented by each box on the road map and that you understand
the flow of ideas from one box to another. If you are uncertain about one or more
aspects, review the pertinent sections before progressing further.

Some important results from this chapter are itemized below:

A vortex sheet can be used to synthesize the inviscid, incompressible flow over
an airfoil. If the distance along the sheet is given by s and the strength of the
sheet per unit length is γ (s), then the velocity potential induced at point (x, y)

by a vortex sheet that extends from point a to point b is

φ(x, y) = − 1

2π

∫ b

a
θγ (s) ds (4.3)

The circulation associated with this vortex sheet is

� =
∫ b

a
γ (s) ds (4.4)

Across the vortex sheet, there is a tangential velocity discontinuity, where

γ = u1 − u2 (4.8)
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The Kutta condition is an observation that for a lifting airfoil of given shape at a
given angle of attack, nature adopts that particular value of circulation around
the airfoil which results in the flow leaving smoothly at the trailing edge. If the
trailing-edge angle is finite, then the trailing edge is a stagnation point. If the
trailing edge is cusped, then the velocities leaving the top and bottom surfaces
at the trailing edge are finite and equal in magnitude and direction. In either
case,

γ (TE) = 0 (4.10)

Thin airfoil theory is predicated on the replacement of the airfoil by the mean
camber line. A vortex sheet is placed along the chord line, and its strength
adjusted such that, in conjunction with the uniform freestream, the camber
line becomes a streamline of the flow while at the same time satisfying the
Kutta condition. The strength of such a vortex sheet is obtained from the
fundamental equation of thin airfoil theory:

1

2π

∫ c

0

γ (ξ) dξ

x − ξ
= V∞

(
α − dz

dx

)
(4.18)

Results of thin airfoil theory:

Symmetric airfoil

1. cl = 2πα.
2. Lift slope = dcl/dα = 2π .
3. The center of pressure and the aerodynamic center are both at the

quarter-chord point.
4. cm,c/4 = cm,ac = 0.

Cambered airfoil

1. cl = 2π

[
α + 1

π

∫ π

0

dz

dx
(cos θ0 − 1) dθ0

]
(4.57)

2. Lift slope = dcl/dα = 2π .
3. The aerodynamic center is at the quarter-chord point.
4. The center of pressure varies with the lift coefficient.
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The vortex panel method is an important numerical technique for the solution
of the inviscid, incompressible flow over bodies of arbitrary shape, thickness,
and angle of attack. For panels of constant strength, the governing equations
are

V∞ cos βi −
n∑

j=1

γ j

2π

∫
j

∂θi j

∂ni
ds j = 0 (i = 1, 2, . . . , n)

and γi = −γi−1

which is one way of expressing the Kutta condition for the panels immediately
above and below the trailing edge.

4.17 INTEGRATED WORK CHALLENGE: WALL
EFFECTS ON MEASUREMENTS MADE IN
SUBSONIC WIND TUNNELS

Concept: Low-speed subsonic wind tunnels were discussed in Chapter 3, includ-
ing the conceptual design of such tunnels in Section 3.23. When models of flight
vehicles are tested in wind tunnels, we want the aerodynamic measurements taken
with the models (lift and drag coefficients, pressure coefficients, etc.) to simulate
those quantities that prevail on the actual flight vehicle in free flight through the at-
mosphere. There are, however, many reasons why the wind tunnel measurements
may not be quite the same results as in free flight (scale effects, instrumentation
errors, etc.), but one fundamental source of error is that the flowfield over a model
in a wind tunnel is bounded and constrained by the walls of the tunnel, whereas
no such constraints exist in free flight through the atmosphere (except when the
vehicle is flying in close proximity to the ground, with consequent “ground ef-
fects” on the aerodynamics of the vehicle). In this section we will address the
tunnel wall effects on a model in the tunnel and look at ways to compensate for
them on the data.

The corrections to measurements made in wind tunnels due to wall effects
have been a concern since the beginning of the serious use of wind tunnels.
Indeed, three chapters in the definitive book on tunnel testing by Barlow, Rae,
and Pope, Low-Speed Wind Tunnel Testing, 3rd Edition, Wiley, 1999, are devoted
to wind tunnel wall corrections. It is beyond our scope here to exhaustively
look at the subject. However, in Chapters 3 and 4 we have developed some
elementary potential flow methods to calculate flows over bodies, and this leads
to the following challenge.

Challenge: How can we use our potential flow methods to examine to what extent
wall effects might affect the flow over a model mounted in a wind tunnel?
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Figure 4.66 Image of a doublet.

Solution: Let us take the classic case of the nonlifting flow over a circular cylinder,
as discussed in Section 3.13, where the streamlines are sketched in Figure 3.26.
Using potential flow theory, this flow is synthesized by combining a doublet flow
with a uniform freestream. The flow field extends to infinity in all directions, and
the resulting streamline pattern has straight, uniform streamlines only at infinity.
In contrast, imagine a circular cylinder mounted in a wind tunnel flow that is
bounded above and below by straight, parallel walls. The flow streamlines along
the walls have to be straight and parallel. Simultaneously, another streamline must
be a circle in order to simulate the surface streamline of the cylinder. How can
we simulate this condition?

One answer is to use the method of images, the basic idea of which is as fol-
lows. Return to Figure 3.26, which illustrates the combination of a doublet with a
uniform freestream. This same picture is sketched in the upper part of Figure 4.66.
Here, the doublet is located at distance a above the wall. The streamline along
the wall must be straight and parallel to the wall; hence, the vertical component
of the flow velocity must be zero at the wall, i.e., v = 0. This cannot happen
with just the doublet above the wall. However, if we imagine a second doublet
of equal strength placed below the wall at an equal distance a below the wall,
then by symmetry the vertical components of the two flows along the wall will
cancel, yielding v = 0 for the combined flow along the wall. This second doublet
is called an image of the first; it is there simply to provide a straight, parallel
streamline that represents the wall.
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Let us examine the stream function for the combination of the doublet and
its image. From Equation (3.91), for doublet 1, with strength κ1,

�1 = − κ1

2π

sin θ1

r1
+ V∞r1 sin θ1 (C4.1)

and for doublet 2 with strength κ2,

�2 = − κ2

2π

sin θ2

r2
+ V∞r2 sin θ2 (C4.2)

Using the cartesian coordinates x1, y1, x2, and y2 shown in Figure 4.66,

sin θ1 = y1√(
x2

1 + y2
1

)
sin θ2 = y2√(

x2
2 + y2

2

)
r1 =

√
x2

1 + y2
1

r2 =
√

x2
2 + y2

2

r1 sin θ1 = y1

r2 sin θ2 = y2

and therefore Equations (C4.1) and (C4.2) become, respectively,

�1 = − κ1

2π

y1(
x2

1 + y2
2

) + V∞r1 (C4.3)

�2 = − κ2

2π

y2(
x2

2 + y2
2

) + V∞r2 (C4.4)

Consider point P in the flow shown in Figure 4.66. This point represents any
point in the flow above the wall. The relation between the two sets of cartesian
coordinates (x1, y1) and (x2, y2) is, from Figure 4.66:

x2 = x1

y2 = 2a + y1

Hence, the combined stream function at point P is

ψ = �1 +�2 = − κ1

2π

y1(
x2

1 + y2
1

) + V∞y1 − κ2

2π

(2a + y1)

x2
2 + (2a + y1)2

+ V∞(2a + y1)

(C4.5)

Unfortunately, the streamline through the stagnation points in the flow described
by Equation (4.5) is not the shape of a circular cylinder; rather, it is the distorted
shape sketched qualitatively in Figure 4.67. There would be a mirror image of the
same distorted shape below the wall. In order to more accurately represent the
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Figure 4.67 Body shape simulated by a doublet and its image in a
uniform flow (qualitative sketch).

flow over the circular cylinder, we need an image of the image to be placed above
the cylinder, and then more images of the images arranged in a vertical array above
and below. In this fashion, the flow synthesized by all these images will approach
closer to the flow over a circular cylinder, while at the same time preserving the
straight streamlines at the walls. This is the essence of the “method of images”
used to represent the flow over a body in the presence of a wall. Also, note that
we have considered only the generation of a flow with a straight streamline below
the body; this would simulate the flow over the body in the presence of a ground
plane. In the wind tunnel case there is also an upper wall, and our “method of
images” becomes more complex. Is there a better way of taking into account wall
effects in the wind tunnel?

Yes—one technique is to use computational fluid dynamics to calculate the
flow in the test section with the test model mounted in it. The panel methods
described in Sections 3.17 and 4.10 could be used by covering both the surface
of the model and the surface of the tunnel walls with source and vortex panels.
Results from such panel solutions for the flow over a circular cylinder are sketched
in Figures 4.68a and 4.68b. The streamlines over a nonlifting cylinder in free air
are shown in Figure 4.68a, and those for a nonlifting cylinder in a wind tunnel
test section are shown in Figure 4.68b. The streamlines in the wind tunnel case
are more constrained than in the free air case, and there would be an effect on the
surface pressure distribution on the circular cylinder. The computational results
from a panel solution would identify such effects. The use of computational
fluid dynamics, such as panel methods, for wind tunnel wall corrections can be
expensive and time consuming, so the many empirical methods developed over
the years are still in vogue. See Barlow, Rae and Pope, Chapters 9 to 11 for an
in-depth discussion. For our purposes here, the “solution” to this Integrated Work
Challenge has not been a solution per se, but rather a discussion of the problem.
This is because the actual solution is long and detailed and beyond the scope of
this book. Our purpose here is to simply open the thought process.
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Free air

Wind tunnel

(b)

(a)

Straight streamline Upper wall

Straight streamline Lower wall

Figure 4.68 Comparison between (a) the
streamlines over a cylinder in free air and
(b) the streamlines over a cylinder in a
wind tunnel.

4.18 PROBLEMS
4.1 Consider the data for the NACA 2412 airfoil given in Figure 4.10.

Calculate the lift and moment about the quarter chord (per unit span)
for this airfoil when the angle of attack is 4◦ and the freestream is at
standard sea level conditions with a velocity of 50 ft/s. The chord of the
airfoil is 2 ft.

4.2 Consider an NACA 2412 airfoil with a 2-m chord in an airstream with a
velocity of 50 m/s at standard sea level conditions. If the lift per unit span
is 1353 N/m, what is the angle of attack?

4.3 Starting with the definition of circulation, derive Kelvin’s circulation
theorem, Equation (4.11).

4.4 Starting with Equation (4.35), derive Equation (4.36).
4.5 Consider a thin, symmetric airfoil at 1.5◦ angle of attack. From the results

of thin airfoil theory, calculate the lift coefficient and the moment
coefficient about the leading edge.
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4.6 The NACA 4412 airfoil has a mean camber line given by

z
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x

c

)2
]

for 0.4 ≤ x

c
≤ 1

Using thin airfoil theory, calculate
(a) αL=0 (b) cl when α = 3◦

4.7 For the airfoil given in Problem 4.6, calculate cm,c/4 and xcp/c when
α = 3◦.

4.8 Compare the results of Problems 4.6 and 4.7 with experimental data for
the NACA 4412 airfoil, and note the percentage difference between theory
and experiment. (Hint: A good source of experimental airfoil data is
Reference 11.)

4.9 Starting with Equations (4.35) and (4.43), derive Equation (4.62).
4.10 For the NACA 2412 airfoil, the lift coefficient and moment coefficient

about the quarter-chord at −6◦ angle of attack are −0.39 and −0.045,
respectively. At 4◦ angle of attack, these coefficients are 0.65 and −0.037,
respectively. Calculate the location of the aerodynamic center.

4.11 Consider again the NACA 2412 airfoil discussed in Problem 4.10. The
airfoil is flying at a velocity of 60 m/s at a standard altitude of 3 km (see
Appendix D). The chord length of the airfoil is 2 m. Calculate the lift per
unit span when the angle of attack is 4◦.

4.12 For the airfoil in Problem 4.11, calculate the value of the circulation
around the airfoil.

4.13 In Section 3.15 we studied the case of the lifting flow over a circular
cylinder. In real life, a rotating cylinder in a flow will produce lift; such
real flow fields are shown in the photographs in Figures 3.34(b) and (c).
Here, the viscous shear stress acting between the flow and the surface of
the cylinder drags the flow around in the direction of rotation of the
cylinder. For a cylinder of radius R rotating with an angular velocity ω in
an otherwise stationary fluid, the viscous flow solution for the velocity
field obtained from the Navier-Stokes equations (Chapter 15) is

Vθ = R2ω

r
where Vθ is the tangential velocity along the circular streamlines and r is
the radial distance from the center of the cylinder. (See Schlichting,
Boundary-Layer Theory, 6th ed., McGraw-Hill, 1968, page 81.) Note that
Vθ varies inversely with r and is of the same form as the inviscid flow
velocity for a point vortex given by Equation (3.105). If the rotating
cylinder has a radius of 1 m and is flying at the same velocity and altitude
as the airfoil in Problem 4.11, what must its angular velocity be to produce
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the same lift as the airfoil in Problem 4.11? (Note: You can check your
results with the experimental data for lift on rotating cylinders in Hoerner,
Fluid-Dynamic Lift, published by the author, 1975, pp. 21–4, Fig. 5.)

4.14 The question is often asked: Can an airfoil fly upside-down? To answer
this, make the following calculation. Consider a positively cambered
airfoil with a zero-lift angle of −3◦. The lift slope is 0.1 per degree.
(a) Calculate the lift coefficient at an angle of attack of 5◦. (b) Now
imagine the same airfoil turned upside-down, but at the same 5◦ angle of
attack as part (a). Calculate its lift coefficient. (c) At what angle of attack
must the upside-down airfoil be set to generate the same lift as that when it
is right-side-up at a 5◦ angle of attack?

4.15 The airfoil section of the wing of the British Spitfire of World War II fame
(see Figure 5.19) is an NACA 2213 at the wing root, tapering to an NACA
2205 at the wing tip. The root chord is 8.33 ft. The measured profile drag
coefficient of the NACA 2213 airfoil is 0.006 at a Reynolds number of
9 × 106. Consider the Spitfire cruising at an altitude of 18,000 ft. (a) At
what velocity is it flying for the root chord Reynolds number to be
9 × 106? (b) At this velocity and altitude, assuming completely turbulent
flow, estimate the skin-friction drag coefficient for the NACA 2213 airfoil,
and compare this with the total profile drag coefficient. Calculate the
percentage of the profile drag coefficient that is due to pressure drag. Note:
Assume that μ varies as the square root of temperature, as first discussed
in Section 1.8.

4.16 For the conditions given in Problem 4.15, a more reasonable calculation of
the skin friction coefficient would be to assume an initially laminar
boundary layer starting at the leading edge, and then transitioning to a
turbulent boundary layer at some point downstream. Calculate the
skin-friction coefficient for the Spitfire’s airfoil described in Problem 4.15,
but this time assuming a critical Reynolds number of 106 for transition.





C H A P T E R 5
Incompressible Flow
over Finite Wings

The one who has most carefully watched the soaring birds of prey sees man with
wings and the faculty of using them.

James Means, Editor of
the Aeronautical Annual, 1895

PREVIEW BOX

The Beechcraft Baron 58 twin-engine business air-
craft is shown in three-view in Figure 5.1. The wing
on this airplane has a 15 percent thick NACA 23015
airfoil at the root, tapering to a 10 percent thick-
ness at the tip. We studied airfoil properties in Chap-
ter 4, ostensibly to be able to predict the lift and
drag characteristics of an airplane wing utilizing a
given airfoil shape. Wind tunnel data for the NACA
23015 airfoil is given in Figure 5.2 in the standard
format used by the NACA as described in Refer-
ence 11. The airfoil lift coefficient and the moment
coefficient about the quarter-chord point are given as

a function of airfoil section angle of attack in Fig-
ure 5.2a. The drag coefficient and the moment coef-
ficient about the aerodynamic center are given as a
function of the lift coefficient in Figure 5.2b. The air-
foil shape is shown to scale at the top of Figure 5.2b.
Results for three different values of the Reynolds
number based on chord length are shown, as indi-
cated by the code near the bottom of Figure 5.2b. The
data labeled “standard roughness” applies to a spe-
cial case where the model surface was covered with
a sandpaper-like grit; we are not concerned with this
special case.

423
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Figure 5.1 Beechcraft Baron 58, four- to six-seat general aviation airplane.

Consider the Beechcraft Baron 58 cruising such
that the wing is at a four-degree angle of attack.
What are the lift and drag coefficients of the wing?
From Figure 5.2a, for the airfoil at α = 4◦, we
have cl = 0.54. Using the drag coefficient data at
the highest Reynolds number shown in Figure 5.2b,
for cl = 0.54 the corresponding drag coefficient
cd = 0.0068. Using capital letters for the aerody-
namic coefficients of a wing, in contrast to the lower
case letters for an airfoil, we pose the question: Are CL
and CD for the wing the same as those for the airfoil?
That is,

CL = 0.54 (?) CD = 0.0068 (?)

The answer is a resounding NO! Not even close!
Surprised? How can this be? Why are the aero-
dynamic coefficients of the wing not the same as

those for the airfoil shape from which the wing is
made? Surely, the aerodynamic properties of the air-
foil must have something to do with the aerody-
namic properties of the finite wing. Or else our stud-
ies of airfoils in Chapter 4 would be a big waste of
time.

The single, most important purpose of this chap-
ter is to solve this mystery. This chapter is focused
on the aerodynamic properties of real, finite wings.
The solution involves some interesting and (yes)
some rather intense mathematics combined with some
knowledge of the physical properties of the flow over
a finite wing. This is very important stuff. This chapter
gets at the very core of the aerodynamics of a real air-
plane flying at speeds appropriate to the assumption
of incompressible flow. Read on with vigor, and let us
solve this mystery.
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5.1 INTRODUCTION: DOWNWASH
AND INDUCED DRAG

In Chapter 4 we discussed the properties of airfoils, which are the same as the
properties of a wing of infinite span; indeed, airfoil data are frequently denoted as
“infinite wing” data. However, all real airplanes have wings of finite span, and the
purpose of the present chapter is to apply our knowledge of airfoil properties to
the analysis of such finite wings. This is the second step in Prandtl’s philosophy
of wing theory, as described in Section 4.1. You should review Section 4.1 before
proceeding further.

Question: Why are the aerodynamic characteristics of a finite wing any differ-
ent from the properties of its airfoil sections? Indeed, an airfoil is simply a section
of a wing, and at first thought, you might expect the wing to behave exactly the
same as the airfoil. However, as studied in Chapter 4, the flow over an airfoil
is two-dimensional. In contrast, a finite wing is a three-dimensional body, and
consequently the flow over the finite wing is three-dimensional; that is, there is a
component of flow in the spanwise direction. To see this more clearly, examine
Figure 5.3, which gives the top and front views of a finite wing. The physical
mechanism for generating lift on the wing is the existence of a high pressure on
the bottom surface and a low pressure on the top surface. The net imbalance of
the pressure distribution creates the lift, as discussed in Section 1.5. However, as

Figure 5.3 Finite wing. In this figure, the curvature of the
streamlines over the top and bottom of the wing is exaggerated
for clarity.
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Figure 5.4 Schematic of wing-tip vortices.

a by-product of this pressure imbalance, the flow near the wing tips tends to curl
around the tips, being forced from the high-pressure region just underneath the
tips to the low-pressure region on top. This flow around the wing tips is shown
in the front view of the wing in Figure 5.3. As a result, on the top surface of the
wing, there is generally a spanwise component of flow from the tip toward the
wing root, causing the streamlines over the top surface to bend toward the root,
as sketched on the top view shown in Figure 5.3. Similarly, on the bottom surface
of the wing, there is generally a spanwise component of flow from the root to-
ward the tip, causing the streamlines over the bottom surface to bend toward the
tip. Clearly, the flow over the finite wing is three-dimensional, and therefore you
would expect the overall aerodynamic properties of such a wing to differ from
those of its airfoil sections.

The tendency for the flow to “leak” around the wing tips has another important
effect on the aerodynamics of the wing. This flow establishes a circulatory motion
that trails downstream of the wing; that is, a trailing vortex is created at each
wing tip. These wing-tip vortices are sketched in Figure 5.4 and are illustrated in
Figure 5.5. The tip vortices are essentially weak “tornadoes” that trail downstream
of the finite wing. (For large airplanes such as a Boeing 747, these tip vortices
can be powerful enough to cause light airplanes following too closely to go out of
control. Such accidents have occurred, and this is one reason for large spacings
between aircraft landing or taking off consecutively at airports.) These wing-tip
vortices downstream of the wing induce a small downward component of air
velocity in the neighborhood of the wing itself. This can be seen by inspecting
Figure 5.5; the two vortices tend to drag the surrounding air around with them, and
this secondary movement induces a small velocity component in the downward
direction at the wing. This downward component is called downwash, denoted
by the symbol w. In turn, the downwash combines with the freestream velocity
V∞ to produce a local relative wind which is canted downward in the vicinity of
each airfoil section of the wing, as sketched in Figure 5.6.

Examine Figure 5.6 closely. The angle between the chord line and the direc-
tion of V∞ is the angle of attack α, as defined in Section 1.5 and as used throughout
our discussion of airfoil theory in Chapter 4. We now more precisely define α as
the geometric angle of attack. In Figure 5.6, the local relative wind is inclined
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Figure 5.5 Wing-tip vortices from a finite wing. (© Steve Whiston – Fallen Log
Photography/Getty Images).
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Figure 5.6 Effect of downwash on the local flow over a local airfoil section of a finite wing.
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below the direction of V∞ by the angle αi , called the induced angle of attack.
The presence of downwash, and its effect on inclining the local relative wind in
the downward direction, has two important effects on the local airfoil section, as
follows:

1. The angle of attack actually seen by the local airfoil section is the angle
between the chord line and the local relative wind. This angle is given by
αeff in Figure 5.4 and is defined as the effective angle of attack. Hence,
although the wing is at a geometric angle of attack α, the local airfoil
section is seeing a smaller angle, namely, the effective angle of attack αeff.
From Figure 5.6,

αeff = α − αi (5.1)

2. The local lift vector is aligned perpendicular to the local relative wind, and
hence is inclined behind the vertical by the angle αi , as shown in Figure 5.6.
Consequently, there is a component of the local lift vector in the direction of
V∞; that is, there is a drag created by the presence of downwash. This drag
is defined as induced drag, denoted by Di in Figure 5.6.

Hence, we see that the presence of downwash over a finite wing reduces
the angle of attack that each section effectively sees, and moreover, it creates a
component of drag—the induced drag Di . Keep in mind that we are still dealing
with an inviscid, incompressible flow, where there is no skin friction or flow
separation. For such a flow, there is a finite drag—the induced drag—on a finite
wing. d’Alembert’s paradox does not occur for a finite wing.

The tilting backward of the lift vector shown in Figure 5.6 is one way of
visualizing the physical generation of induced drag. Two alternate ways are as
follows:

1. The three-dimensional flow induced by the wing-tip vortices shown in
Figures 5.4 and 5.5 simply alters the pressure distribution on the finite wing
in such a fashion that a net pressure imbalance exists in the direction of V∞
(i.e., drag is created). In this sense, induced drag is a type of “pressure drag.”

2. The wing-tip vortices contain a large amount of translational and rotational
kinetic energy. This energy has to come from somewhere; indeed, it is
ultimately provided by the aircraft engine, which is the only source of
power associated with the airplane. Since the energy of the vortices serves
no useful purpose, this power is essentially lost. In effect, the extra power
provided by the engine that goes into the vortices is the extra power
required from the engine to overcome the induced drag.

Clearly, from the discussion in this section, the characteristics of a finite wing
are not identical to the characteristics of its airfoil sections. Therefore, let us pro-
ceed to develop a theory that will enable us to analyze the aerodynamic properties
of finite wings. In the process, we follow the road map given in Figure 5.7—keep
in touch with this road map as we progress through the present chapter.
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Figure 5.7 Road map for Chapter 5.

In this chapter, we note a difference in nomenclature. For the two-dimensional
bodies considered in the previous chapters, the lift, drag, and moments per unit
span have been denoted with primes, for example, L ′, D′, and M ′, and the cor-
responding lift, drag, and moment coefficients have been denoted by lowercase
letters, for example, cl , cd , and cm . In contrast, the lift, drag, and moments on a
complete three-dimensional body such as a finite wing are given without primes,
for example, L , D, and M , and the corresponding lift, drag, and moment coeffi-
cients are given by capital letters, for example, CL , CD , and CM . This distinction
has already been mentioned in Section 1.5.

Finally, we note that the total drag on a subsonic finite wing in real life is the
sum of the induced drag Di , the skin friction drag D f , and the pressure drag Dp

due to flow separation. The latter two contributions are due to viscous effects (see
Section 4.12 and Chapters 15 to 20). The sum of these two viscous-dominated drag
contributions is called profile drag, as discussed in Section 4.3. The profile drag
coefficient cd for an NACA 2412 airfoil was given in Figure 4.11. At moderate
angle of attack, the profile drag coefficient for a finite wing is essentially the same
as for its airfoil sections. Hence, defining the profile drag coefficient as

cd = D f + Dp

q∞S
(5.2)

and the induced drag coefficient as

CD,i = Di

q∞S
(5.3)
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the total drag coefficient for the finite wing CD is given by

CD = cd + CD,i (5.4)

In Equation (5.4), the value of cd is usually obtained from airfoil data, such as
given in Figures 4.11 and 5.2b. The value of CD,i can be obtained from finite-
wing theory as presented in this chapter. Indeed, one of the central objectives of
the present chapter is to obtain an expression for induced drag and to study its
variation with certain design characteristics of the finite wing. (See Chapter 5 of
Reference 2 for an additional discussion of the characteristics of finite wings.)

5.2 THE VORTEX FILAMENT, THE BIOT-SAVART
LAW, AND HELMHOLTZ’S THEOREMS

To establish a rational aerodynamic theory for a finite wing, we need to introduce
a few additional aerodynamic tools. To begin with, we expand the concept of
a vortex filament first introduced in Section 4.4. In Section 4.4, we discussed a
straight vortex filament extending to ±∞. (Review the first paragraph of Sec-
tion 4.4 before proceeding further.)

In general, a vortex filament can be curved, as shown in Figure 5.8. Here,
only a portion of the filament is illustrated. The filament induces a flow field
in the surrounding space. If the circulation is taken about any path enclosing
the filament, a constant value � is obtained. Hence, the strength of the vortex
filament is defined as �. Consider a directed segment of the filament dl, as shown
in Figure 5.8. The radius vector from dl to an arbitrary point P in space is r. The
segment dl induces a velocity at P equal to

dV = �

4π

dl × r
|r|3 (5.5)

Equation (5.5) is called the Biot-Savart law and is one of the most fundamental
relations in the theory of inviscid, incompressible flow. Its derivation is given in
more advanced books (see, e.g., Reference 9). Here, we must accept it without

Figure 5.8 Vortex filament and illustration of
the Biot-Savart law.
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proof. However, you might feel more comfortable if we draw an analogy with
electromagnetic theory. If the vortex filament in Figure 5.8 were instead visualized
as a wire carrying an electrical current I , then the magnetic field strength dB
induced at point P by a segment of the wire dl with the current moving in the
direction of dl is

dB = μI

4π

dl × r
|r|3 (5.6)

where μ is the permeability of the medium surrounding the wire. Equation (5.6)
is identical in form to Equation (5.5). Indeed, the Biot-Savart law is a general
result of potential theory, and potential theory describes electromagnetic fields
as well as inviscid, incompressible flows. In fact, our use of the word “induced”
in describing velocities generated by the presence of vortices, sources, etc. is a
carry-over from the study of electromagnetic fields induced by electrical currents.
When developing their finite-wing theory during the period 1911–1918, Prandtl
and his colleagues even carried the electrical terminology over to the generation
of drag, hence the term “induced” drag.

Return again to our picture of the vortex filament in Figure 5.8. Keep in mind
that this single vortex filament and the associated Biot-Savart law [Equation (5.5)]
are simply conceptual aerodynamic tools to be used for synthesizing more com-
plex flows of an inviscid, incompressible fluid. They are, for all practical purposes,
a solution of the governing equation for inviscid, incompressible flow—Laplace’s
equation (see Section 3.7)—and, by themselves, are not of particular value. How-
ever, when a number of vortex filaments are used in conjunction with a uniform
freestream, it is possible to synthesize a flow which has a practical application.
The flow over a finite wing is one such example, as we will soon see.

Let us apply the Biot-Savart law to a straight vortex filament of infinite
length, as sketched in Figure 5.9. The strength of the filament is �. The velocity
induced at point P by the directed segment of the vortex filament dl is given by

Figure 5.9 Velocity induced at point P by
an infinite, straight vortex filament.



434 PART 2 Inviscid, Incompressible Flow

Equation (5.5). Hence, the velocity induced at P by the entire vortex filament is

V =
∫ ∞

−∞

�

4π

dl × r
|r|3 (5.7)

From the definition of the vector cross product (see Section 2.2), the direction of
V is downward in Figure 5.9. The magnitude of the velocity, V = |V|, is given by

V = �

4π

∫ ∞

−∞

sin θ

r 2
dl (5.8)

In Figure 5.9, let h be the perpendicular distance from point P to the vortex
filament. Then, from the geometry shown in Figure 5.9,

r = h

sin θ
(5.9a)

l = h

tan θ
(5.9b)

dl = − h

sin2 θ
dθ (5.9c)

Substituting Equations (5.9a to c) in Equation (5.8), we have

V = �

4π

∫ ∞

−∞

sin θ

r 2
dl = − �

4πh

∫ 0

π

sin θ dθ

or V = �

2πh
(5.10)

Thus, the velocity induced at a given point P by an infinite, straight vortex filament
at a perpendicular distance h from P is simply �/2πh, which is precisely the
result given by Equation (3.105) for a point vortex in two-dimensional flow. [Note
that the minus sign in Equation (3.105) does not appear in Equation (5.10); this is
because V in Equation (5.10) is simply the absolute magnitude of V , and hence
it is positive by definition.]

Consider the semi-infinite vortex filament shown in Figure 5.10. The filament
extends from point A to ∞. Point A can be considered a boundary of the flow.
Let P be a point in the plane through A perpendicular to the filament. Then, by

Figure 5.10 Velocity induced at point P by a
semi-infinite straight vortex filament.
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an integration similar to that above (try it yourself), the velocity induced at P by
the semi-infinite vortex filament is

V = �

4πh
(5.11)

We use Equation (5.11) in the next section.
The great German mathematician, physicist, and physician Hermann von

Helmholtz (1821–1894) was the first to make use of the vortex filament concept in
the analysis of inviscid, incompressible flow. In the process, he established several
basic principles of vortex behavior which have become known as Helmholtz’s
vortex theorems:

1. The strength of a vortex filament is constant along its length.
2. A vortex filament cannot end in a fluid; it must extend to the boundaries of

the fluid (which can be ±∞) or form a closed path.

We make use of these theorems in the following sections.
Finally, let us introduce the concept of lift distribution along the span of a

finite wing. Consider a given spanwise location y1, where the local chord is c,
the local geometric angle of attack is α, and the airfoil section is a given shape.
The lift per unit span at this location is L ′(y1). Now consider another location y2

along the span, where c, α, and the airfoil shape may be different. (Most finite
wings have a variable chord, with the exception of a simple rectangular wing.
Also, many wings are geometrically twisted so that α is different at different
spanwise locations—so-called geometric twist. If the tip is at a lower α than the
root, the wing is said to have washout; if the tip is at a higher α than the root,
the wing has washin. In addition, the wings on a number of modern airplanes
have different airfoil sections along the span, with different values of αL=0; this
is called aerodynamic twist.) Consequently, the lift per unit span at this different
location, L ′(y2), will, in general, be different from L ′(y1). Therefore, there is a
distribution of lift per unit span along the wing, that is, L ′ = L ′(y), as sketched in
Figure 5.11. In turn, the circulation is also a function of y, �(y) = L ′(y)/ρ∞V∞.

Note from Figure 5.11 that the lift distribution goes to zero at the tips; that is
because there is a pressure equalization from the bottom to the top of the wing
precisely at y = −b/2 and b/2, and hence no lift is created at these points. The

Front view
of wing

L� � L�(y) � ��V��(y)

b
2� 

b
2

y

Figure 5.11 Sketch of the lift distribution along
the span of a wing.



436 PART 2 Inviscid, Incompressible Flow

calculation of the lift distribution L(y) [or the circulation distriution �(y)] is
one of the central problems of finite-wing theory. It is addressed in the following
sections.

In summary, we wish to calculate the induced drag, the total lift, and the lift
distribution for a finite wing. This is the purpose of the remainder of this chapter.

5.3 PRANDTL’S CLASSICAL LIFTING-LINE
THEORY

The first practical theory for predicting the aerodynamic properties of a finite wing
was developed by Ludwig Prandtl and his colleagues at Göttingen, Germany,
during the period 1911–1918, spanning World War I. The utility of Prandtl’s
theory is so great that it is still in use today for preliminary calculations of finite-
wing characteristics. The purpose of this section is to describe Prandtl’s theory and
to lay the groundwork for the modern numerical methods described in subsequent
sections.

Prandtl reasoned as follows. A vortex filament of strength � that is somehow
bound to a fixed location in a flow—a so-called bound vortex—will experience a
force L ′ = ρ∞V∞� from the Kutta-Joukowski theorem. This bound vortex is in
contrast to a free vortex, which moves with the same fluid elements throughout
a flow. Therefore, let us replace a finite wing of span b with a bound vortex,
extending from y = −b/2 to y = b/2, as sketched in Figure 5.12. However,
due to Helmholtz’s theorem, a vortex filament cannot end in the fluid. Therefore,
assume the vortex filament continues as two free vortices trailing downstream
from the wing tips to infinity, as also shown in Figure 5.12. This vortex (the
bound plus the two free) is in the shape of a horseshoe, and therefore is called a
horseshoe vortex.

A single horseshoe vortex is shown in Figure 5.13. Consider the downwash
w induced along the bound vortex from −b/2 to b/2 by the horseshoe vortex.
Examining Figure 5.13, we see that the bound vortex induces no velocity along
itself; however, the two trailing vortices both contribute to the induced velocity

Figure 5.12 Replacement of the finite wing with a bound vortex.
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Figure 5.13 Downwash distribution along the y axis for a
single horseshoe vortex.

along the bound vortex, and both contributions are in the downward direction.
Consistent with the xyz coordinate system in Figure 5.13, such a downward ve-
locity is negative; that is, w (which is in the z direction) is a negative value when
directed downward and a positive value when directed upward. If the origin is
taken at the center of the bound vortex, then the velocity at any point y along
the bound vortex induced by the trailing semi-infinite vortices is, from Equa-
tion (5.11),

w(y) = − �

4π(b/2 + y)
− �

4π(b/2 − y)
(5.12)

In Equation (5.12), the first term on the right-hand side is the contribution from the
left trailing vortex (trailing from −b/2), and the second term is the contribution
from the right trailing vortex (trailing from b/2). Equation (5.12) reduces to

w(y) = − �

4π

b

(b/2)2 − y2
(5.13)

This variation of w(y) is sketched in Figure 5.13. Note that w approaches −∞
as y approaches −b/2 or b/2.

The downwash distribution due to the single horseshoe vortex shown in Fig-
ure 5.13 does not realistically simulate that of a finite wing; the downwash ap-
proaching an infinite value at the tips is especially disconcerting. During the early
evolution of finite-wing theory, this problem perplexed Prandtl and his colleagues.
After several years of effort, a resolution of this problem was obtained which, in
hindsight, was simple and straightforward. Instead of representing the wing by a
single horseshoe vortex, let us superimpose a large number of horseshoe vortices,
each with a different length of the bound vortex, but with all the bound vortices
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Figure 5.14 Superposition of a finite number of horseshoe vortices along the lifting line.

coincident along a single line, called the lifting line. This concept is illustrated in
Figure 5.14, where only three horseshoe vortices are shown for the sake of clarity.
In Figure 5.14, a horseshoe vortex of strength d�1 is shown, where the bound
vortex spans the entire wing from −b/2 to b/2 (from point A to point F). Super-
imposed on this is a second horseshoe vortex of strength d�2, where its bound
vortex spans only part of the wing, from point B to point E . Finally, superimposed
on this is a third horseshoe vortex of strength d�3, where its bound vortex spans
only the part of the wing from point C to point D. As a result, the circulation
varies along the line of bound vortices—the lifting line defined above. Along AB
and EF, where only one vortex is present, the circulation is d�1. However, along
BC and DE, where two vortices are superimposed, the circulation is the sum of
their strengths d�1 +d�2. Along C D, three vortices are superimposed, and hence
the circulation is d�1 + d�2 + d�3. This variation of � along the lifting line is
denoted by the vertical bars in Figure 5.14. Also, note from Figure 5.14 that we
now have a series of trailing vortices distributed over the span, rather than just
two vortices trailing downstream of the tips as shown in Figure 5.13. The series
of trailing vortices in Figure 5.14 represents pairs of vortices, each pair associated
with a given horseshoe vortex. Note that the strength of each trailing vortex is
equal to the change in circulation along the lifting line.

Let us extrapolate Figure 5.14 to the case where an infinite number of horse-
shoe vortices are superimposed along the lifting line, each with a vanishingly
small strength d�. This case is illustrated in Figure 5.15. Note that the vertical
bars in Figure 5.14 have now become a continuous distribution of �(y) along
the lifting line in Figure 5.15. The value of the circulation at the origin is �0.
Also, note that the finite number of trailing vortices in Figure 5.14 have become
a continuous vortex sheet trailing downstream of the lifting line in Figure 5.15.
This vortex sheet is parallel to the direction of V∞. The total strength of the sheet
integrated across the span of the wing is zero, because it consists of pairs of
trailing vortices of equal strength but in opposite directions.
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Figure 5.15 Superposition of an infinite number of horseshoe vortices along the
lifting line.

Let us single out an infinitesimally small segment of the lifting line dy located
at the coordinate y as shown in Figure 5.15. The circulation at y is �(y), and
the change in circulation over the segment dy is d� = (d�/dy) dy. In turn,
the strength of the trailing vortex at y must equal the change in circulation d�

along the lifting line; this is simply an extrapolation of our result obtained for
the strength of the finite trailing vortices in Figure 5.14. Consider more closely
the trailing vortex of strength d� that intersects the lifting line at coordinate y,
as shown in Figure 5.15. Also consider the arbitrary location y0 along the lifting
line. Any segment of the trailing vortex dx will induce a velocity at y0 with a
magnitude and direction given by the Biot-Savart law, Equation (5.5). In turn, the
velocity dw at y0 induced by the entire semi-infinite trailing vortex located at y
is given by Equation (5.11), which in terms of the picture given in Figure 5.15
yields

dw = − (d�/dy) dy

4π(y0 − y)
(5.14)

The minus sign in Equation (5.14) is needed for consistency with the picture
shown in Figure 5.15; for the trailing vortex shown, the direction of dw at y0 is
upward and hence is a positive value, whereas � is decreasing in the y direction,
making d�/dy a negative quantity. The minus sign in Equation (5.14) makes the
positive dw consistent with the negative d�/dy.

The total velocity w induced at y0 by the entire trailing vortex sheet is the
summation of Equation (5.14) over all the vortex filaments, that is, the integral of
Equation (5.14) from −b/2 to b/2:

w(y0) = − 1

4π

∫ b/2

−b/2

(d�/dy) dy

y0 − y
(5.15)
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Equation (5.15) is important in that it gives the value of the downwash at y0 due
to all the trailing vortices. (Keep in mind that although we label w as downwash,
w is treated as positive in the upward direction in order to be consistent with the
normal convention in an xyz rectangular coordinate system.)

Pause for a moment and assess the status of our discussion so far. We have
replaced the finite wing with the model of a lifting line along which the circulation
�(y) varies continuously, as shown in Figure 5.15. In turn, we have obtained an
expression for the downwash along the lifting line, given by Equation (5.15).
However, our central problem still remains to be solved; that is, we want to
calculate �(y) for a given finite wing, along with its corresponding total lift and
induced drag. Therefore, we must press on.

Return to Figure 5.6, which shows the local airfoil section of a finite wing.
Assume this section is located at the arbitrary spanwise station y0. From Figure 5.6,
the induced angle of attack αi is given by

αi (y0) = tan−1

(−w(y0)

V∞

)
(5.16)

[Note in Figure 5.6 that w is downward, and hence is a negative quantity. Since
αi in Figure 5.6 is positive, the negative sign in Equation (5.16) is necessary for
consistency.] Generally, w is much smaller than V∞, and hence αi is a small angle,
on the order of a few degrees at most. For small angles, Equation (5.16) yields

αi (y0) = −w(y0)

V∞
(5.17)

Substituting Equation (5.15) into (5.17), we obtain

αi (y0) = 1

4πV∞

∫ b/2

−b/2

(d�/dy) dy

y0 − y
(5.18)

that is, an expression for the induced angle of attack in terms of the circulation
distribution �(y) along the wing.

Consider again the effective angle of attack αeff, as shown in Figure 5.6. As
explained in Section 5.1, αeff is the angle of attack actually seen by the local airfoil
section. Since the downwash varies across the span, then αeff is also variable;
αeff = αeff(y0). The lift coefficient for the airfoil section located at y = y0 is

cl = a0[αeff(y0) − αL=0] = 2π [αeff(y0) − αL=0] (5.19)

In Equation (5.19), the local section lift slope a0 has been replaced by the thin
airfoil theoretical value of 2π(rad−1). Also, for a wing with aerodynamic twist, the
angle of zero lift αL=0 in Equation (5.19) varies with y0. If there is no aerodynamic
twist, αL=0 is constant across the span. In any event, αL=0 is a known property
of the local airfoil sections. From the definition of lift coefficient and from the
Kutta-Joukowski theorem, we have, for the local airfoil section located at y0,

L ′ = 1
2ρ∞V 2

∞c(y0)cl = ρ∞V∞�(y0) (5.20)
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From Equation (5.20), we obtain

cl = 2�(y0)

V∞c(y0)
(5.21)

Substituting Equation (5.21) into (5.19) and solving for αeff, we have

αeff = �(y0)

πV∞c(y0)
+ αL=0 (5.22)

The above results come into focus if we refer to Equation (5.1):

αeff = α − αi (5.1)

Substituting Equations (5.18) and (5.22) into (5.1), we obtain

α(y0) = �(y0)

πV∞c(y0)
+ αL=0(y0) + 1

4πV∞

∫ b/2

−b/2

(d�/dy) dy

y0 − y
(5.23)

the fundamental equation of Prandtl’s lifting-line theory; it simply states that
the geometric angle of attack is equal to the sum of the effective angle plus the
induced angle of attack. In Equation (5.23), αeff is expressed in terms of �, and
αi is expressed in terms of an integral containing d�/dy. Hence, Equation (5.23)
is an integro-differential equation, in which the only unknown is �; all the other
quantities, α, c, V∞, and αL=0, are known for a finite wing of given design at
a given geometric angle of attack in a freestream with given velocity. Thus, a
solution of Equation (5.23) yields � = �(y0), where y0 ranges along the span
from −b/2 to b/2.

The solution � = �(y0) obtained from Equation (5.23) gives us the three
main aerodynamic characteristics of a finite wing, as follows:

1. The lift distribution is obtained from the Kutta-Joukowski theorem:

L ′(y0) = ρ∞V∞�(y0) (5.24)

2. The total lift is obtained by integrating Equation (5.24) over the span:

L =
∫ b/2

−b/2
L ′(y) dy

or L = ρ∞V∞
∫ b/2

−b/2
�(y) dy (5.25)

(Note that we have dropped the subscript on y, for simplicity.) The lift
coefficient follows immediately from Equation (5.25):

CL = L

q∞S
= 2

V∞S

∫ b/2

−b/2
�(y) dy (5.26)
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3. The induced drag is obtained by inspection of Figure 5.4. The induced drag
per unit span is

D′
i = L ′

i sin αi

Since αi is small, this relation becomes

D′
i = L ′

iαi (5.27)

The total induced drag is obtained by integrating Equation (5.27) over the
span:

Di =
∫ b/2

−b/2
L ′(y)αi (y) dy (5.28)

or Di = ρ∞V∞
∫ b/2

−b/2
�(y)αi (y) dy (5.29)

In turn, the induced drag coefficient is

CD,i = Di

q∞S
= 2

V∞S

∫ b/2

−b/2
�(y)αi (y) dy (5.30)

In Equations (5.27) to (5.30), αi (y) is obtained from Equation (5.18).
Therefore, in Prandtl’s lifting-line theory the solution of Equation (5.23) for
�(y) is clearly the key to obtaining the aerodynamic characteristics of a
finite wing. Before discussing the general solution of this equation, let us
consider a special case, as outlined below.

5.3.1 Elliptical Lift Distribution

Consider a circulation distribution given by

�(y) = �0

√
1 −

(
2y

b

)2

(5.31)

In Equation (5.31), note the following:

1. �0 is the circulation at the origin, as shown in Figure 5.15.
2. The circulation varies elliptically with distance y along the span; hence,

it is designated as an elliptical circulation distribution. Since
L ′(y) = ρ∞V∞�(y), we also have

L ′(y) = ρ∞V∞�0

√
1 −

(
2y

b

)2

Hence, we are dealing with an elliptical lift distribution.
3. �(b/2) = �(−b/2) = 0. Thus, the circulation, hence lift, properly goes

to zero at the wing tips, as shown in Figure 5.15. We have not obtained
Equation (5.31) as a direct solution of Equation (5.23); rather, we are
simply stipulating a lift distribution that is elliptic. We now ask the
question, ‘What are the aerodynamic properties of a finite wing with such
an elliptic lift distribution?’



CHAPTER 5 Incompressible Flow over Finite Wings 443

First, let us calculate the downwash. Differentiating Equation (5.31), we
obtain

d�

dy
= −4�0

b2

y

(1 − 4y2/b2)1/2
(5.32)

Substituting Equation (5.32) into (5.15), we have

w(y0) = �0

πb2

∫ b/2

−b/2

y

(1 − 4y2/b2)1/2(y0 − y)
dy (5.33)

The integral can be evaluated easily by making the substitution

y = b

2
cos θ dy = −b

2
sin θ dθ

Hence, Equation (5.33) becomes

w(θ0) = − �0

2πb

∫ 0

π

cos θ

cos θ0 − cos θ
dθ

or w(θ0) = − �0

2πb

∫ π

0

cos θ

cos θ − cos θ0
dθ (5.34)

The integral in Equation (5.34) is the standard form given by Equation (4.26) for
n = 1. Hence, Equation (5.34) becomes

w(θ0) = −�0

2b
(5.35)

which states the interesting and important result that the downwash is constant
over the span for an elliptical lift distribution. In turn, from Equation (5.17), we
obtain, for the induced angle of attack,

αi = − w

V∞
= �0

2bV∞
(5.36)

For an elliptic lift distribution, the induced angle of attack is also constant along
the span. Note from Equations (5.35) and (5.36) that both the downwash and
induced angle of attack go to zero as the wing span becomes infinite—which is
consistent with our previous discussions on airfoil theory.

A more useful expression for αi can be obtained as follows. Substituting
Equation (5.31) into (5.25), we have

L = ρ∞V∞�0

∫ b/2

−b/2

(
1 − 4y2

b2

)1/2

dy (5.37)
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Again, using the transformation y = (b/2) cos θ , Equation (5.37) readily inte-
grates to

L = ρ∞V∞�0
b

2

∫ π

0
sin2 θ dθ = ρ∞V∞�0

b

4
π (5.38)

Solving Equation (5.38) for �0, we have

�0 = 4L

ρ∞V∞bπ
(5.39)

However, L = 1
2ρ∞V 2

∞SCL . Hence, Equation (5.39) becomes

�0 = 2V∞SCL

bπ
(5.40)

Substituting Equation (5.40) into (5.36), we obtain

αi = 2V∞SCL

bπ

1

2bV∞

or αi = SCL

πb2
(5.41)

An important geometric property of a finite wing is the aspect ratio, denoted by
AR and defined as

AR ≡ b2

S

Hence, Equation (5.41) becomes

αi = CL

πAR
(5.42)

Equation (5.42) is a useful expression for the induced angle of attack, as shown
below.

The induced drag coefficient is obtained from Equation (5.30), noting that αi

is constant:

CD,i = 2αi

V∞S

∫ b/2

−b/2
�(y) dy = 2αi�0

V∞S

b

2

∫ π

0
sin2 θ dθ = παi�0b

2V∞S
(5.42a)

Substituting Equations (5.40) and (5.42) into (5.42a), we obtain

CD,i = πb

2V∞S

(
CL

πAR

)
2V∞SCL

bπ

or CD,i = C2
L

πAR
(5.43)
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Equation (5.43) is an important result. It states that the induced drag coefficient
is directly proportional to the square of the lift coefficient. The dependence of
induced drag on the lift is not surprising, for the following reason. In Section 5.1,
we saw that induced drag is a consequence of the presence of the wing-tip vortices,
which in turn are produced by the difference in pressure between the lower and
upper wing surfaces. The lift is produced by this same pressure difference. Hence,
induced drag is intimately related to the production of lift on a finite wing; indeed,
induced drag is frequently called the drag due to lift. Equation (5.43) dramatically
illustrates this point. Clearly, an airplane cannot generate lift for free; the induced
drag is the price for the generation of lift. The power required from an aircraft
engine to overcome the induced drag is simply the power required to generate the
lift of the aircraft. Also, note that because CD,i ∝ C2

L , the induced drag coefficient
increases rapidly as CL increases and becomes a substantial part of the total drag
coefficient when CL is high (e.g., when the airplane is flying slowly such as
on takeoff or landing). Even at relatively high cruising speeds, induced drag is
typically 25 percent of the total drag.

Another important aspect of induced drag is evident in Equation (5.43); that
is, CD,i is inversely proportional to aspect ratio. Hence, to reduce the induced
drag, we want a finite wing with the highest possible aspect ratio. Wings with
high and low aspect ratios are sketched in Figure 5.16. Unfortunately, the design
of very high aspect ratio wings with sufficient structural strength is difficult.
Therefore, the aspect ratio of a conventional aircraft is a compromise between
conflicting aerodynamic and structural requirements. It is interesting to note that
the aspect ratio of the 1903 Wright Flyer was 6 and that today the aspect ratios
of conventional subsonic aircraft range typically from 6 to 8. (Exceptions are
the Lockheed U-2 high-altitude reconnaissance aircraft with AR = 14.3 and
sailplanes with aspect ratios as high as 51. For example, the Schempp-Hirth

Figure 5.16 Schematic of high- and low-aspect-ratio
wings.
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Nimbus 4 sailplane, designed in 1994 with over 100 built by 2004, has an aspect
ratio of 39. The ETA sailplane, designed in 2000 with 6 built by 2004, has an
aspect ratio of 51.3.)

Another property of the elliptical lift distribution is as follows. Consider a
wing with no geometric twist (i.e., α is constant along the span) and no aero-
dynamic twist (i.e., αL=0 is constant along the span). From Equation (5.42), we
have seen that αi is constant along the span. Hence, αeff = α −αi is also constant
along the span. Since the local section lift coefficient cl is given by

cl = a0(αeff − αL=0)

then assuming that a0 is the same for each section (a0 = 2π from thin airfoil
theory), cl must be constant along the span. The lift per unit span is given by

L ′(y) = q∞ccl (5.44)

Solving Equation (5.44) for the chord, we have

c(y) = L ′(y)

q∞cl
(5.45)

In Equation (5.45), q∞ and cl are constant along the span. However, L ′(y) varies
elliptically along the span. Thus, Equation (5.45) dictates that for such an elliptic
lift distribution, the chord must vary elliptically along the span; that is, for the
conditions given above, the wing planform is elliptical.

The related characteristics—the elliptic lift distribution, the elliptic planform,
and the constant downwash—are sketched in Figure 5.17. Although an elliptical
lift distribution may appear to be a restricted, isolated case, in reality it gives a
reasonable approximation for the induced drag coefficient for an arbitrary finite
wing. The form of CD,i given by Equation (5.43) is only slightly modified for

Figure 5.17 Illustration of the related quantities: an elliptic lift
distribution, elliptic planform, and constant downwash.
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the general case. Let us now consider the case of a finite wing with a general lift
distribution.

5.3.2 General Lift Distribution

Consider the transformation

y = −b

2
cos θ (5.46)

where the coordinate in the spanwise direction is now given by θ , with 0 ≤ θ ≤ π .
In terms of θ , the elliptic lift distribution given by Equation (5.31) is written as

�(θ) = �0 sin θ (5.47)

Equation (5.47) hints that a Fourier sine series would be an appropriate expression
for the general circulation distribution along an arbitrary finite wing. Hence,
assume for the general case that

�(θ) = 2bV∞
N∑
1

An sin nθ (5.48)

where as many terms N in the series can be taken as we desire for accuracy. The
coefficients An (where n = 1, . . . , N ) in Equation (5.48) are unknowns; however,
they must satisfy the fundamental equation of Prandtl’s lifting-line theory; that is,
the An’s must satisfy Equation (5.23). Differentiating Equation (5.48), we obtain

d�

dy
= d�

dθ

dθ

dy
= 2bV∞

N∑
1

n An cos nθ
dθ

dy
(5.49)

Substituting Equations (5.48) and (5.49) into (5.23), we obtain

α(θ0) = 2b

πc(θ0)

N∑
1

An sin nθ0 + αL=0(θ0) + 1

π

∫ π

0

∑N
1 n An cos nθ

cos θ − cos θ0
dθ (5.50)

The integral in Equation (5.50) is the standard form given by Equation (4.26).
Hence, Equation (5.50) becomes

α(θ0) = 2b

πc(θ0)

N∑
1

An sin nθ0 + αL=0(θ0) +
N∑
1

n An
sin nθ0

sin θ0
(5.51)

Examine Equation (5.51) closely. It is evaluated at a given spanwise location;
hence, θ0 is specified. In turn, b, c(θ0), and αL=0(θ0) are known quantities from
the geometry and airfoil section of the finite wing. The only unknowns in Equa-
tion (5.51) are the An’s. Hence, written at a given spanwise location (a specified
θ0), Equation (5.51) is one algebraic equation with N unknowns, A1, A2, . . . , An .
However, let us choose N different spanwise stations, and let us evaluate Equa-
tion (5.51) at each of these N stations. We then obtain a system of N independent
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algebraic equations with N unknowns, namely, A1, A2, . . . , AN . In this fashion,
actual numerical values are obtained for the An’s—numerical values that ensure
that the general circulation distribution given by Equation (5.48) satisfies the
fundamental equation of finite-wing theory, Equation (5.23).

Now that �(θ) is known via Equation (5.48), the lift coefficient for the finite
wing follows immediately from the substitution of Equation (5.48) into (5.26):

CL = 2

V∞S

∫ b/2

−b/2
�(y) dy = 2b2

S

N∑
1

An

∫ π

0
sin nθ sin θ dθ (5.52)

In Equation (5.52), the integral is∫ π

0
sin nθ sin θ dθ =

{
π/2 for n = 1
0 for n �= 1

Hence, Equation (5.52) becomes

CL = A1π
b2

S
= A1πAR (5.53)

Note that CL depends only on the leading coefficient of the Fourier series expan-
sion. (However, although CL depends on A1 only, we must solve for all the An’s
simultaneously in order to obtain A1.)

The induced drag coefficient is obtained from the substitution of Equa-
tion (5.48) into Equation (5.30) as follows:

CD,i = 2

V∞S

∫ b/2

−b/2
�(y)αi (y) dy (5.54)

= 2b2

S

∫ π

0

(
N∑
1

An sin nθ

)
αi (θ) sin θ dθ

The induced angle of attack αi (θ) in Equation (5.54) is obtained from the substi-
tution of Equations (5.46) and (5.49) into (5.18), which yields

αi (y0) = 1

4πV∞

∫ b/2

−b/2

(d�/dy) dy

y0 − y

= 1

π

N∑
1

n An

∫ π

0

cos nθ

cos θ − cos θ0
dθ (5.55)

The integral in Equation (5.55) is the standard form given by Equation (4.26).
Hence, Equation (5.55) becomes

αi (θ0) =
N∑
1

n An
sin nθ0

sin θ0
(5.56)

In Equation (5.56), θ0 is simply a dummy variable which ranges from 0 to π

across the span of the wing; it can therefore be replaced by θ , and Equation (5.56)
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can be written as

αi (θ) =
N∑
1

n An
sin nθ

sin θ
(5.57)

Substituting Equation (5.57) into (5.54), we have

CD,i = 2b2

S

∫ π

0

(
N∑
1

An sin nθ

) (
N∑
1

n An sin nθ

)
dθ (5.58)

Examine Equation (5.58) closely; it involves the product of two summations.
Also, note that, from the standard integral,∫ π

0
sin mθ sin kθ =

{
0 for m �= k
π/2 for m = k

(5.59)

Hence, in Equation (5.58), the mixed product terms involving unequal subscripts
(such as A1 A2, A2 A4) are, from Equation (5.59), equal to zero. Hence, Equa-
tion (5.58) becomes

CD,i = 2b2

S

(
N∑
1

n A2
n

)
π

2
= πAR

N∑
1

n A2
n

= πAR

(
A2

1 +
N∑
2

n A2
n

)

= πAR A2
1

[
1 +

N∑
2

n
(

An

A1

)2
]

(5.60)

Substituting Equation (5.53) for CL into Equation (5.60), we obtain

CD,i = C2
L

πAR
(1 + δ) (5.61)

where δ = ∑N
2 n(An/A1)

2. Note that δ ≥ 0; hence, the factor 1 + δ in Equa-
tion (5.61) is either greater than 1 or at least equal to 1. Let us define a span
efficiency factor, e, as e = (1 + δ)−1. Then Equation (5.61) can be written as

CD,i = C2
L

πeAR
(5.62)

where e ≤ 1. Comparing Equations (5.61) and (5.62) for the general lift distri-
bution with Equation (5.43) for the elliptical lift distribution, note that δ = 0 and
e = 1 for the elliptical lift distribution. Hence, the lift distribution which yields
minimum induced drag is the elliptical lift distribution. This is why we have a
practical interest in the elliptical lift distribution.
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Figure 5.18 Various planforms for straight
wings.

Recall that for a wing with no aerodynamic twist and no geometric twist,
an elliptical lift distribution is generated by a wing with an elliptical planform,
as sketched at the top of Figure 5.18. Several aircraft have been designed in the
past with elliptical wings; the most famous, perhaps, being the British Spitfire
from World War II, shown in Figure 5.19. However, elliptic planforms are more
expensive to manufacture than, say, a simple rectangular wing as sketched in
the middle of Figure 5.18. On the other hand, a rectangular wing generates a
lift distribution far from optimum. A compromise is the tapered wing shown
at the bottom of Figure 5.18. The tapered wing can be designed with a taper
ratio, that is, tip chord/root chord ≡ ct/cr , such that the lift distribution closely
approximates the elliptic case. The variation of δ as a function of taper ratio for
wings of different aspect ratio is illustrated in Figure 5.20. Such calculations of
δ were first performed by the famous English aerodynamicist, Hermann Glauert
and published in Reference 18 in the year 1926. Glauert used only four terms in
the series expansion given in Equation (5.60). The results shown in Figure 5.20
are based on the recent computer calculations carried out by B.W. McCormick
at Penn State University using the equivalent of 50 terms in the series expansion.
Note from Figure 5.20 that a tapered wing can be designed with an induced drag
coefficient reasonably close to the minimum value. In addition, tapered wings
with straight leading and trailing edges are considerably easier to manufacture
than elliptic planforms. Therefore, most conventional aircraft employ tapered
rather than elliptical wing planforms.

5.3.3 Effect of Aspect Ratio

Returning to Equations (5.61) and (5.62), note that the induced drag coefficient
for a finite wing with a general lift distribution is inversely proportional to the
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Figure 5.19 Three views of the Supermarine Spitfire, a famous British World
War II fighter.

aspect ratio, as was discussed earlier in conjunction with the case of the elliptic
lift distribution. Note that AR, which typically varies from 6 to 22 for standard
subsonic airplanes and sailplanes, has a much stronger effect on CD,i than the
value of δ, which from Figure 5.20 varies only by about 10 percent over the
practical range of taper ratio. Hence, the primary design factor for minimizing
induced drag is not the closeness to an elliptical lift distribution, but rather, the
ability to make the aspect ratio as large as possible. The determination that CD,i is
inversely proportional to AR was one of the great victories of Prandtl’s lifting-line
theory. In 1915, Prandtl verified this result with a series of classic experiments
wherein the lift and drag of seven rectangular wings with different aspect ratios
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Figure 5.20 Induced drag factor δ as a function of taper ratio.
Computer calculations using the equivalent of 50 terms in the
series expansion, Equation (5.60). (Data Source: McCormick,
B. W., Aerodynamics, Aeronautics, and Flight Mechanics,
John Wiley & Sons, New York, 1979).

were measured. The data are given in Figure 5.21. Recall from Equation (5.4),
that the total drag of a finite wing is given by

CD = cd + C2
L

πeAR
(5.63)

The parabolic variation of CD with CL as expressed in Equation (5.63) is re-
flected in the data of Figure 5.21. This is a plot of lift coefficient versus drag
coefficient, and is called a drag polar. Equation (5.63) is similarly the equation of
a drag polar. If we consider two wings with different aspect ratios AR1 and AR2,
Equation (5.63) gives the drag coefficients CD,1 and CD,2 for the two wings as

CD,1 = cd + C2
L

πeAR1
(5.64a)

and CD,2 = cd + C2
L

πeAR2
(5.64b)

Assume that the wings are at the same CL . Also, since the airfoil section is the
same for both wings, cd is essentially the same. Moreover, the variation of e
between the wings is only a few percent and can be ignored. Hence, subtracting
Equation (5.64b) from (5.64a), we obtain

CD,1 = CD,2 + C2
L

πe

(
1

AR1
− 1

AR2

)
(5.65)

Equation (5.65) can be used to scale the data of a wing with aspect ratio AR2 to
correspond to the case of another aspect ratio AR1. For example, Prandtl scaled
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Figure 5.21 Prandtl’s classic rectangular wing data
for seven different aspect ratios from 1 to 7;
variation of lift coefficient versus drag coefficient.
For historical interest, we reproduce here Prandtl’s
actual graphs. Note that, in his nomenclature,
Ca = lift coefficient and Cw = drag coefficient.
Also, the numbers on both the ordinate and
abscissa are 100 times the actual values of the
coefficients. (Source: Prandtl, L., Applications of
Modern Hydrodynamics to Aeronautics, NACA
Report No. 116, 1921).

the data of Figure 5.21 to correspond to a wing with an aspect ratio of 5. For this
case, Equation (5.65) becomes

CD,1 = CD,2 + C2
L

πe

(
1

5
− 1

AR2

)
(5.66)

Inserting the respective values of CD,2 and AR2 from Figure 5.21 into Equa-
tion (5.66), Prandtl found that the resulting data for CD,1, versus CL collapsed to
essentially the same curve, as shown in Figure 5.22. Hence, the inverse depen-
dence of CD,i on AR was substantially verified as early as 1915.

There are two primary differences between airfoil and finite-wing properties.
We have discussed one difference, namely, a finite wing generates induced drag.
However, a second major difference appears in the lift slope. In Figure 4.9, the lift
slope for an airfoil was defined as a0 ≡ dcl/dα. Let us denote the lift slope for a
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Figure 5.22 Data of Figure 5.21 scaled by
Prandtl to an aspect ratio of 5.

finite wing as a ≡ dCL/dα. When the lift slope of a finite wing is compared with
that of its airfoil section, we find that a < a0. To see this more clearly, return to
Figure 5.6, which illustrates the influence of downwash on the flow over a local
airfoil section of a finite wing. Note that although the geometric angle of attack of
the finite wing is α, the airfoil section effectively senses a smaller angle of attack,
namely, αeff, where αeff = α − αi . For the time being, consider an elliptic wing
with no twist; hence, αi and αeff are both constant along the span. Moreover, cl

is also constant along the span, and therefore CL = cl . Assume that we plot CL

for the finite wing versus αeff, as shown at the top of Figure 5.23. Because we
are using αeff the lift slope corresponds to that for an infinite wing a0. However,
in real life, our naked eyes cannot see αeff; instead, what we actually observe is
a finite wing with a certain angle between the chord line and the relative wind;
that is, in practice, we always observe the geometric angle of attack α. Hence, CL

for a finite wing is generally given as a function of α, as sketched at the bottom
of Figure 5.23. Since α > αeff, the bottom abscissa is stretched, and hence the
bottom lift curve is less inclined; it has a slope equal to a, and Figure 5.23 clearly
shows that a < a0. The effect of a finite wing is to reduce the lift slope. Also,
recall that at zero lift, there are no induced effects; that is, αi = CD,i = 0. Thus,
when CL = 0, α = αeff. As a result, αL=0 is the same for the finite and the infinite
wings, as shown in Figure 5.23.
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Figure 5.23 Lift curves for an infinite wing
versus a finite elliptic wing.

The values of a0 and a are related as follows. From the top of Figure 5.23,

dCL

d(α − αi )
= a0

Integrating, we find

CL = a0(α − αi ) + const (5.67)

Substituting Equation (5.42) into (5.67), we obtain

CL = a0

(
α − CL

πAR

)
+ const (5.68)

Differentiating Equation (5.68) with respect to α, and solving for dCL/dα, we
obtain

dCL

dα
= a = a0

1 + a0/πAR
(5.69)

Equation (5.69) gives the desired relation between a0 and a for an elliptic finite
wing. For a finite wing of general planform, Equation (5.69) is slightly modified,
as given below:

a = a0

1 + (a0/πAR)(1 + τ)
(5.70)
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Figure 5.24 Prandtl’s classic rectangular wing data.
Variation of lift coefficient with angle of attack for seven
different aspect ratios from 1 to 7. Nomenclature and
scale are the same as given in Figure 5.21.

In Equation (5.70), τ is a function of the Fourier coefficients An . Values of τ were
first calculated by Glauert in the early 1920s and were published in Reference 18,
which should be consulted for more details. Values of τ typically range between
0.05 and 0.25.

Of most importance in Equations (5.69) and (5.70) is the aspect-ratio varia-
tion. Note that for low-AR wings, a substantial difference can exist between a0

and a. However, as AR → ∞, a → a0. The effect of aspect ratio on the lift
curve is dramatically shown in Figure 5.24, which gives classic data obtained on
rectangular wings by Prandtl in 1915. Note the reduction in dCL/dα as AR is
reduced. Moreover, using the equations obtained above, Prandtl scaled the data in
Figure 5.24 to correspond to an aspect ratio of 5; his results collapsed to essentially
the same curve, as shown in Figure 5.25. In this manner, the aspect-ratio variation
given in Equations (5.69) and (5.70) was confirmed as early as the year 1915.

5.3.4 Physical Significance

Consider again the basic model underlying Prandtl’s lifting-line theory. Return
to Figure 5.15 and study it carefully. An infinite number of infinitesimally weak
horseshoe vortices are superimposed in such a fashion as to generate a lifting line
which spans the wing, along with a vortex sheet which trails downstream. This
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Figure 5.25 Data of Figure 5.24 scaled by Prandtl to an
aspect ratio of 5.

trailing-vortex sheet is the instrument that induces downwash at the lifting line. At
first thought, you might consider this model to be somewhat abstract—a mathe-
matical convenience that somehow produces surprisingly useful results. However,
to the contrary, the model shown in Figure 5.15 has real physical significance.
To see this more clearly, return to Figure 5.3. Note that in the three-dimensional
flow over a finite wing, the streamlines leaving the trailing edge from the top and
bottom surfaces are in different directions; that is, there is a discontinuity in the
tangential velocity at the trailing edge. We know from Chapter 4 that a discontin-
uous change in tangential velocity is theoretically allowed across a vortex sheet.
In real life, such discontinuities do not exist; rather, the different velocities at
the trailing edge generate a thin region of large velocity gradients—a thin region
of shear flow with very large vorticity. Hence, a sheet of vorticity actually trails
downstream from the trailing edge of a finite wing. This sheet tends to roll up at
the edges and helps to form the wing-tip vortices sketched in Figure 5.4. Thus,
Prandtl’s lifting-line model with its trailing-vortex sheet is physically consistent
with the actual flow downstream of a finite wing.

EXAMPLE 5.1

Consider a finite wing with an aspect ratio of 8 and a taper ratio of 0.8. The airfoil section
is thin and symmetric. Calculate the lift and induced drag coefficients for the wing when
it is at an angle of attack of 5◦. Assume that δ = τ .
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■ Solution
From Figure 5.20, δ = 0.055. Hence, from the stated assumption, τ also equals 0.055.
From Equation (5.70), assuming a0 = 2π from thin airfoil theory,

a = a0

1 + a0/πAR(1 + τ)
= 2π

1 + 2π(1.055)/8π
= 4.97 rad−1

= 0.0867 degree−1

Since the airfoil is symmetric, αL=0 = 0◦. Thus,

CL = aα = (0.0867 degree−1(5◦) = 0.4335

From Equation (5.61),

CD,i = C2
L

πAR
(1 + δ) = (0.4335)2(1 + 0.055)

8π
= 0.00789

EXAMPLE 5.2

Consider a rectangular wing with an aspect ratio of 6, an induced drag factor δ = 0.055,
and a zero-lift angle of attack of −2◦. At an angle of attack of 3.4◦, the induced drag
coefficient for this wing is 0.01. Calculate the induced drag coefficient for a similar wing
(a rectangular wing with the same airfoil section) at the same angle of attack, but with an
aspect ratio of 10. Assume that the induced factors for drag and the lift slope, δ and τ ,
respectively, are equal to each other (i.e., δ = τ ). Also, for AR = 10, δ = 0.105.

■ Solution
We must recall that although the angle of attack is the same for the two cases compared
here (AR = 6 and 10), the value of CL is different because of the aspect-ratio effect on the
lift slope. First, let us calculate CL for the wing with aspect ratio 6. From Equation (5.61),

C2
L = πARCD,i

1 + δ
= π(6)(0.01)

1 + 0.055
= 0.1787

Hence, CL = 0.423

The lift slope of this wing is therefore

dCL

dα
= 0.423

3.4◦ − (−2◦)
= 0.078/degree = 4.485/rad

The lift slope for the airfoil (the infinite wing) can be obtained from Equation (5.70):

dCL

dα
= a = a0

1 + (a0/πAR)(1 + τ)

4.485 = a0

1 + [(1.055)a0/π(6)]
= a0

1 + 0.056a0

Solving for a0, we find that this yields a0 = 5.989/rad. Since the second wing (with
AR = 10) has the same airfoil section, then a0 is the same. The lift slope of the second
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wing is given by

a = a0

1 + (a0/πAR)(1 + τ)
= 5.989

1 + [(5.989)(1.105)/π(10)]
= 4.95/rad

= 0.086/degree

The lift coefficient for the second wing is therefore

CL = a(α − αL=0) = 0.086[3.4◦ − (−2◦)] = 0.464

In turn, the induced drag coefficient is

CD,i = C2
L

πAR
(1 + δ) = (0.464)2(1.105)

π(10)
= 0.0076

Note: This problem would have been more straightforward if the lift coefficients had been
stipulated to be the same between the two wings rather than the angle of attack. Then
Equation (5.61) would have yielded the induced drag coefficient directly. A purpose of
this example is to reinforce the rationale behind Equation (5.65), which readily allows the
scaling of drag coefficients from one aspect ratio to another, as long as the lift coefficient
is the same. This allows the scaled drag-coefficient data to be plotted versus CL (not the
angle of attack) as in Figure 5.22. However, in the present example where the angle of
attack is the same between both cases, the effect of aspect ratio on the lift slope must be
explicitly considered, as we have done above.

EXAMPLE 5.3

Consider the twin-jet executive transport discussed in Example 1.6. In addition to the
information given in Example 1.6, for this airplane the zero-lift angle of attack is −2◦,
the lift slope of the airfoil section is 0.1 per degree, the lift efficiency factor τ = 0.04,
and the wing aspect ratio is 7.96. At the cruising condition treated in Example 1.6, calculate
the angle of attack of the airplane.

■ Solution
The lift slope of the airfoil section in radians is

a0 = 0.1 per degree = 0.1(57.3) = 5.73 rad

From Equation (5.70) repeated below

a = a0

1 + (a0/πAR)(1 + τ)

we have

a = 5.73

1 +
(

5.73

7.96π

)
(1 + 0.04)

= 4.627 per rad

or a = 4.627

57.3
= 0.0808 per degree
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From Example 1.6, the airplane is cruising at a lift coefficient equal to 0.21. Since

CL = a(α − αL=0)

we have

α = CL

a
+ αL=0 = 0.21

0.0808
+ (−2) = 0.6◦

EXAMPLE 5.4

In the Preview Box for this chapter, we considered the Beechcraft Baron 58 (Figure 5.1)
flying such that the wing is at a 4-degree angle of attack. The wing of this airplane has
an NACA 23015 airfoil at the root, tapering to a 23010 airfoil at the tip. The data for
the NACA 23015 airfoil is given in Figure 5.2. In the Preview Box, we teased you by
reading from Figure 5.2 the airfoil lift and drag coefficients at α = 4◦, namely, cl = 0.54
and cd = 0.0068, and posed the question: Are the lift and drag coefficients of the wing
the same values, that is, CL = 0.54 (?) and CD = 0.0068 (?) The answer given in the
Preview Box was a resounding NO! We now know why. Moreover, we now know how to
calculate CL and CD for the wing. Let us proceed to do just that. Consider the wing of the
Beechcraft Baron 58 at a 4-degree angle of attack. The wing has an aspect ratio of 7.61
and a taper ratio of 0.45. Calculate CL and CD for the wing.

■ Solution
From Figure 5.2a, the zero-lift angle of attack of the airfoil, which is the same for the
finite wing, is

αL=0 = −1◦

The airfoil lift slope is also obtained from Figure 5.2a. Since the lift curve is linear below
the stall, we arbitrarily pick two points on this curve: α = 7◦ where cl = 0.9, and α = −1◦
where cl = 0. Thus

a0 = 0.9 − 0

7 − (−1)
= 0.9

8
= 0.113 per degree

The lift slope in radians is:

a0 = 0.113(57.3) = 6.47 per rad

From Figure 5.20, for AR = 7.61 and taper ratio = 0.45

δ = 0.01

Hence, e = 1

1 + δ
= 1

1 + 0.01
= 0.99

From Equation (5.70), assuming τ = δ,

a = a0

1 +
( a0

πAR

)
(1 + τ)

(a and a0 are per rad)
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where
a0

πAR
= 6.47

π(7.61)
= 0.271

(1 + τ) = 1 + 0.01 = 1.01

we have

a = 6.47

1 + (0.271)(1.01)
= 5.08 per rad

Converting back to degrees:

a = 5.08

57.3
= 0.0887 per degree

For the linear lift curve for the finite wing

CL = a(α − αL=0)

For α = 4◦, we have

CL = 0.0887[4 − (−1)] = 0.0887(5)

CL = 0.443

The drag coefficient is given by Equation (5.63);

CD = cd + C2
L

πeAR
Here, cd is the section drag coefficient given in Figure 5.2b. Note that in Figure 5.2b, cd

is plotted versus the section lift coefficient cl . To accurately read cd from Figure 5.2b, we
need to know the value of cl actually sensed by the airfoil section on the finite wing, that
is, the value of the airfoil cl for the airfoil at its effective angle of attack, αeff. To estimate
αeff, we will assume an elliptical lift distribution over the wing. We know this is not quite
correct, but with a value of δ = 0.01, it is not very far off. From Equation (5.42) for an
elliptical lift distribution, the induced angle of attack is

αi = CL

πAR
= (0.443)

π(7.61)
= 0.0185 rad

In degrees

αi = (0.0185)(57.3) = 1.06◦

From Figure 5.6,

αeff = α − αi = 4◦ − 1.06◦ = 2.94◦ ≈ 3◦

The lift coefficient sensed by the airfoil is then

cl = a0(αeff − αL=0)

= 0.113[3 − (−1)] = 0.113(4) = 0.452

(Note how close this section lift coefficient is to the overall lift coefficient of the wing
of 0.443.) From Figure 5.2b, taking the data at the highest Reynolds number shown, for
cl = 0.452, we have

cd = 0.0065
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Returning to Equation (5.63),

CD = cd + C2
L

πeAR

= 0.0065 + (0.443)2

π(0.99)(7.61)

= 0.0065 + 0.0083 = 0.0148

So finally, with the results of this worked example, we see why the answer given in
the Preview Box was a resounding NO! The lift coefficient for the finite wing is 0.443
compared to the airfoil value of 0.54 given in the Preview Box; the finite wing value is
18 percent lower than the airfoil value—a substantial difference. The drag coefficient for
the finite wing is 0.0148 compared to the airfoil value of 0.0068; the finite wing value is
more than a factor of two larger—a dramatic difference. These differences are the reason
for the studies covered in this chapter.

DESIGN BOX

In airplane design, the aspect ratio is a much more im-
portant consideration than wing planform shape from
the point of view of reducing the induced drag coeffi-
cient. Although the elliptical planform, as sketched at
the top of Figure 5.18, leads to the optimum lift dis-
tribution to minimize induced drag, the tapered wing,
as sketched at the bottom of Figure 5.18, can yield
a near-optimum lift distribution, with induced drag
coefficients only a few percent higher than the ellip-
tical wing. Because a tapered wing with its straight
leading and trailing edges is much cheaper and easier
to manufacture, the design choice for wing planform
is almost always a tapered wing and hardly ever an
elliptical wing.

Why then did the Supermarine Spitfire, shown
in Figure 5.19, have such a beautiful elliptical wing
planform? The answer has nothing to do with aero-
dynamics. In 1935, the Supermarine Company was
responding to the British Air Ministry specification
F.37/34 for a new fighter aircraft. Designer Reginald
Mitchell had originally laid out on the drawing board
an aircraft with tapered wings. However, Mitchell was
also coping with the Air Ministry requirement that the
airplane be armed with eight 0.303 caliber Brown-

ing machine guns. Mounting four of these guns in
each wing far enough outboard to be outside of the
propeller disk, Mitchell had a problem—the outboard
sections of the tapered wing did not have enough chord
length to accommodate the guns. His solution was an
elliptical planform, which provided sufficient chord
length far enough out on the span to allow the guns
to fit. The result was the beautiful elliptic planform
shown in Figure 5.19. The enhanced aerodynamic ef-
ficiency of this wing was only a by-product of a prac-
tical design solution. Predictably, the elliptic wings
were difficult to produce, and this contributed to pro-
duction delays in the critical months before the be-
ginning of World War II. A second enhanced aero-
dynamic by-product was afforded by the large chord
lengths along most of the elliptic wing. This allowed
Mitchell to choose a thinner airfoil section, with 13
percent thickness ratio at the wing root and 7 percent
at the wing tip, and still maintain sufficient absolute
thickness for internal structural design. Because of
this, the Spitfire had a larger critical Mach number
(to be discussed in Section 11.6) and could reach the
unusually high freestream Mach number of 0.92 in
a dive.
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For aerodynamic efficiency at subsonic speeds,
the airplane designer would love to have very large
aspect ratio wings—wings that would look like a long
slat out of a common venetian blind. However, ex-
isting airplanes do not fly around with venetian blind
slats for wings. The reason is that the structural design
of such wings poses a compromise. The larger the as-
pect ratio, the larger are the bending movements at the
wing root caused by the lift distribution reaching far-
ther away from the root. Such wings require heavier
internal structure. Hence, as the aspect ratio of a wing
increases, so does the structural weight of the wing.
As a result of this compromise between aerodynamics
and structures, typical aspect ratios for conventional
subsonic airplanes are on the order of 6 to 8.

However, examine the three-view of the Lock-
heed U-2 high altitude reconnaissance aircraft shown
in Figure 5.26. This airplane has the unusually high
aspect ratio of 14.3. Why? The answer is keyed to its
mission. The U-2 was essentially a point design; it was
to cruise at the exceptionally high altitude of 70,000 ft
or higher in order to not be reached by interceptor air-
craft or ground-to-air-missiles during overflights of

Figure 5.26 Three-view of the Lockheed U-2 high-altitude reconnaissance airplane.

the Soviet Union in the 1950s. To achieve this mis-
sion, the need for incorporating a very high aspect
ratio wing was paramount, for the following reason.
In steady, level flight, where the airplane lift L must
equal its weight W ,

L = W = q∞SCL = 1
2ρ∞V 2∞SCL (5.71)

As the airplane flies higher, ρ∞ decreases and hence
from Equation (5.71) CL must be increased in order to
keep the lift equal to the weight. As its high-altitude
cruise design point, the U-2 flies at a high value of
CL , just on the verge of stalling. (This is in stark con-
trast to the normal cruise conditions of conventional
airplanes at conventional altitudes, where the cruise
lift coefficient is relatively small.) At the high value
of CL for the U-2 at cruising altitude, its induced drag
coefficient [which from Equation (5.62) varies as C2

L ]
would be unacceptably high if a conventional aspect
ratio were used. Hence, the Lockheed design group (at
the Lockheed Skunk Works) had to opt for as high an
aspect ratio as possible to keep the induced drag co-
efficient within reasonable bounds. The wing design
shown in Figure 5.26 was the result.
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We made an observation about induced drag Di
itself, in contrast to the induced drag coefficient CD,i .
We have emphasized, based on Equation (5.62), that
CD,i can be reduced by increasing the aspect ratio.
For an airplane in steady, level flight, however, the
induced drag force itself is governed by another de-
sign parameter, rather than the aspect ratio per se, as
follows. From Equation (5.62), we have

Di = q∞SCD,i = q∞S
C2

L

πeAR
(5.72)

For steady, level flight, from Equation (5.71), we have

C2
L =

(
L

q∞S

)2

=
(

W

q∞S

)2

(5.73)

Substituting Equation (5.73) into (5.72), we have

Di = q∞S

(
W

q∞S

)2 1

πeAR

= 1

πe
q∞S

(
W

q∞S

)2( S

b2

)

or Di = 1

πeq∞

(
W

b

)2

(5.74)

This is a rather revealing result! The induced drag in
steady, level flight—the force itself—does not depend
explicitly on the aspect ratio, but rather on another de-
sign parameter W/b called the span loading:

Span loading ≡ W

b

From Equation (5.74), we see that the induced drag
for a given weight airplane can be reduced simply by
increasing the wingspan b. In so doing, the wing tip
vortices (the physical source of induced drag) are sim-
ply moved farther away, hence lessening their effect
on the rest of the wing and in turn reducing the induced
drag. This makes good intuitive sense.

However, in the preliminary design of an air-
plane, the wing area S is usually dictated by the
landing or take-off speed, which is only about 10 to
20 percent above Vstall. This is seen by Equation (1.47)

repeated below

Vstall =
√

2W

ρ∞SCL ,max
(1.47)

For a specified Vstall at sea level, and given CL ,max for
the airplane, Equation (1.47) determines the necessary
wing area for a given weight airplane. Therefore, re-
flecting on Equation (5.74) when we say that Di can be
reduced for a given weight airplane simply by increas-
ing the wing span, since S is usually fixed for the given
weight, then clearly the aspect ratio b2/S increases as
we increase b. So when we use Equation (5.74) to say
that Di can be reduced by increasing the span for a
given weight airplane, this also has the connotation
of increasing the aspect ratio. However, it is instruc-
tional to note that Di depends explicitly on the design
parameter, W/b, and not the aspect ratio; this is the
message in Equation (5.74).

Question: How much of the total drag of an air-
plane is induced drag? A generic answer to this ques-
tion is shown in the bar chart in Figure 5.27. Here,
the induced drag (shaded portion) relative to parasite
drag (white portion) is shown for typical cruise and
takeoff conditions for a generic subsonic jet transport.
The parasite drag is the sum of the drag due to skin
friction and pressure drag due to flow separation asso-
ciated with the complete airplane, including the wing.

Cruise

Induced
drag

Parasite
drag

Takeoff

Induced
drag

Parasite
drag

Figure 5.27 Comparison of
relative amounts of induced and
parasite drag for cruise (high
speed) and takeoff (low speed).
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The total drag of the airplane is the sum of the parasite
drag and the induced drag. Figure 5.27 indicates that
induced drag is about 25 percent of the total drag at
cruise, but can be 60 percent or more of the total drag
at takeoff (where the airplane is flying at high CL ).

For more details on the drag characteristics of
airplanes, and their associated impact on airplane de-
sign, see the author’s book Aircraft Performance and
Design, McGraw-Hill, Boston, 1999.

5.4 A NUMERICAL NONLINEAR
LIFTING-LINE METHOD

The classical Prandtl lifting-line theory described in Section 5.3 assumes a linear
variation of cl versus αeff. This is clearly seen in Equation (5.19). However, as
the angle of attack approaches and exceeds the stall angle, the lift curve becomes
nonlinear, as shown in Figure 4.9. This high-angle-of-attack regime is of interest
to modern aerodynamicists. For example, when an airplane is in a spin, the angle
of attack can range from 40 to 90◦; an understanding of high-angle-of-attack aero-
dynamics is essential to the prevention of such spins. In addition, modern fighter
airplanes achieve optimum maneuverability by pulling high angles of attack at
subsonic speeds. Therefore, there are practical reasons for extending Prandtl’s
classical theory to account for a nonlinear lift curve. One simple extension is
described in this section.

The classical theory developed in Section 5.4 is essentially closed form; that
is, the results are analytical equations as opposed to a purely numerical solution.
Of course, in the end, the Fourier coefficients An for a given wing must come from
a solution of a system of simultaneous linear algebraic equations. Until the advent
of the modern digital computer, these coefficients were calculated by hand. Today,
they are readily solved on a computer using standard matrix methods. However,
the elements of the lifting-line theory lend themselves to a straightforward purely
numerical solution which allows the treatment of nonlinear effects. Moreover,
this numerical solution emphasizes the fundamental aspects of lifting-line theory.
For these reasons, such a numerical solution is outlined in this section.

Consider the most general case of a finite wing of given planform and geo-
metric twist, with different airfoil sections at different spanwise stations. Assume
that we have experimental data for the lift curves of the airfoil sections, includ-
ing the nonlinear regime (i.e., assume we have the conditions of Figure 4.9 for
all the given airfoil sections). A numerical iterative solution for the finite-wing
properties can be obtained as follows:

1. Divide the wing into a number of spanwise stations, as shown in
Figure 5.28. Here k + 1 stations are shown, with n designating any specific
station.

2. For the given wing at a given α, assume the lift distribution along the span;
that is, assume values for � at all the stations �1, �2, . . . , �n, . . . , �k+1. An
elliptical lift distribution is satisfactory for such an assumed distribution.
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Figure 5.28 Stations along the span for a numerical
solution.

3. With this assumed variation of �, calculate the induced angle of attack αi

from Equation (5.18) at each of the stations:

αi (yn) = 1

4πV∞

∫ b/2

−b/2

(d�/dy) dy

yn − y
(5.75)

The integral is evaluated numerically. If Simpson’s rule is used,
Equation (5.75) becomes

αi (yn) = 1

4πV∞

	y

3

k∑
j=2,4,6

(d�/dy) j−1

(yn − y j−1)
+ 4

(d�/dy) j

yn − y j
+ (d�/dy) j+1

yn − y j+1
(5.76)

where 	y is the distance between stations. In Equation (5.76), when
yn = y j−1, y j , or y j+1, a singularity occurs (a denominator goes to zero).
When this singularity occurs, it can be avoided by replacing the given term
by its average value based on the two adjacent sections.

4. Using αi from step 3, obtain the effective angle of attack αeff at each station
from

αeff(yn) = α − αi (yn)

5. With the distribution of αeff calculated from step 4, obtain the section lift
coefficient (cl)n at each station. These values are read from the known lift
curve for the airfoil.

6. From (cl)n obtained in step 5, a new circulation distribution is calculated
from the Kutta-Joukowski theorem and the definition of lift coefficient:

L ′(yn) = ρ∞V∞�(yn) = 1
2ρ∞V 2

∞cn(cl)n

Hence, �(yn) = 1
2 V∞cn(cl)n

where cn is the local section chord. Keep in mind that in all the above steps,
n ranges from 1 to k + 1.

7. The new distribution of � obtained in step 6 is compared with the values
that were initially fed into step 3. If the results from step 6 do not agree with
the input to step 3, then a new input is generated. If the previous input to
step 3 is designated as �old and the result of step 6 is designated as �new,
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Figure 5.29 Lift distribution for a rectangular wing;
comparison between Prandtl’s classical theory and the
numerical lifting-line method of Reference 20.

then the new input to step 3 is determined from

�input = �old + D(�new − �old)

where D is a damping factor for the iterations. Experience has found that
the iterative procedure requires heavy damping, with typical values of D on
the order of 0.05.

8. Steps 3 to 7 are repeated a sufficient number of cycles until �new and �old

agree at each spanwise station to within acceptable accuracy. If this
accuracy is stipulated to be within 0.01 percent for a stretch of five previous
iterations, then a minimum of 50 and sometimes as many as 150 iterations
may be required for convergence.

9. From the converged �(y), the lift and induced drag coefficients are obtained
from Equations (5.26) and (5.30), respectively. The integrations in these
equations can again be carried out by Simpson’s rule.

The procedure outlined above generally works smoothly and quickly on a
high-speed digital computer. Typical results are shown in Figure 5.29, which
shows the circulation distributions for rectangular wings with three different
aspect ratios. The solid lines are from the classical calculations of Prandtl
(Section 5.3), and the symbols are from the numerical method described above.
Excellent agreement is obtained, thus verifying the integrity and accuracy of the
numerical method. Also, Figure 5.29 should be studied as an example of typical
circulation distributions over general finite wings, with � reasonably high over
the center section of the wing but rapidly dropping to zero at the tips.
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Figure 5.30 Lift coefficient versus angle of attack; comparison between
experimental and numerical results.

Figure 5.31 Surface oil flow pattern on a stalled, finite rectangular wing with a Clark Y-14
airfoil section. AR = 3.5, α = 22.8◦, Re = 245,000 (based on chord length). This pattern
was established by coating the wing surface with pigmented mineral oil and inserting the
model in a low-speed subsonic wind tunnel. In the photograph shown, flow is from top to
bottom. Note the highly three-dimensional flow pattern. (© Allen E. Winkelmann/University
of Maryland ).

An example of the use of the numerical method for the nonlinear regime
is shown in Figure 5.30. Here, CL versus α is given for a rectangular wing
up to an angle of attack of 50◦—well beyond stall. The numerical results are
compared with existing experimental data obtained at the University of Mary-
land (Reference 19). The numerical lifting-line solution at high angle of attack
agrees with the experiment to within 20 percent, and much closer for many cases.
Therefore, such solutions give reasonable preliminary engineering results for the
high-angle-of-attack poststall region. However, it is wise not to stretch the appli-
cability of lifting-line theory too far. At high angles of attack, the flow is highly
three-dimensional. This is clearly seen in the surface oil pattern on a rectangular
wing at high angle of attack shown in Figure 5.31. At high α, there is a strong
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spanwise flow, in combination with mushroom-shaped flow separation regions.
Clearly, the basic assumptions of lifting-line theory, classical or numerical, cannot
properly account for such three-dimensional flows.

For more details and results on the numerical lifting-line method, please see
Reference 20.

5.5 THE LIFTING-SURFACE THEORY AND THE
VORTEX LATTICE NUMERICAL METHOD

Prandtl’s classical lifting-line theory (Section 5.3) gives reasonable results for
straight wings at moderate to high aspect ratio. However, for low-aspect-ratio
straight wings, swept wings, and delta wings, classical lifting-line theory is in-
appropriate. For such planforms, sketched in Figure 5.32, a more sophisticated
model must be used. The purpose of this section is to introduce such a model
and to discuss its numerical implementation. However, it is beyond the scope of
this book to elaborate on the details of such higher-order models; rather, only
the flavor is given here. You are encouraged to pursue this subject by reading the
literature and by taking more advanced studies in aerodynamics.

Return to Figure 5.15. Here, a simple lifting line spans the wing, with its
associated trailing vortices. The circulation � varies with y along the lifting line.
Let us extend this model by placing a series of lifting lines on the plane of the wing,
at different chordwise stations; that is, consider a large number of lifting lines all
parallel to the y axis, located at different values of x , as shown in Figure 5.33.
In the limit of an infinite number of lines of infinitesimal strength, we obtain a
vortex sheet, where the vortex lines run parallel to the y axis. The strength of this
sheet (per unit length in the x direction) is denoted by γ , where γ varies in the y
direction, analogous to the variation of � for the single lifting line in Figure 5.15.
Moreover, each lifting line will have, in general, a different overall strength, so
that γ varies with x also. Hence, γ = γ (x, y) as shown in Figure 5.33. In addition,
recall that each lifting line has a system of trailing vortices; hence, the series of
lifting lines is crossed by a series of superimposed trailing vortices parallel to the
x axis. In the limit of an infinite number of infinitesimally weak vortices, these
trailing vortices form another vortex sheet of strength δ (per unit length in the

Figure 5.32 Types of wing planforms for which classical lifting-line theory is
not appropriate.
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Figure 5.33 Schematic of a lifting surface.

y direction). [Note that this δ is different from the δ used in Equation (5.61);
the use of the same symbol in both cases is standard, and there should be no
confusion since the meanings and context are completely different.] To see this
more clearly, consider a single line parallel to the x axis. As we move along
this line from the leading edge to the trailing edge, we pick up an additional
superimposed trailing vortex each time we cross a lifting line. Hence, δ must
vary with x . Moreover, the trailing vortices are simply parts of the horseshoe
vortex systems, the leading edges of which make up the various lifting lines.
Since the circulation about each lifting line varies in the y direction, the strengths
of different trailing vortices will, in general, be different. Hence, δ also varies
in the y direction, that is, δ = δ(x, y), as shown in Figure 5.33. The two vortex
sheets—the one with vortex lines running parallel to y with strength γ (per unit
length in the x direction) and the other with vortex lines running parallel to x with
strength δ (per unit length in the y direction)—result in a lifting surface distributed
over the entire planform of the wing, as shown in Figure 5.33. At any given point
on the surface, the strength of the lifting surface is given by both γ and δ, which
are functions of x and y. We denote γ = γ (x, y) as the spanwise vortex strength
distribution and δ = δ(x, y) as the chordwise vortex strength distribution.

Note that downstream of the trailing edge we have no spanwise vortex lines,
only trailing vortices. Hence, the wake consists of only chordwise vortices. The
strength of this wake vortex sheet is given by δw (per unit length in the y direction).
Since in the wake the trailing vortices do not cross any vortex lines, the strength
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Figure 5.34 Velocity induced at point P by an
infinitesimal segment of the lifting surface. The velocity
is perpendicular to the plane of the paper.

of any given trailing vortex is constant with x . Hence, δw depends only on y and,
throughout the wake, δw(y) is equal to its value at the trailing edge.

Now that we have defined the lifting surface, of what use is it? Consider point
P located at (x, y) on the wing, as shown in Figure 5.33. The lifting surface and
the wake vortex sheet both induce a normal component of velocity at point P .
Denote this normal velocity by w(x, y). We want the wing planform to be a
stream surface of the flow; that is, we want the sum of the induced w(x, y) and
the normal component of the freestream velocity to be zero at point P and for
all points on the wing—this is the flow-tangency condition on the wing surface.
(Keep in mind that we are treating the wing as a flat surface in this discussion.)
The central theme of lifting-surface theory is to find γ (x, y) and δ(x, y) such that
the flow-tangency condition is satisfied at all points on the wing. [Recall that in
the wake, δw(y) is fixed by the trailing-edge values of δ(x, y); hence, δw(y) is
not, strictly speaking, one of the unknown dependent variables.]

Let us obtain an expression for the induced normal velocity w(x, y) in terms
of γ , δ, and δw. Consider the sketch given in Figure 5.34, which shows a portion of
the planview of a finite wing. Consider the point given by the coordinates (ξ, η).
At this point, the spanwise vortex strength is γ (ξ, η). Consider a thin ribbon, or
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filament, of the spanwise vortex sheet of incremental length dξ in the x direction.
Hence, the strength of this filament is γ dξ , and the filament stretches in the y
(or η) direction. Also, consider point P located at (x, y) and removed a distance
r from the point (ξ, η). From the Biot-Savart law, Equation (5.5), the incremental
velocity induced at P by a segment dη of this vortex filament of strength γ dξ is

|dV| =
∣∣∣∣ �

4π

dl × r
|r|3

∣∣∣∣ = γ dξ

4π

(dη)r sin θ

r 3
(5.77)

Examining Figure 5.34, and following the right-hand rule for the strength γ , note
that |dV| is induced downward, into the plane of the wing (i.e., in the negative
z direction). Following the usual sign convention that w is positive in the up-
ward direction (i.e., in the positive z direction), we denote the contribution of
Equation (5.77) to the induced velocity w as (dw)γ = −|dV|. Also, note that
sin θ = (x − ξ)/r . Hence, Equation (5.77) becomes

(dw)γ = − γ

4π

(x − ξ) dξ dη

r 3
(5.78)

Considering the contribution of the elemental chordwise vortex of strength δ dη

to the induced velocity at P , we find by an analogous argument that

(dw)δ = − δ

4π

(y − η) dξ dη

r 3
(5.79)

To obtain the velocity induced at P by the entire lifting surface, Equations (5.78)
and (5.79) must be integrated over the wing planform, designated as region S
in Figure 5.34. Moreover, the velocity induced at P by the complete wake is
given by an equation analogous to Equation (5.79), but with δw instead of δ, and
integrated over the wake, designated as region W in Figure 5.34. Noting that

r =
√

(x − ξ)2 + (y − η)2

the normal velocity induced at P by both the lifting surface and the wake is

w(x, y) = − 1

4π

∫ ∫
S

(x − ξ)γ (ξ, η) + (y − η)δ(ξ, η)

[(x − ξ)2 + (y − η)2]3/2
dξ dη

− 1

4π

∫ ∫
W

(y − η)δw(η)

[(x − ξ)2 + (y − η)2]3/2
dξ dη

(5.80)

The central problem of lifting-surface theory is to solve Equation (5.80) for
γ (ξ, η) and δ(ξ, η) such that the sum of w(x, y) and the normal component
of the freestream is zero, that is, such that the flow is tangent to the planform sur-
face S. The details of various lifting-surface solutions are beyond the scope of this
book; rather, our purpose here was simply to present the flavor of the basic model.

The advent of the high-speed digital computer has made possible the im-
plementation of numerical solutions based on the lifting-surface concept. These
solutions are similar to the panel solutions for two-dimensional flow discussed in
Chapters 3 and 4 in that the wing planform is divided into a number of panels, or
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Figure 5.35 Schematic of a single horseshoe vortex, which is part of a
vortex system on the wing.

Figure 5.36 Vortex lattice system on a finite wing.

elements. On each panel, either constant or prescribed variations of both γ and δ

can be made. Control points on the panels can be chosen, where the net normal
flow velocity is zero. The evaluation of equations like Equation (5.80) at these
control points results in a system of simultaneous algebraic equations that can be
solved for the values of the γ ’s and δ’s on all the panels.

A related but somewhat simpler approach is to superimpose a finite number
of horseshoe vortices of different strengths �n on the wing surface. For example,
consider Figure 5.35, which shows part of a finite wing. The dashed lines define a
panel on the wing planform, where l is the length of the panel in the flow direction.
The panel is a trapezoid; it does not have to be a square, or even a rectangle. A
horseshoe vortex abcd of strength �n is placed on the panel such that the segment
bc is a distance l/4 from the front of the panel. A control point is placed on the
centerline of the panel at a distance 3

4 l from the front. The velocity induced at an
arbitrary point P only by the single horseshoe vortex can be calculated from the
Biot-Savart law by treating each of the vortex filaments ab, bc, and cd separately.
Now consider the entire wing covered by a finite number of panels, as sketched
in Figure 5.36. A series of horseshoe vortices is now superimposed. For example,
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on one panel at the leading edge, we have the horseshoe vortex abcd. On the
panel behind it, we have the horseshoe vortex aefd. On the next panel, we have
aghd, and on the next, aijd, etc. The entire wing is covered by this lattice of
horseshoe vortices, each of different unknown strength �n . At any control point
P , the normal velocity induced by all the horseshoe vortices can be obtained
from the Biot-Savart law. When the flow-tangency condition is applied at all the
control points, a system of simultaneous algebraic equations results which can
be solved for the unknown �n’s. This numerical approach is called the vortex
lattice method and is in wide use today for the analysis of finite-wing properties.
Once again, only the flavor of the method is given above; you are encouraged
to read the volumes of literature that now exist on various versions of the vortex
lattice method. In particular, Reference 13 has an excellent introductory discussion
on the vortex lattice method, including a worked example that clearly illustrates
the salient points of the technique.

DESIGN BOX

The lift slope for a high-aspect-ratio straight wing with
an elliptical lift distribution is predicted by Prandtl’s
lifting-line theory and is given by Equation (5.69),
repeated below:

a = a0

1 + a0/πAR

high-aspect-ratio straight wings (5.69)

This relation, and others like it, is useful for the con-
ceptual design process, where simple formulas, albeit
approximate, can lead to fast, back-of-the-envelope
calculations. However, Equation (5.69), like all re-
sults from simple lifting-line theory, is valid only for
high-aspect-ratio straight wings (AR > 4, as a rule of
thumb).

The German aerodynamicist H. B. Helmbold in
1942 modified Equation (5.69) to obtain the following
form applicable to low-aspect-ratio straight wings:

a = a0√
1 + (a0/πAR)2 + a0/(πAR)

low-aspect-ratio straight wing (5.81)

Equation (5.81) is remarkably accurate for wings with
AR < 4. This is demonstrated in Figure 5.37, which

gives experimental data for the lift slope for rectan-
gular wings as a function of AR from 0.5 to 6; these
data are compared with the predictions from Prandtl’s
lifting-line theory, Equation (5.69), and Helmbold’s
equation, Equation (5.81). Note from Figure 5.37 that
Helmbold’s equation gives excellent agreement with
the data for AR < 4.

For swept wings, Kuchemann (Reference 66)
suggests the following modification to Helmbold’s
equation:

a = a0 cos �√
1 + [(a0 cos �)/(πAR)]2 + [a0 cos �/(πAR)]

swept wing (5.82)

where � is the sweep angle of the wing, referenced to
the half-chord line, as shown in Figure 5.38.

Keep in mind that Equations (5.69), (5.81), and
(5.82) apply to incompressible flow. Compressibility
corrections to account for high Mach number effects
will be discussed in Chapter 10.

Also, the equations above are simple formulas
intended to provide quick and easy “back of the en-
velope” calculations for conceptual design purposes.
In contrast, today the power of computational fluid
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Figure 5.37 Lift slope versus aspect ratio for straight wings in
low-speed flow.
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Figure 5.38 Geometry of a swept wing.

dynamics (CFD) allows the detailed calculation of
the flow field over a finite wing of any general shape
(any aspect ratio, wing sweep, taper ratio, etc.). More-
over, the combination of CFD with modern opti-
mization procedures allows the optimized design of
the complete wing, including not only the optimum

planform shape, but also the optimum variation of air-
foil shape along the span. Because this modern, op-
timized wing design is usually applied to high-speed
airplanes where the flow must be treated as compress-
ible, we defer any discussion of this modern design
process until Part 3 of this book.
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5.6 APPLIED AERODYNAMICS: THE DELTA WING
In Part 3 of this book, we will see that supersonic flow is dramatically different
from subsonic flow in virtually all respects—the mathematics and physics of
these two flow regimes are totally different. Such differences impact the design
philosophy of aircraft for supersonic flight in comparison to aircraft for subsonic
flight. In particular, supersonic airplanes usually have highly swept wings (the
reasons for this are discussed in Part 3). A special case of swept wings is those
aircraft with a triangular planform—called delta wings. A comparison of the
planform of a conventional swept wing was shown in Figure 5.32. Two classic
examples of aircraft with delta wings are the Convair F-102A, the first operational
jet airplane in the United States to be designed with a delta wing, shown in
Figure 5.39a, and the space shuttle, basically a hypersonic airplane, shown in
Figure 5.39b. In reality, the planform of the space shuttle is more correctly denoted
as a double-delta shape. Indeed, there are several variants of the basic delta wing
used on modern aircraft; these are shown in Figure 5.40. Delta wings are used on
many different types of high-speed airplanes around the world; hence, the delta
planform is an important aerodynamic configuration.

Question: Since delta-winged aircraft are high-speed vehicles, why are we
discussing this topic in the present chapter, which deals with the low-speed, in-
compressible flow over finite wings? The obvious answer is that all high-speed
aircraft fly at low speeds for takeoff and landing; moreover, in most cases, these
aircraft spend the vast majority of their flight time at subsonic speeds, using
their supersonic capability for short “supersonic dashes,” depending on their
mission. Several exceptions are, of course, the Concorde supersonic transport
which cruised at supersonic speeds across oceans, and the space shuttle, which
is hypersonic for most of its reentry into the earth’s atmosphere. However, a vast
majority of delta-winged aircraft spend a great deal of their flight time at subsonic
speeds. For this reason, the low-speed aerodynamic characteristics of delta wings
are of great importance; this is accentuated by the rather different and unique
aerodynamic aspects associated with such delta wings. Therefore, the low-speed
aerodynamics of delta wings has been a subject of much serious study over the
past years, going back as far as the early work on delta wings by Alexander
Lippisch in Germany during the 1930s. This is the answer to our question posed
above—in the context of our discussion on finite wings, we must give the delta
wing some special attention.

The subsonic flow pattern over the top of a delta wing at angle of attack
is sketched in Figure 5.41. The dominant aspect of this flow are the two vortex
patterns that occur in the vicinity of the highly swept leading edges. These vortex
patterns are created by the following mechanism. The pressure on the bottom
surface of the wing at the angle of attack is higher than the pressure on the top
surface. Thus, the flow on the bottom surface in the vicinity of the leading edge
tries to curl around the leading edge from the bottom to the top. If the leading
edge is sharp, the flow will separate along its entire length. (We have already
mentioned several times that when low-speed, subsonic flow passes over a sharp
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(a)

Figure 5.39 Some delta-winged vehicles. (a) The Convair F-102A. (NASA).

convex corner, inviscid flow theory predicts an infinite velocity at the corner, and
that nature copes with this situation by having the flow separate at the corner.
The leading edge of a delta wing is such a case.) This separated flow curls into a
primary vortex which exists above the wing just inboard of each leading edge, as
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(b)

Figure 5.39 (continued) Some delta-winged vehicles.
(b) The space shuttle. (NASA).
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Figure 5.40 Four versions of a delta-wing planform.
(From Loftin, Lawrence K., Jr.: Quest for Performance:
The Evolution of Modern Aircraft, NASA SP-468, 1985).

Figure 5.41 Schematic of the subsonic flow field over the top of a delta wing at angle of attack.
(Adapted from John Stollery, Cranfield Institute of Technology, England).
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Figure 5.42 Leading-edge vortices over the top surface of a delta wing at angle of attack.
The vortices are made visible by dye streaks in water flow. (© National Physical
Laboratory/Crown Copyright/Science Source).

sketched in Figure 5.41. The stream surface which has separated at the leading
edge (the primary separation line S1 in Figure 5.41) loops above the wing and then
reattaches along the primary attachment line (line A1 in Figure 5.41). The primary
vortex is contained within this loop. A secondary vortex is formed underneath the
primary vortex, with its own separation line, denoted by S2 in Figure 5.41, and
its own reattachment line A2. Notice that the surface streamlines flow away from
the attachment lines A1 and A2 on both sides of these lines, whereas the surface
streamlines tend to flow toward the separation lines S1 and S2 and then simply lift
off the surface along these lines. Inboard of the leading-edge vortices, the surface
streamlines are attached, and flow downstream virtually is undisturbed along a
series of straight-line rays emanating from the vertex of the triangular shape. A
graphic illustration of the leading-edge vortices is shown in both Figures 5.42 and
5.43. In Figure 5.42, we see a highly swept delta wing mounted in a water tunnel.
Filaments of colored dye are introduced at two locations along each leading
edge. This photograph, taken from an angle looking down on the top of the wing,
clearly shows the entrainment of the colored dye in the vortices. Figure 5.43 is
a photograph of the vortex pattern in the crossflow plane (the crossflow plane is
shown in Figure 5.41). From the photographs in Figures 5.42 and 5.43, we clearly
see that the leading-edge vortex is real and is positioned above and somewhat
inboard of the leading edge itself.

The leading-edge vortices are strong and stable. Being a source of high energy,
relatively high-vorticity flow, the local static pressure in the vicinity of the vortices
is small. Hence, the surface pressure on the top surface of the delta wing is reduced
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Figure 5.43 The flow field in the crossflow plane above a delta wing at angle of attack,
showing the two primary leading-edge vortices. The vortices are made visible by small air
bubbles in water. (© ONERA The French Aerospace Lab).

Figure 5.44 Schematic of the spanwise pressure coefficient
distribution across a delta wing. (Data Courtesy of John Stollery,
Cranfield Institute of Technology, England).

near the leading edge and is higher and reasonably constant over the middle of
the wing. The qualitative variation of the pressure coefficient in the spanwise
direction (the y direction as shown in Figure 5.41) is sketched in Figure 5.44.
The spanwise variation of pressure over the bottom surface is essentially constant
and higher than the freestream pressure (a positive Cp). Over the top surface,
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Figure 5.45 Variation of lift coefficient for a flat delta wing with angle of
attack. (Data Courtesy of John Stollery, Cranfield Institute of Technology,
England).

the spanwise variation in the midsection of the wing is essentially constant and
lower than the freestream pressure (a negative C p). However, near the leading
edges the static pressure drops considerably (the values of C p become more
negative). The leading-edge vortices are literally creating a strong “suction” on the
top surface near the leading edges. In Figure 5.44, vertical arrows are shown to
indicate further the effect on the spanwise lift distribution; the upward direction
of these arrows as well as their relative length show the local contribution of each
section of the wing to the normal force distribution. The suction effect of the
leading-edge vortices is clearly shown by these arrows.

The suction effect of the leading-edge vortices enhances the lift; for this
reason, the lift coefficient curve for a delta wing exhibits an increase in CL for
values of α at which conventional wing planforms would be stalled. A typical
variation of CL with α for a 60◦ delta wing is shown in Figure 5.45. Note the
following characteristics:

1. The lift slope is small, on the order of 0.05/degree.
2. However, the lift continues to increase to large values of α; in Figure 5.45,

the stalling angle of attack is on the order of 35◦. The net result is a
reasonable value of CL ,max, on the order of 1.3.
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Figure 5.46 The effect of leading-edge shape on the lift-to-drag
ratio for a delta wing of aspect ratio 2.31. The two solid curves
apply to a sharp leading edge, and the dashed curve applies to a
rounded leading edge. LEVF denotes a wing with a leading-edge
vortex flap. (Data Courtesy of John Stollery, Cranfield Institute of
Technology, England).

The next time you have an opportunity to watch a delta-winged airplane take
off or land, say, for example, the televised landing of the space shuttle, note the
large angle of attack of the vehicle. Moreover, you will understand why the angle
of attack is large—because the lift slope is small, and hence the angle of attack
must be large enough to generate the high values of CL required for low-speed
flight.

The suction effect of the leading-edge vortices, in acting to increase the nor-
mal force, consequently, increases the drag at the same time it increases the lift.
Hence, the aerodynamic effect of these vortices is not necessarily advantageous.
In fact, the lift-to-drag ratio L/D for a delta planform is not so high as conven-
tional wings. The typical variation of L/D with CL for a delta wing is shown in
Figure 5.46, the results for the sharp leading edge, 60◦ delta wing are given by the
lower curve. Note that the maximum value of L/D for this case is about 9.3—not
a particularly exciting value for a low-speed aircraft.
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There are two other phenomena that are reflected by the data in Figure 5.46.
The first is the effect of greatly rounding the leading edges of the delta wing.
In our previous discussions, we have treated the case of a sharp leading edge;
such sharp edges cause the flow to separate at the leading edge, forming the
leading-edge vortices. On the other hand, if the leading-edge radius is large,
the flow separation will be minimized, or possibly will not occur. In turn, the
drag penalty discussed above will not be present, and hence the L/D ratio will
increase. The dashed curve in Figure 5.46 is the case for a 60◦ delta wing with well-
rounded leading edges. Note that (L/D)max for this case is about 16.5, almost
a factor of 2 higher than the sharp leading-edge case. However, keep in mind
that these are results for subsonic speeds. There is a major design compromise
reflected in these results. At the beginning of this section, we mentioned that
the delta-wing planform with sharp leading edges is advantageous for supersonic
flight—its highly swept shape in combination with sharp leading edges has a low
supersonic drag. However, at supersonic speeds this advantage will be negated
if the leading edges are rounded to any great extent. We will find in our study
of supersonic flow in Part 3 that a blunt-nosed body creates very large values
of wave drag. Therefore, leading edges with large radii are not appropriate for
supersonic aircraft; indeed, it is desirable to have as sharp a leading edge as is
practically possible for supersonic airplanes. A singular exception is the design of
the space shuttle. The leading-edge radius of the space shuttle is large; this is due
to three features that combine to make such blunt leading edges advantageous
for the shuttle. First, the shuttle must slow down early during reentry into the
earth’s atmosphere to avoid massive aerodynamic heating (aspects of aerodynamic
heating are discussed in Part 4). Therefore, in order to obtain this deceleration,
a high drag is desirable for the space shuttle; indeed, the maximum L/D ratio
of the space shuttle during reentry is about 2. A large leading-edge radius, with
its attendant high drag, is therefore advantageous. Second, as we will see in
Part 4, the rate of aerodynamic heating to the leading edge itself—a region of
high heating—is inversely proportional to the square root of the leading-edge
radius. Hence, the larger the radius, the smaller will be the heating rate to the
leading edge. Third, as already explained above, a highly rounded leading edge
is certainly advantageous to the shuttle’s subsonic aerodynamic characteristics.
Hence, a well-rounded leading edge is an important design feature for the space
shuttle on all accounts. However, we must be reminded that this is not the case for
more conventional supersonic aircraft, which demand very sharp leading edges.
For these aircraft, a delta wing with a sharp leading edge has relatively poor
subsonic performance.

This leads to the second of the phenomena reflected in Figure 5.46. The middle
curve in Figure 5.46 is labeled LEVF, which denotes the case for a leading-edge
vortex flap. This pertains to a mechanical configuration where the leading edges
can be deflected downward through a variable angle, analogous to the deflection of
a conventional trailing-edge flap. The spanwise pressure-coefficient distribution
for this case is sketched in Figure 5.47; note that the direction of the suction due
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Figure 5.47 A schematic of the spanwise pressure coefficient
distribution over the top of a delta wing as modified by leading-edge
vortex flaps. (Data Courtesy of John Stollery, Cranfield Institute of
Technology, England).

to the leading-edge vortice is now modified in comparison to the case with no
leading-edge flap shown earlier in Figure 5.44. Also, returning to Figure 5.41,
you can visualize what the wing geometry would look like with the leading edge
drooped down; a front view of the downward deflected flap would actually show
some projected frontal area. Since the pressure is low over this frontal area, the
net drag can decrease. This phenomenon is illustrated by the middle curve in
Figure 5.46, which shows a generally higher L/D for the leading-edge vortex
flap in comparison to the case with no flap (the flat delta wing).

Finally, we note something drastic that occurs in the flow over the top surface
of a delta wing when it is at a high enough angle of attack. The primary vortices
shown in Figures 5.41 and 5.42 begin to fall apart somewhere along the length
of the vortex; this is called vortex breakdown, illustrated in Figure 5.48. Com-
pare this photograph with that shown in Figure 5.42 for well-behaved vortices at
lower angle of attack. In Figure 5.48 the two leading-edge vortices show vortex
breakdown at a location about two-thirds along their length over the top of the
wing. This photograph is particularly interesting because it shows two types of
vortex breakdown. The vortex at the top of the photograph exhibits a spiral-type
of vortex breakdown, where the breakdown occurs progressively along the core
and causes the core to twist in various directions. The vortex at the bottom of
the photograph exhibits a bubble-type of vortex breakdown, where the vortex
suddenly bursts, forming a large bubble of chaotic flow. The spiral type of vortex
breakdown is more common. When vortex breakdown occurs, the lift and pitch-
ing moment of the delta wing decrease, the flow becomes unsteady, and buffeting
of the wing occurs.
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Figure 5.48 Vortex breakdown over a delta wing. (© Science Source).

The progressive development of vortex breakdown is shown by the com-
putational fluid dynamic (CFD) results in Figure 5.49 for a delta wing with a
60-degree sweep angle. At α = 5◦ (Figure 5.49a), the vortex core is well-
behaved. At α = 15◦ (Figure 5.49b), vortex breakdown is starting. At α = 40◦

(Figure 5.49c), the flow over the top of the delta wing is completely separated,
and the wing is stalled. The results in Figure 5.49 are interesting for another rea-
son as well. In a footnote to Section 4.4 we noted that inviscid flow calculations
sometimes predict the location and nature of flow separation. Here we see another
such case. The vortex breakdown and separated flow shown in Figure 5.49 are
calculated from a CFD solution of the Euler equations (i.e., an inviscid flow cal-
culation). It appears that friction does not play a critical role in vortex formation
and breakdown.

(For more information on vortex bursting over delta wings, see the recent
survey by I. Gursul, “Recent Developments in Delta Wing Aerodynamics,” The
Aeronautical Journal, vol. 108, number 1087, September 2004, pp. 437–452.)

In summary, the delta wing is a common planform for supersonic aircraft. In
this section, we have examined the low-speed aerodynamic characteristics of such
wings and have found that these characteristics are in some ways quite different
from a conventional planform.
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Figure 5.49 Vortex behavior and breakdown progression with
increasing angles of attack of (a) 5◦, (b) 15◦, (c) 40◦. (Source:
R. E. Gordnier and M. R. Visbal, “Computation of the
Aeroelastic Response of a Flexible Delta Wing at High
Angles-of-Attack,” AIAA Paper 2003-1728, 2003).
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5.7 HISTORICAL NOTE: LANCHESTER AND
PRANDTL—THE EARLY DEVELOPMENT
OF FINITE-WING THEORY

On June 27, 1866, in a paper entitled “Aerial Locomotion” given to the Aero-
nautical Society of Great Britain, the Englishman Francis Wenham expressed for
the first time in history the effect of aspect ratio on finite-wing aerodynamics.
He theorized (correctly) that most of the lift of a wing occurs from the portion
near the leading edge, and hence a long, narrow wing would be most efficient.
He suggested stacking a number of long thin wings above each other to generate
the required lift, and he built two full-size gliders in 1858, both with five wings
each, to demonstrate (successfully) his ideas. (Wenham is also known for de-
signing and building the first wind tunnel in history, at Greenwich, England, in
1871.)

However, the true understanding of finite-wing aerodynamics, as well as ideas
for the theoretical analysis of finite wings, did not come until 1907. In that year,
Frederick W. Lanchester published his now famous book entitled Aerodynamics.
We have met Lanchester before—in Section 4.15 concerning his role in the de-
velopment of the circulation theory of lift. Here, we examine his contributions to
finite-wing theory.

In Lanchester’s Aerodynamics, we find the first mention of vortices that trail
downstream of the wing tips. Figure 5.50 is one of Lanchester’s own drawings
from his 1907 book, showing the “vortex trunk” which forms at the wing tip.
Moreover, he knew that a vortex filament could not end in space (see Section 5.2),
and he theorized that the vortex filaments that constituted the two wing-tip vortices
must cross the wing along its span—the first concept of bound vortices in the
spanwise direction. Hence, the essence of the horseshoe vortex concept originated
with Lanchester. In his own words:

Thus the author regards the two trailed vortices as a definite proof of the existence of
a cyclic component of equal strength in the motion surrounding the airfoil itself.

Figure 5.50 A figure from Lanchester’s
Aerodynamics, 1907; this is his own drawing
of the wing-tip vortex on a finite wing.
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Considering the foresight and originality of Lanchester’s thinking, let us
pause for a moment and look at the man himself. Lanchester was born on Octo-
ber 23, 1868, in Lewisham, England. The son of an architect, Lanchester became
interested in engineering at an early age. (He was told by his family that his mind
was made up at the age of 4.) He studied engineering and mining during the years
1886–1889 at the Royal College of Science in South Kensington, London, but
never officially graduated. He was a quick-minded and innovative thinker and
became a designer at the Forward Gas Engine Company in 1889, specializing
in internal combustion engines. He rose to the post of assistant works manager.
In the early 1890s, Lanchester became very interested in aeronautics, and along
with his development of high-speed engines, he also carried out numerous aero-
dynamics experiments. It was during this period that he formulated his ideas on
both the circulation theory of lift and the finite-wing vortex concepts. A serious
paper written by Lanchester first for the Royal Society, and then for the Physical
Society, was turned down for publication—something Lanchester never forgot.
Finally, his aeronautical concepts were published in his two books Aerodynamics
and Aerodonetics in 1907 and 1908, respectively. To his detriment, Lanchester
had a style of writing and a means of explanation that were not easy to follow and
his works were not immediately seized upon by other researchers. Lanchester’s
bitter feelings about the public’s receipt of his papers and books are graphically
seen in his letter to the Daniel Guggenheim Medal Fund decades later. In a letter
dated June 6, 1931, Lanchester writes:

So far as aeronautical science is concerned, I cannot say that I experienced anything
but discouragement; in the early days my theoretical work (backed by a certain amount
of experimental verification), mainly concerning the vortex theory of sustentation
and the screw propeller, was refused by the two leading scientific societies in this
country, and I was seriously warned that my profession as an engineer would suffer if
I dabbled in a subject that was merely a dream of madmen! When I published my two
volumes in 1907 and 1908 they were well received on the whole, but this was mainly
due to the success of the brothers Wright, and the general interest aroused on the
subject.

In 1899, he formed the Lanchester Motor Company, Limited, and sold automo-
biles of his own design. He married in 1919, but had no children. Lanchester
maintained his interest in automobiles and related mechanical devices until his
death on March 8, 1946, at the age of 77.

In 1908, Lanchester visited Göttingen, Germany, and fully discussed his wing
theory with Ludwig Prandtl and his student Theodore von Karman. Prandtl spoke
no English, Lanchester spoke no German, and in light of Lanchester’s unclear
way of explaining his ideas, there appeared to be little chance of understanding
between the two parties. However, shortly after, Prandtl began to develop his own
wing theory, using a bound vortex along the span and assuming that the vortex
trails downstream from both wing tips. The first mention of Prandtl’s work on
finite-wing theory was made in a paper by O. Foppl in 1911, discussing some
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of Foppl’s experimental work on finite wings. Commenting on his results, Foppl
says:

They agree very closely with the theoretical investigation by Professor Prandtl on
the current around an airplane with a finite span wing. Already Lanchester in his
work, “Aerodynamics” (translated into German by C. and A. Runge), indicated that
to the two extremities of an airplane wing are attached two vortex ropes (Wirbelzopfe)
which make possible the transition from the flow around the airplane, which occurs
nearly according to Kutta’s theory, to the flow of the undisturbed fluid at both sides.
These two vortex ropes continue the vortex which, according to Kutta’s theory, takes
place on the lamina.

We are led to admit this owing to the Helmholtz theorem that vortices cannot
end in the fluid. At any rate these two vortex ropes have been made visible in the
Göttingen Institute by emitting an ammonia cloud into the air. Prandtl’s theory is
constructed on the consideration of this current in reality existing.

In the same year, Prandtl expressed his own first published words on the subject.
In a paper given at a meeting of the Representatives of Aeronautical Science in
Göttingen in November 1911, entitled “Results and Purposes of the Model Ex-
perimental Institute of Göttingen,” Prandtl states:

Another theoretical research relates to the conditions of the current which is formed
by the air behind an airplane. The lift generated by the airplane is, on account of
the principle of action and reaction, necessarily connected with a descending current
behind the airplane. Now it seemed very useful to investigate this descending current
in all its details. It appears that the descending current is formed by a pair of vortices,
the vortex filaments of which start from the airplane wing tips. The distance of the two
vortices is equal to the span of the airplane, their strength is equal to the circulation of
the current around the airplane and the current in the vicinity of the airplane is fully
given by the superposition of the uniform current with that of a vortex consisting of
three rectilinear sections.

In discussing the results of his theory, Prandtl goes on to state in the same paper:

The same theory supplies, taking into account the variations of the current on the
airplane which came from the lateral vortices, a relationship showing the dependence
of the airplane lift on the aspect ratio; in particular it gives the possibility of ex-
trapolating the results thus obtained experimentally to the airplane of infinite span
wing. From the maximum aspect ratios measured by us (1:9 to that of 1:∞) the lifts
increase further in marked degree—by some 30 or 40 percent. I would add here a
remarkable result of this extrapolation, which is, that the results of Kutta’s theory
of the infinite wing, at least so far as we are dealing with small cambers and small
angles of incidence, have been confirmed by these experimental results.

Starting from this line of thought we can attack the problem of calculating the
surface of an airplane so that lift is distributed along its span in a determined manner,
previously fixed. The experimental trial of these calculations has not yet been made,
but it will be in the near future.

It is clear from the above comments that Prandtl was definitely following the model
proposed earlier by Lanchester. Moreover, the major concern of the finite-wing
theory was first in the calculation of lift—no mention is made of induced drag.
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It is interesting to note that Prandtl’s theory first began with a single horseshoe
vortex, such as sketched in Figure 5.13. The results were not entirely satisfactory.
During the period 1911–1918, Prandtl and his colleagues expanded and refined
his finite-wing theory, which evolved to the concept of a lifting line consisting
of an infinite number of horseshoe vortices, as sketched in Figure 5.15. In 1918,
the term “induced drag” was coined by Max Munk, a colleague of Prandtl at
Göttingen. Much of Prandtl’s development of finite-wing theory was classified
secret by the German government during World War I. Finally, his lifting-line
theory was released to the outside world, and his ideas were published in En-
glish in a special NACA report written by Prandtl and published in 1922, enti-
tled “Applications of Modern Hydrodynamics to Aeronautics” (NACA TR 116).
Hence, the theory we have outlined in Section 5.3 was well-established more than
80 years ago.

One of Prandtl’s strengths was the ability to base his thinking on sound
ideas, and to apply intuition that resulted in relatively straightforward theories
that most engineers could understand and appreciate. This is in contrast to the
difficult writings of Lanchester. As a result, the lifting theory for finite wings has
come down through the years identified as Prandtl’s lifting-line theory, although
we have seen that Lanchester was the first to propose the basic model on which
lifting-line theory is built.

In light of Lanchester’s 1908 visit with Prandtl and Prandtl’s subsequent
development of the lifting-line theory, there has been some discussion over the
years that Prandtl basically stole Lanchester’s ideas. However, this is clearly not
the case. We have seen in the above quotes that Prandtl’s group at Göttingen was
giving full credit to Lanchester as early as 1911. Moreover, Lanchester never
gave the world a clear and practical theory with which results could be readily
obtained—Prandtl did. Therefore, in this book we have continued the tradition
of identifying the lifting-line theory with Prandtl’s name. On the other hand, for
very good reasons, in England and various places in western Europe, the theory
is labeled the Lanchester-Prandtl theory.

To help put the propriety in perspective, Lanchester was awarded the Daniel
Guggenheim Medal in 1936 (Prandtl had received this award some years earlier).
In the medal citation, we find the following words:

Lanchester was the foremost person to propound the now famous theory of flight
based on the Vortex theory, so brilliantly followed up by Prandtl and others. He first
put forward his theory in a paper read before the Birmingham Natural History and
Philosophical Society on 19th June, 1894. In a second paper in 1897, in his two
books published in 1907 and 1908, and in his paper read before the Institution of
Automobile Engineers in 1916, he further developed this doctrine.

Perhaps the best final words on Lanchester are contained in this excerpt from
his obituary found in the British periodical Flight in March 1946:

And now Lanchester has passed from our ken but not from our thoughts. It is to be
hoped that the nation which neglected him during much of his lifetime will at any rate
perpetuate his work by a memorial worthy of the “Grand Old Man” of aerodynamics.
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5.8 HISTORICAL NOTE: PRANDTL—THE MAN
The modern science of aerodynamics rests on a strong fundamental foundation,
a large percentage of which was established in one place by one man—at the
University of Göttingen by Ludwig Prandtl. Prandtl never received a Nobel Prize,
although his contributions to aerodynamics and fluid mechanics are felt by many
to be of that caliber. Throughout this book, you will encounter his name in con-
junction with major advances in aerodynamics: thin airfoil theory in Chapter 4,
finite-wing theory in Chapter 5, supersonic shock- and expansion-wave theory in
Chapter 9, compressibility corrections in Chapter 11, and what may be his most
important contribution, namely, the boundary-layer concept in Chapter 17. Who
was this man who has had such a major impact on fluid dynamics? Let us take a
closer look.

Ludwig Prandtl was born on February 4, 1874, in Freising, Bavaria. His
father was Alexander Prandtl, a professor of surveying and engineering at the
agricultural college at Weihenstephan, near Freising. Although three children
were born into the Prandtl family, two died at birth, and Ludwig grew up as an
only child. His mother, the former Magdalene Ostermann, had a protracted illness,
and partly as a result of this, Prandtl became very close to his father. At an early
age, Prandtl became interested in his father’s books on physics, machinery, and
instruments. Much of Prandtl’s remarkable ability to go intuitively to the heart of
a physical problem can be traced to his environment at home as a child, where
his father, a great lover of nature, induced Ludwig to observe natural phenomena
and to reflect on them.

In 1894, Prandtl began his formal scientific studies at the Technische
Hochschule in Munich, where his principal teacher was the well-known mechan-
ics professor, August Foppl. Six years later, he graduated from the University of
Munich with a Ph.D., with Foppl as his advisor. However, by this time Prandtl
was alone, his father having died in 1896 and his mother in 1898.

By 1900, Prandtl had not done any work or shown any interest in fluid me-
chanics. Indeed, his Ph.D. thesis at Munich was in solid mechanics, dealing with
unstable elastic equilibrium in which bending and distortion acted together. (It
is not generally recognized by people in fluid dynamics that Prandtl continued
his interest and research in solid mechanics through most of his life—this work
is eclipsed, however, by his major contributions to the study of fluid flow.) How-
ever, soon after graduation from Munich, Prandtl had his first major encounter
with fluid mechanics. Joining the Nuremburg works of the Maschinenfabrick
Augsburg as an engineer, Prandtl worked in an office designing mechanical equip-
ment for the new factory. He was made responsible for redesigning an apparatus
for removing machine shavings by suction. Finding no reliable information in
the scientific literature about the fluid mechanics of suction, Prandtl arranged
his own experiments to answer a few fundamental questions about the flow. The
result of this work was his new design for shavings cleaners. The apparatus was
modified with pipes of improved shape and size, and carried out satisfactory oper-
ation at one-third its original power consumption. Prandtl’s contributions in fluid
mechanics had begun.
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One year later, in 1901, he became Professor of Mechanics in the Mathemat-
ical Engineering Department at the Technische Hochschule in Hanover. (Please
note that in Germany a “technical high school” is equivalent to a technical univer-
sity in the United States.) It was at Hanover that Prandtl enhanced and continued
his new-found interest in fluid mechanics. He also developed his boundary-layer
theory and became interested in supersonic flow through nozzles at Hanover.
In 1904, Prandtl delivered his famous paper on the concept of the boundary
layer to the Third Congress on Mathematicians at Heidelberg. Entitled “Über
Flussigkeitsbewegung bei sehr kleiner Reibung,” Prandtl’s Heidelberg paper es-
tablished the basis for most modern calculations of skin friction, heat transfer,
and flow separation (see Chapters 15 to 20). From that time on, the star of Prandtl
was to rise meteorically. Later that year, he moved to the prestigious University
of Göttingen to become Director of the Institute for Technical Physics, later to be
renamed Applied Mechanics. Prandtl spent the remainder of his life at Göttingen,
building his laboratory into the world’s greatest aerodynamic research center of
the 1904–1930 time period.

At Göttingen, during 1905–1908 Prandtl carried out numerous experiments
on supersonic flow through nozzles and developed oblique shock- and expansion-
wave theory (see Chapter 9). He took the first photographs of the supersonic
flow through nozzles, using a special schlieren optical system (see Chapter 4 of
Reference 21). From 1910 to 1920, he devoted most of his efforts to low-speed
aerodynamics, principally airfoil and wing theory, developing the famous lifting-
line theory for finite wings (see Section 5.3). Prandtl returned to high-speed flows
in the 1920s, during which he contributed to the evolution of the famous Prandtl-
Glauert compressibility correction (see Sections 11.4 and 11.11).

By the 1930s, Prandtl was recognized worldwide as the “elder statesman” of
fluid dynamics. Although he continued to do research in various areas, including
structural mechanics and meteorology, his “Nobel Prize-level” contributions to
fluid dynamics had all been made. Prandtl remained at Göttingen throughout the
turmoil of World War II, engrossed in his work and seemingly insulated from
the intense political and physical disruptions brought about by Nazi Germany. In
fact, the German Air Ministry provided Prandtl’s laboratory with new equipment
and financial support. Prandtl’s attitude at the end of the war is reflected in his
comments to a U.S. Army interrogation team that swept through Göttingen in
1945; he complained about bomb damage to the roof of his house, and he asked
how the Americans planned to support his current and future research. Prandtl
was 70 at the time and was still going strong. However, the fate of Prandtl’s
laboratory at this time is summed up in the words of Irmgard Flugge-Lotz and
Wilhelm Flugge, colleagues of Prandtl, who wrote 28 years later in the Annual
Review of Fluid Mechanics (Vol. 5, 1973):

World War II swept over all of us. At its end some of the research equipment was
dismantled, and most of the research staff was scattered with the winds. Many are now
in this country (the United States) and in England, some have returned. The seeds
sown by Prandtl have sprouted in many places, and there are now many “second
growth” Göttingers who do not even know that they are.
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Figure 5.51 Ludwig Prandtl (1875–1953). (© Emilio Segrè
Visual Archives/American Institute of Physics/Science Source).

What type of person was Prandtl? By all accounts he was a gracious man,
studious, likable, friendly, and totally focused on those things that interested him.
He enjoyed music and was an accomplished pianist. Figure 5.51 shows a rather
introspective man busily at work. One of Prandtl’s most famous students, Theodor
von Kármán, wrote in his autobiography The Wind and Beyond (Little, Brown and
Company, Boston, 1967) that Prandtl bordered on being naive. A favorite story
along these lines is that, in 1909, Prandtl decided that he should be married, but
he did not know quite what to do. He finally wrote to Mrs. Foppl, the wife of his
respected teacher, asking permission to marry one of her two daughters. Prandtl
and Foppl’s daughters were acquainted, but nothing more than that. Moreover,
Prandtl did not stipulate which daughter. The Foppl’s made a family decision that
Prandtl should marry the elder daughter, Gertrude. This story from von Karman
has been disputed in recent years by a Prandtl relative. Nevertheless, the marriage
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took place, leading to a happy relationship. The Prandtl’s had two daughters, born
in 1914 and 1917.

Prandtl was considered a tedious lecturer because he could hardly make a
statement without qualifying it. However, he attracted excellent students who later
went on to distinguish themselves in fluid mechanics—such as Jakob Ackeret in
Zurich, Switzerland, Adolf Busemann in Germany, and Theodor von Kármán at
Aachen, Germany, and later at Cal Tech in the United States.

Prandtl died in 1953. He was clearly the father of modern aerodynamics—a
monumental figure in fluid dynamics. His impact will be felt for centuries to
come.

5.9 SUMMARY
Return to the chapter road map in Figure 5.7, and review the straightforward path
we have taken during the development of finite-wing theory. Make certain that
you feel comfortable with the flow of ideas before proceeding further.

A brief summary of the important results of this chapter follows:

The wing-tip vortices from a finite wing induce a downwash which reduces
the angle of attack effectively seen by a local airfoil section:

αeff = α − αi (5.1)

In turn, the presence of downwash results in a component of drag defined as
induced drag Di .

Vortex sheets and vortex filaments are useful in modeling the aerodynamics of
finite wings. The velocity induced by a directed segment dl of a vortex filament
is given by the Biot-Savart law:

dV = �

4π

dl × r
|r|3 (5.5)

In Prandtl’s classical lifting-line theory, the finite wing is replaced by a single
spanwise lifting line along which the circulation �(y) varies. A system of
vortices trails downstream from the lifting line, which induces a downwash at
the lifting line. The circulation distribution is determined from the fundamental
equation

α(y0) = �(y0)

πV∞c(y0)
+ αL=0(y0) + 1

4πV∞

∫ b/2

−b/2

(d�/dy) dy

y0 − y
(5.23)
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Results from classical lifting-line theory:

Elliptic wing:

Downwash is constant:

w = −�0

2b
(5.35)

αi = CL

πAR
(5.42)

CD,i = C2
L

πAR
(5.43)

a = a0

1 + a0/πAR
(5.69)

General wing:

CD,i = C2
L

πAR
(1 + δ) = C2

L

πeAR
(5.61) and (5.62)

a = a0

1 + (a0/πAR)(1 + τ)
(5.70)

For low-aspect-ratio wings, swept wings, and delta wings, lifting-surface the-
ory must be used. In modern aerodynamics, such lifting-surface theory is
implemented by the vortex panel or the vortex lattice techniques.

5.10 PROBLEMS
5.1 Consider a vortex filament of strength � in the shape of a closed circular

loop of radius R. Obtain an expression for the velocity induced at the
center of the loop in terms of � and R.

5.2 Consider the same vortex filament as in Problem 5.1. Consider also a
straight line through the center of the loop, perpendicular to the plane of
the loop. Let A be the distance along this line, measured from the plane of
the loop. Obtain an expression for the velocity at distance A on the line, as
induced by the vortex filament.

5.3 The measured lift slope for the NACA 23012 airfoil is 0.1080 degree−1,
and αL=0 = −1.3◦. Consider a finite wing using this airfoil, with AR = 8
and taper ratio = 0.8. Assume that δ = τ . Calculate the lift and induced
drag coefficients for this wing at a geometric angle of attack = 7◦.
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5.4 The Piper Cherokee (a light, single-engine general aviation aircraft) has a
wing area of 170 ft2 and a wing span of 32 ft. Its maximum gross weight is
2450 lb. The wing uses an NACA 65-415 airfoil, which has a lift slope of
0.1033 degree−1 and αL=0 = −3◦. Assume τ = 0.12. If the airplane is
cruising at 120 mi/h at standard sea level at its maximum gross weight and
is in straight-and-level flight, calculate the geometric angle of attack of the
wing.

5.5 Consider the airplane and flight conditions given in Problem 5.4. The span
efficiency factor e for the complete airplane is generally much less than
that for the finite wing alone. Assume e = 0.64. Calculate the induced
drag for the airplane in Problem 5.4.

5.6 Consider a finite wing with an aspect ratio of 6. Assume an elliptical lift
distribution. The lift slope for the airfoil section is 0.1/degree. Calculate
and compare the lift slopes for (a) a straight wing, and (b) a swept wing,
with a half-chord line sweep of 45 degrees.

5.7 Repeat Problem 5.6, except for a lower aspect ratio of 3. From a
comparison of the results from these two problems, draw some
conclusions about the effect of wing sweep on the lift slope, and how the
magnitude of this effect is affected by aspect ratio.

5.8 In Problem 1.19 we noted that the Wright brothers, in the design of their
1900 and 1901 gliders, used aerodynamic data from the Lilienthal table
given in Figure 1.65. They chose a design angle of attack of 3 degrees,
corresponding to a design lift coefficient of 0.546. When they tested their
gliders at Kill Devil Hills near Kitty Hawk, North Carolina, in 1900 and
1901, however, they measured only one-third the amount of lift they had
originally calculated on the basis of the Lilienthal table. This led the
Wrights to question the validity of Lilienthal’s data, and this cast a pall on
the Lilienthal table that has persisted to the present time. However, in
Reference 58 this author shows that the Lilienthal data are reasonably
valid, and that the Wrights misinterpreted the data in the Lilienthal table in
three respects (see pages 209–216 of Reference 58). One of these respects
was the difference in aspect ratio. The Wrights’ 1900 glider had
rectangular wings with an aspect ratio of 3.5, whereas the data in the
Lilienthal table were taken with a wing with an ogival planform tapering
to a point at the tip and with an aspect ratio of 6.48. The Wrights seemed
not to appreciate the aerodynamic importance of aspect ratio at the time,
and even if they had, there was no existing theory that would have allowed
them to correct the Lilienthal data for their design. (Prandtl’s lifting line
theory appeared 18 years later.) Given just the difference in aspect ratio
between the Wrights’ glider and the test model used by Lilienthal, what
value of lift coefficient should the Wrights have used instead of the value
of 0.546 they took straight from the table? (Note: There are two other
misinterpretations by the Wrights that resulted in their calculation of lift
being too high; see Reference 58 for details.)



498 PART 2 Inviscid, Incompressible Flow

5.9 Consider the Supermarine Spitfire shown in Figure 5.19. The first version
of the Spitfire was the Mk I, which first flew in 1936. Its maximum
velocity is 362 mi/h at an altitude of 18,500 ft. Its weight is 5820 lb, wing
area is 242 ft2, and wing span is 36.1 ft. It is powered by a supercharged
Merlin engine, which produced 1050 horsepower at 18,500 ft. (a) Cal-
culate the induced drag coefficient of the Spitfire at the flight condition of
Vmax at 18,500 ft. (b) What percentage of the total drag coefficient is the
induced drag coefficient? Note: To calculate the total drag, we note that in
steady, level flight of the airplane, T = D, where T is the thrust from the
propeller. In turn, the thrust is related to the power by the basic mechanical
relation T V∞ = P , where P is the power supplied by the propeller-engine
combination. Because of aerodynamic losses experienced by the propeller,
P is less than the shaft power provided by the engine by a ratio, η, defined
as the propeller efficiency. That is, if HP is the shaft horsepower provided
by the engine, and since 550 ft · lb/s equals 1 horsepower, then the power
provided by the engine-propeller combination in foot-pounds per second
is P = 550ηHP. See Chapter 6 of Reference 2 for more details. For this
problem, assume the propeller efficiency for the Spitfire is 0.9.

5.10 If the elliptical wing of the Spitfire in Problem 5.9 were replaced by a
tapered wing with a taper ratio of 0.4, everything else remaining the same,
calculate the induced drag coefficient. Compare this value with that
obtained in Problem 5.9. What can you conclude about the relative effect
of planform shape change on the drag of the airplane at high speeds?

5.11 Consider the Spitfire in Problem 5.9 on its landing approach at sea level
with a landing velocity of 70 mi/h. Calculate the induced drag coefficient
for this low-speed case. Compare your result with the high-speed case in
Problem 5.9. From this, what can you conclude about the relative
importance of the induced drag coefficient at low speeds compared to that
at high speeds?



C H A P T E R 6
Three-Dimensional
Incompressible Flow

Treat nature in terms of the cylinder, the sphere, the cone, all in perspective.
Paul Cézanne, 1890

PREVIEW BOX

We go three-dimensional in this chapter. For such a
huge and complex subject, this chapter is mercifully
short. It has only three objectives. This first is to see
what happens when the circular cylinder studied in
Chapter 3 morphs into a sphere—how do we mod-
ify the theory to account for the three-dimensional
flow over a sphere, and how are the results changed
from those for a circular cylinder? The second is to

demonstrate a general phenomenon in aerodynamics
known as the three-dimensional relieving effect. The
third is to briefly examine the aerodynamic flow over a
complete three-dimensional flight vehicle. Achieving
these objectives is important; they will further open
your mind to the wonders of aerodynamics. Read on,
and enjoy.

6.1 INTRODUCTION
To this point in our aerodynamic discussions, we have been working mainly in
a two-dimensional world; the flows over the bodies treated in Chapter 3 and the
airfoils in Chapter 4 involved only two dimensions in a single plane—so-called
planar flows. In Chapter 5, the analyses of a finite wing were carried out in the
plane of the wing, in spite of the fact that the detailed flow over a finite wing is truly
three-dimensional. The relative simplicity of dealing with two dimensions (i.e.,
having only two independent variables) is self-evident and is the reason why a
large bulk of aerodynamic theory deals with two-dimensional flows. Fortunately,
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the two-dimensional analyses go a long way toward understanding many practical
flows, but they also have distinct limitations.

The real world of aerodynamic applications is three-dimensional. However,
because of the addition of one more independent variable, the analyses generally
become more complex. The accurate calculation of three-dimensional flow fields
has been, and still is, one of the most active areas of aerodynamic research.

The purpose of this book is to present the fundamentals of aerodynamics.
Therefore, it is important to recognize the predominance of three-dimensional
flows, although it is beyond our scope to go into detail. Therefore, the purpose of
this chapter is to introduce some very basic considerations of three-dimensional
incompressible flow. This chapter is short; we do not even need a road map to
guide us through it. Its function is simply to open the door to the analysis of
three-dimensional flow.

The governing fluid flow equations have already been developed in three
dimensions in Chapters 2 and 3. In particular, if the flow is irrotational, Equa-
tion (2.154) states that

V = ∇φ (2.154)

where, if the flow is also incompressible, the velocity potential is given by
Laplace’s equation:

∇2φ = 0 (3.40)

Solutions of Equation (3.40) for flow over a body must satisfy the flow-tangency
boundary condition on the body, that is,

V · n = 0 (3.48a)

where n is a unit vector normal to the body surface. In all of the above equations,
φ is, in general, a function of three-dimensional space; for example, in spherical
coordinates φ = φ(r, θ, �). Let us use these equations to treat some elementary
three-dimensional incompressible flows.

6.2 THREE-DIMENSIONAL SOURCE
Return to Laplace’s equation written in spherical coordinates, as given by Equa-
tion (3.43). Consider the velocity potential given by

φ = −C

r
(6.1)

where C is a constant and r is the radial coordinate from the origin. Equation (6.1)
satisfies Equation (3.43), and hence it describes a physically possible incom-
pressible, irrotational three-dimensional flow. Combining Equation (6.1) with the
definition of the gradient in spherical coordinates, Equation (2.18), we obtain

V = ∇φ = C

r 2
er (6.2)
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Figure 6.1 Three-dimensional (point) source.

In terms of the velocity components, we have

Vr = C

r 2
(6.3a)

Vθ = 0 (6.3b)

V� = 0 (6.3c)

Clearly, Equation (6.2), or Equations (6.3a to c), describes a flow with straight
streamlines emanating from the origin, as sketched in Figure 6.1. Moreover, from
Equation (6.2) or (6.3a), the velocity varies inversely as the square of the distance
from the origin. Such a flow is defined as a three-dimensional source. Sometimes
it is called simply a point source, in contrast to the two-dimensional line source
discussed in Section 3.10.

To evaluate the constant C in Equation (6.3a), consider a sphere of radius r
and surface S centered at the origin. From Equation (2.46), the mass flow across
the surface of this sphere is

Mass flow = .......................................................................
.........

∫∫
S

ρV · dS

Hence, the volume flow, denoted by λ, is

λ = .......................................................................
.........

∫∫
S

V · dS (6.4)

On the surface of the sphere, the velocity is a constant value equal to Vr = C/r 2

and is normal to the surface. Hence, Equation (6.4) becomes

λ = C

r 2
4πr 2 = 4πC

Hence, C = λ

4π
(6.5)
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Substituting Equation (6.5) into (6.3a), we find

Vr = λ

4πr 2
(6.6)

Compare Equation (6.6) with its counterpart for a two-dimensional source given
by Equation (3.62). Note that the three-dimensional effect is to cause an inverse
r-squared variation and that the quantity 4π appears rather than 2π . Also, sub-
stituting Equation (6.5) into (6.1), we obtain, for a point source,

φ = − λ

4πr
(6.7)

In the above equations, λ is defined as the strength of the source. When λ is
a negative quantity, we have a point sink.

6.3 THREE-DIMENSIONAL DOUBLET
Consider a sink and source of equal but opposite strength located at points O
and A, as sketched in Figure 6.2. The distance between the source and sink is l.
Consider an arbitrary point P located a distance r from the sink and a distance r1

from the source. From Equation (6.7), the velocity potential at P is

φ = − λ

4π

(
1

r1
− 1

r

)

or φ = − λ

4π

r − r1

rr1
(6.8)

Let the source approach the sink as their strengths become infinite; that is, let

l → 0 as λ → ∞

Figure 6.2 Source-sink pair. In the
limit as l → 0, a three-dimensional
doublet is obtained.
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In the limit, as l → 0, r − r1 → O B = l cos θ , and rr1 → r 2. Thus, in the limit,
Equation (6.8) becomes

φ = − lim
l→0

λ→∞

λ

4π

r − r1

rr1
= − λ

4π

l cos θ

r 2

or φ = − μ

4π

cos θ

r 2
(6.9)

where μ = �l. The flow field produced by Equation (6.9) is a three-dimensional
doublet; μ is defined as the strength of the doublet. Compare Equation (6.9) with
its two-dimensional counterpart given in Equation (3.88). Note that the three-
dimensional effects lead to an inverse r -squared variation and introduce a factor
4π , versus 2π for the two-dimensional case.

From Equations (2.18) and (6.9), we find

V = ∇φ = μ

2π

cos θ

r 3
er + μ

4π

sin θ

r 3
eθ + 0e� (6.10)

The streamlines of this velocity field are sketched in Figure 6.3. Shown are the
streamlines in the zr plane; they are the same in all the zr planes (i.e., for all values
of �). Hence, the flow induced by the three-dimensional doublet is a series of
stream surfaces generated by revolving the streamlines in Figure 6.3 about the
z axis. Compare these streamlines with the two-dimensional case illustrated in
Figure 3.18; they are qualitatively similar but quantitatively different.

Figure 6.3 Sketch of the streamlines in the zr plane
(� = constant plane) for a three-dimensional doublet.
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Note that the flow in Figure 6.3 is independent of �; indeed, Equation (6.10)
clearly shows that the velocity field depends only on r and θ . Such a flow is defined
as axisymmetric flow. Once again, we have a flow with two independent variables.
For this reason, axisymmetric flow is sometimes labeled “two-dimensional” flow.
However, it is quite different from the two-dimensional planar flows discussed
earlier. In reality, axisymmetric flow is a degenerate three-dimensional flow, and
it is somewhat misleading to refer to it as “two-dimensional.” Mathematically,
it has only two independent variables, but it exhibits some of the same physical
characteristics as general three-dimensional flows, such as the three-dimensional
relieving effect to be discussed later.

6.4 FLOW OVER A SPHERE
Consider again the flow induced by the three-dimensional doublet illustrated in
Figure 6.3. Superimpose on this flow a uniform velocity field of magnitude V∞ in
the negative z direction. Since we are more comfortable visualizing a freestream
that moves horizontally, say, from left to right, let us flip the coordinate system
in Figure 6.3 on its side. The picture shown in Figure 6.4 results.

Examining Figure 6.4, the spherical coordinates of the freestream are

Vr = −V∞ cos θ (6.11a)

Vθ = V∞ sin θ (6.11b)

V� = 0 (6.11c)

Adding Vr , Vθ , and V� for the free stream, Equations (6.11a to c), to the repre-
sentative components for the doublet given in Equation (6.10), we obtain, for the

Figure 6.4 The superposition of a uniform
flow and a three-dimensional doublet.
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combined flow,

Vr = −V∞ cos θ + μ

2π

cos θ

r 3
= −

(
V∞ − μ

2πr 3

)
cos θ (6.12)

Vθ = V∞ sin θ + μ

4π

sin θ

r 3
=

(
V∞ + μ

4πr 3

)
sin θ (6.13)

V� = 0 (6.14)

To find the stagnation points in the flow, set Vr = Vθ = 0 in Equations (6.12)
and (6.13). From Equation (6.13), Vθ = 0 gives sin θ = 0; hence, the stagnation
points are located at θ = 0 and π . From Equation (6.12), with Vr = 0, we obtain

V∞ − μ

2π R3
= 0 (6.15)

where r = R is the radial coordinate of the stagnation points. Solving Equa-
tion (6.15) for R, we obtain

R =
(

μ

2πV∞

)1/3

(6.16)

Hence, there are two stagnation points, both on the z axis, with (r, θ) coordinates[(
μ

2πV∞

)1/3

, 0

]
and

[(
μ

2πV∞

)1/3

, π

]

Insert the value of r = R from Equation (6.16) into the expression for Vr

given by Equation (6.12). We obtain

Vr = −
(

V∞ − μ

2π R3

)
cos θ = −

[
V∞ − μ

2π

(
2πV∞

μ

)]
cos θ

= −(V∞ − V∞) cos θ = 0

Thus, Vr = 0 when r = R for all values of θ and �. This is precisely the
flow-tangency condition for flow over a sphere of radius R. Hence, the velocity
field given by Equations (6.12) to (6.14) is the incompressible flow over a sphere
of radius R. This flow is shown in Figure 6.5; it is qualitatively similar to the
flow over the cylinder shown in Figure 3.19, but quantitatively the two flows are
different.

Figure 6.5 Schematic of the incompressible flow
over a sphere.
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On the surface of the sphere, where r = R, the tangential velocity is obtained
from Equation (6.13) as follows:

Vθ =
(

V∞ + μ

4π R3

)
sin θ (6.17)

From Equation (6.16),

μ = 2π R3V∞ (6.18)

Substituting Equation (6.18) into (6.17), we have

Vθ =
(

V∞ + 1

4π

2π R3V∞
R3

)
sin θ

or Vθ = 3
2 V∞ sin θ (6.19)

The maximum velocity occurs at the top and bottom points of the sphere, and
its magnitude is 3

2 V∞. Compare these results with the two-dimensional circular
cylinder case given by Equation (3.100). For the two-dimensional flow, the max-
imum velocity is 2V∞. Hence, for the same V∞, the maximum surface velocity
on a sphere is less than that for a cylinder. The flow over a sphere is somewhat
“relieved” in comparison with the flow over a cylinder. The flow over a sphere
has an extra dimension in which to move out of the way of the solid body; the
flow can move sideways as well as up and down. In contrast, the flow over a
cylinder is more constrained; it can only move up and down. Hence, the maxi-
mum velocity on a sphere is less than that on a cylinder. This is an example of the
three-dimensional relieving effect, which is a general phenomenon for all types
of three-dimensional flows.

The pressure distribution on the surface of the sphere is given by Equa-
tions (3.38) and (6.19) as follows:

Cp = 1 −
(

V

V∞

)2

= 1 −
(

3

2
sin θ

)2

or Cp = 1 − 9
4 sin2 θ (6.20)

Compare Equation (6.20) with the analogous result for a circular cylinder given by
Equation (3.101). Note that the absolute magnitude of the pressure coefficient on a
sphere is less than that for a cylinder—again, an example of the three-dimensional
relieving effect. The pressure distributions over a sphere and a cylinder are com-
pared in Figure 6.6, which dramatically illustrates the three-dimensional relieving
effect.

6.4.1 Comment on the Three-Dimensional Relieving Effect

There is a good physical reason for the three-dimensional relieving effect. First,
visualize the two-dimensional flow over a circular cylinder. In order to move out
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Figure 6.6 The pressure distribution over the surface of a sphere
and a cylinder. Illustration of the three-dimensional relieving
effect.

of the way of the cylinder, the flow has only two ways to go: riding up-and-over
and down-and-under the cylinder. In contrast, visualize the three-dimensional
flow over a sphere. In addition to moving up-and-over and down-and-under the
sphere, the flow can now move sideways, to the left and right over the sphere.
This sidewise movement relieves the previous constraint on the flow; the flow
does not have to speed up so much to get out of the way of the sphere, and
therefore the pressure in the flow does not have to change so much. The flow
is “less stressed”; it moves around the sphere in a more relaxed fashion—it is
“relieved,” and consequently the changes in velocity and pressure are smaller.

6.5 GENERAL THREE-DIMENSIONAL FLOWS:
PANEL TECHNIQUES

In modern aerodynamic applications, three-dimensional, inviscid, incompressible
flows are almost always calculated by means of numerical panel techniques. The
philosophy of the two-dimensional panel methods discussed in previous chapters
is readily extended to three dimensions. The details are beyond the scope of this
book—indeed, there are dozens of different variations, and the resulting computer
programs are frequently long and sophisticated. However, the general idea behind
all such panel programs is to cover the three-dimensional body with panels over
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z

y

x
V∞

n

Figure 6.7 Schematic of three-dimensional source panels
distributed over a general nonlifting body.

which there is an unknown distribution of singularities (such as point sources,
doublets, or vortices). Such paneling is illustrated in Figure 6.7. These unknowns
are solved through a system of simultaneous linear algebraic equations generated
by calculating the induced velocity at control points on the panels and applying the
flow-tangency condition. For a nonlifting body such as illustrated in Figure 6.7, a
distribution of source panels is sufficient. However, for a lifting body, both source
and vortex panels (or their equivalent) are necessary. A striking example of the
extent to which panel methods are now used for three-dimensional lifting bodies
is shown in Figure 6.8, which illustrates the paneling used for calculations made
by the Boeing Company of the potential flow over a Boeing 747–space shuttle
piggyback combination. Such applications are very impressive; moreover, they
have become an industry standard and are today used routinely as part of the
airplane design process by the major aircraft companies.

Examining Figures 6.7 and 6.8, one aspect stands out, namely, the geomet-
ric complexity of distributing panels over the three-dimensional bodies. How do
you get the computer to “see” the precise shape of the body? How do you dis-
tribute the panels over the body; that is, do you put more at the wing leading
edges and less on the fuselage, etc.? How many panels do you use? These are all
nontrivial questions. It is not unusual for an aerodynamicist to spend weeks or
even a few months determining the best geometric distribution of panels over a
complex body.

We end this section on the following note. From the time they were in-
troduced in the 1960s, panel techniques have revolutionized the calculation of
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Figure 6.8 Panel distribution for the analysis of the Boeing 747 carrying the space shuttle
orbiter.

three-dimensional potential flows. However, no matter how complex the applica-
tion of these methods may be, the techniques are still based on the fundamentals
we have discussed in this and all the preceding chapters. You are encouraged to
pursue these matters further by reading the literature, particularly as it appears in
such journals as the Journal of Aircraft and the AIAA Journal.

6.6 APPLIED AERODYNAMICS: THE FLOW OVER
A SPHERE—THE REAL CASE

The present section is a complement to Section 3.18, in which the real flow
over a circular cylinder was discussed. Since the present chapter deals with three-
dimensional flows, it is fitting at this stage to discuss the three-dimensional analog
of the circular cylinder, namely, the sphere. The qualitative features of the real flow
over a sphere are similar to those discussed for a cylinder in Section 3.18—the
phenomenon of flow separation, the variation of drag coefficient with a Reynolds
number, the precipitous drop in drag coefficient when the flow transits from
laminar to turbulent ahead of the separation point at the critical Reynolds number,
and the general structure of the wake. These items are similar for both cases.
However, because of the three-dimensional relieving effect, the flow over a sphere
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Figure 6.9 Laminar flow case: Instantaneous flow past a sphere in water. Re = 15,000. Flow
is made visible by dye in the water. (© ONERA The French Aerospace Lab).

is quantitatively different from that for a cylinder. These differences are the subject
of the present section.

The laminar flow over a sphere is shown in Figure 6.9. Here, the Reynolds
number is 15,000, certainly low enough to maintain laminar flow over the spherical
surface. However, in response to the adverse pressure gradient on the back surface
of the sphere predicted by inviscid, incompressible flow theory (see Section 6.4
and Figure 6.6), the laminar flow readily separates from the surface. Indeed,
in Figure 6.9, separation is clearly seen on the forward surface, slightly ahead
of the vertical equator of the sphere. Thus, a large, fat wake trails downstream
of the sphere, with a consequent large pressure drag on the body (analogous
to that discussed in Section 3.18 for a cylinder.) In contrast, the turbulent flow
case is shown in Figure 6.10. Here, the Reynolds number is 30,000, still a low
number normally conducive to laminar flow. However, in this case, turbulent
flow is induced artificially by the presence of a wire loop in a vertical plane on
the forward face. (Trip wires are frequently used in experimental aerodynamics
to induce transition to turbulent flow; this is in order to study such turbulent
flows under conditions where they would not naturally exist.) Because the flow is
turbulent, separation takes place much farther over the back surface, resulting in
a thinner wake, as can be seen by comparing Figures 6.9 and 6.10. Consequently,
the pressure drag is less for the turbulent case.

The variation of drag coefficient CD with the Reynolds number for a sphere is
shown in Figure 6.11. Compare this figure with Figure 3.44 for a circular cylinder;
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Figure 6.10 Turbulent flow case: Instantaneous flow past a sphere in water. Re = 30,000.
The turbulent flow is forced by a trip wire hoop ahead of the equator, causing the laminar flow
to become turbulent suddenly. The flow is made visible by air bubbles in water. (© ONERA
The French Aerospace Lab).

Figure 6.11 Variation of drag coefficient with Reynolds number for a sphere (Data
taken from Schlichting, H.: Boundary Layer Theory, 7th ed., McGraw-Hill Book
Company, New York, 1979).
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the CD variations are qualitatively similar, both with a precipitous decrease in CD

near a critical Reynolds number of 300,000, coinciding with natural transition
from laminar to turbulent flow. However, quantitatively the two curves are quite
different. In the Reynolds number range most appropriate to practical problems,
that is, for Re > 1000, the values of CD for the sphere are considerably smaller
than those for a cylinder—a classic example of the three-dimensional relieving
effect. Reflecting on Figure 3.44 for the cylinder, note that the value of CD for
Re slightly less than the critical value is about 1 and drops to 0.3 for Re slightly
above the critical value. In contrast, for the sphere as shown in Figure 6.11, CD

is about 0.4 in the Reynolds number range below the critical value and drops to
about 0.1 for Reynolds numbers above the critical value. These variations in CD

for both the cylinder and sphere are classic results in aerodynamics; you should
keep the actual CD values in mind for future reference and comparisons.

As a final point in regard to both Figures 3.44 and 6.11, the value of the critical
Reynolds number at which transition to turbulent flow takes place upstream of
the separation point is not a fixed, universal number. Quite the contrary, transition
is influenced by many factors, as will be discussed in Part 4. Among these is the
amount of turbulence in the freestream; the higher the freestream turbulence, the
more readily transition takes place. In turn, the higher the freestream turbulence,
the lower is the value of the critical Reynolds number. Because of this trend,
calibrated spheres are used in wind-tunnel testing actually to assess the degree
of freestream turbulence in the test section, simply by measuring the value of the
critical Reynolds number on the sphere.

6.7 APPLIED AERODYNAMICS: AIRPLANE LIFT
AND DRAG

A three-dimensional object of primary interest to aerospace engineers is a whole
airplane such as shown in Figure 6.8, not just the finite wing discussed in Chapter 5.
In this section we expand our horizons to consider lift and drag of a complete
airplane configuration.

We emphasized in Section 1.5 that the aerodynamic force on any body moving
through the air is due only to two basic sources, the pressure and shear stress
distributions exerted over the body surface. Lift is primarily created by the pressure
distribution; shear stress has only a minor effect on lift. We have used this fact,
beginning in Chapter 3 through to the present chapter, where the assumption of
inviscid flow has given us reasonable predictions of the lift on cylinders with
circulation, airfoils, and finite wings. Drag, on the other hand, is created by both
the pressure and shear stress distributions, and analyses based on just inviscid
flow are not sufficient for the prediction of drag.

6.7.1 Airplane Lift

We normally think of wings as the primary component producing the lift of an
airplane in flight, and quite rightly so. However, even a pencil at an angle of
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attack will generate lift, albeit small. Hence, lift is produced by the fuselage
of an airplane as well as the wing. The mating of a wing with a fuselage is
called a wing-body combination. The lift of a wing-body combination is not
obtained by simply adding the lift of the wing alone to the lift of the body alone.
Rather, as soon as the wing and body are mated, the flow field over the body
modifies the flow field over the wing, and vice versa—this is called the wing-body
interaction.

There is no accurate analytical equation that can predict the lift of a wing-
body combination, properly taking into account the nature of the wing-body
aerodynamic interaction. Either the configuration must be tested in a wind tunnel,
or a computational fluid dynamic calculation must be made. We cannot even say
in advance whether the combined lift will be greater or smaller than the sum of the
two parts. For subsonic speeds, however, data obtained using different fuselage
thicknesses, d, mounted on wings with different spans, b, show that the total lift
for a wing-body combination is essentially constant for d/b ranging from 0 (wing
only) to 6 (which would be an inordinately fat fuselage, with a short, stubby wing).
Hence, the lift of the wing-body combination can be treated as simply the lift on
the complete wing by itself, including that portion of the wing that is masked by
the fuselage. This is illustrated in Figure 6.12. See Chapter 2 of Reference 65 for
more details.

Of course, other components of the airplane such as a horizontal tail, canard
surfaces, and wing strakes can contribute to the lift, either in a positive or negative
sense. Once again we emphasize that reasonably accurate predictions of lift on a
complete airplane can come only from wind tunnel tests, detailed computational
fluid dynamic calculations (such as the panel calculations illustrated by Fig-
ure 6.8), and, of course, from actual flight tests of the airplane.

Lift on wing-body
combination

(a) (b)

About the same as the lift on the
wing of planform area S, which
includes that part of the wing
masked by the fuselage

Figure 6.12 Lift on a wing-body combination.
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6.7.2 Airplane Drag

When you watch an airplane flying overhead, or when you ride in an airplane, it is
almost intuitive that your first aerodynamic thought is about lift. You are witness-
ing a machine that, in straight and level flight, is producing enough aerodynamic
lift to equal the weight of the machine. This keeps it in the air—a vital concern.
But this is only part of the role of airplane aerodynamics. It is equally important
to produce this lift as efficiently as possible, that is, with as little drag as possible.
The ratio of lift to drag, L/D, is a good measure of aerodynamic efficiency. A
barn door will produce lift at angle of attack, but it also produces a lot of drag at
the same time—the L/D for a barn door is terrible. For such reasons, minimizing
drag has been one of the strongest drivers in the historical development of applied
aerodynamics. And to minimize drag, we first have to provide methods for its
estimation.

As in the case of lift, the drag of an airplane cannot be obtained as the simple
sum of the drag on each component. For example, for a wing-body combination,
the drag is usually higher than the sum of the separate drag forces on the wing
and the body, giving rise to an extra drag component called interference drag.
For a more detailed discussion of airplane drag prediction, see Reference 65. The
subject of drag prediction is so complex that whole books have been written about
it; one classic is the book by Hoerner, Reference 112.

In this section we will limit our discussion to the simple extension of Equation
(5.63) for application to the whole airplane. Equation (5.63), copied below, applies
to a finite wing.

CD = cd + C2
L

πeAR
(5.63)

In Equation (5.63), CD is the total drag coefficient for a finite wing, cd is the
profile drag coefficient caused by skin friction and pressure drag due to flow
separation, and C2

L/πeAR is the induced drag coefficient with the span efficiency
factor e defined by Equation (5.62). For the whole airplane, Equation (5.63) is
rewritten as

CD = CD,e + C2
L

πeAR
(6.21)

where CD is the total drag coefficient for the airplane and CD,e is defined as the
parasite drag coefficient, which contains not only the profile drag of the wing
[cd in Equation (5.63)] but also the friction and pressure drag of the tail surfaces,
fuselage, engine nacelles, landing gear, and any other component of the airplane
that is exposed to the airflow. Because of changes in the flow field around the
airplane—especially changes in the amount of separated flow over parts of the
airplane—as the angle of attack is varied, CD,e will change with angle of attack.
Because the lift coefficient, CL , is a specific function of angle of attack, we
can consider that CD,e is a function of CL . A reasonable approximation for this
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function is

CD,e = CD,o + rC2
L (6.22)

where r is an empirically determined constant. Since at zero lift, CL = 0, then
Equation (6.22) defines CD,o as the parasite drag coefficient at zero lift, or more
commonly, the zero-lift drag coefficient. With Equation (6.22), we can write
Equation (6.21) as

CD = CD,o +
(

r + 1

πeAR

)
C2

L (6.23)

In Equations (6.21) and (6.23), e is the familiar span efficiency factor, which
takes into account the nonelliptical lift distribution on wings of general shape
(see Section 5.3.2). Let us now redefine e so that it also includes the effect of the
variation of parasite drag with lift; that is, let us write Equation (6.23) in the form

CD = CD,o + C2
L

πeAR
(6.24)

where CD,o is the parasite drag coefficient at zero lift (or simply the zero-lift drag
coefficient for the airplane) and the term C2

L/(πeAR) is the drag coefficient due
to lift including both induced drag and the contribution to parasite drag due to lift.

In Equation (6.24), the redefined e is called the Oswald efficiency factor
(named after W. Bailey Oswald, who first established this terminology in NACA
Report No. 408 in 1932). The use of the symbol e for the Oswald efficiency factor
has become standard in the literature, and that is why we continue this standard
here. To avoid confusion, keep in mind that e introduced for a finite wing in
Section 5.3.2 and used in Equation (6.21) is the span efficiency factor for a finite
wing, and the e used in Equation (6.24) is the Oswald efficiency factor for a
complete airplane. These are two different numbers; the Oswald efficiency factor
for different airplanes typically varies between 0.7 and 0.85 whereas the span
efficiency factor typically varies between 0.9 and at most 1.0 and is a function of
wing aspect ratio and taper ratio as demonstrated in Figure 5.20. Daniel Raymer in
Reference 113 gives the following empirical expression for the Oswald efficiency
factor for straight-wing aircraft, based on data obtained from actual airplanes:

e = 1.78
(
1 − 0.045 AR0.68) − 0.64 (6.25)

Raymer notes that Equation (6.25) should be used for conventional aspect ratios
for normal airplanes, and not for the very large aspect ratios (on the order of 25
or higher) associated with sailplanes.

Equation (6.24) conveys all the information you need to calculate the drag of
a complete airplane, but to use it you have to know the zero-lift drag coefficient
and the Oswald efficiency factor. Equation (6.24) is called the drag polar for
the airplane, representing the variation of CD with CL . It is the cornerstone for
conceptual airplane design and for predictions of the performance of a given
aircraft (see Reference 65 for more details).
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EXAMPLE 6.1

Return again to the photograph of the Seversky P-35 shown in Figure 3.2. This airplane
has a wing planform area of 220 ft2 and a wingspan of 36 ft. Also, examine again the drag
breakdown for the Seversky XP-41 given in Figure 1.58. In Example 1.12 we assumed
that the drag breakdown for the XP-41, being an airplane very similar to the P-35, applied
to the P-35 as well. We do the same here. Using the data given in Figure 1.58, calculate
the zero-lift drag coefficient for the P-35.

■ Solution
For the drag breakdown shown in Figure 1.58, condition 18 is that for the complete airplane
configuration. For condition 18, the total drag coefficient is given as CD = 0.0275 when
the aircraft is at the particular angle of attack where CL = 0.15. That is, we know
simultaneous values of CD and CL that can be used in Equation (6.24). In that equation,

AR = b2

s
= (36)2

220
= 5.89

and the Oswald efficiency factor from Equation (6.25) is

e = 1.78 (1 − 0.045AR0.68) − 0.64

= 1.78 [1 − 0.045(5.89)0.68] − 0.64

= 1.78 [1 − 0.045(3.339)] − 0.64

= 0.873

Thus, Equation (6.24) gives for the zero-lift drag coefficient

CD,o = CD − C2
L

πe AR

= 0.0275 − (0.15)2

π(0.873)(5.89)

or,

CD,o = 0.026

The late Larry Loftin, in his excellent book Quest for Performance: The Evolution of
Modern Aircraft (Reference 45), tabulated the zero-lift drag coefficient extracted from
flight performance data for a large number of historic airplanes from the twentieth century.
His tabulated value for the Seversky P-35 is CD,o = 0.0251. Note that the value of
CD,o = 0.026 calculated in this example agrees within 3.6 percent.

Airplane Lift-to-Drag Ratio The dimensional analysis discussed in Sec-
tion 1.7 proves that CL , CD , and hence the lift-to-drag ratio CL/CD , at a given
Mach number and Reynolds number depend only on the shape of the body and
the angle of attack. This is reinforced by the sketches shown in Figure 6.13. For a
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Figure 6.13 Typical variations of lift and
drag coefficients and lift-to-drag ratio for a
generic small propeller-driven general
aviation airplane (based on calculations from
Chapter 6 of Anderson, John D., Jr.:
Introduction to Flight, 6th ed., McGraw-Hill
Book Company, Boston, 2008).

given airplane shape, Figure 6.13a gives the variation of CL with the airplane angle
of attack, α; Figure 6.13b gives the variation of CD with α; and Figure 6.13c gives
the lift-to-drag ratio CL /CD as a function of α. These are aerodynamic properties
associated with a given airplane. Within reasonable Mach number and Reynolds
number ranges, we can simply talk about the lift coefficient, drag coefficient,
and lift-to-drag ratio as specific values at any specific angle of attack. Indeed, in
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Example 6.1 we calculated the zero-lift drag coefficient for the Seversky P-35.
We know that, strictly speaking, CD,o will depend on Mach number and Reynolds
number, but for the normal flight regime of the low-speed subsonic aircraft ger-
mane to our present discussion, the variation of the airplane aerodynamic coeffi-
cients with Mach number and Reynolds number is considered small. Hence, for
example, we can meaningfully talk about the CD,o for the airplane.

Examining Figure 6.13c, note that CL /CD first increases as α increases,
reaches a maximum value at a certain value of α, and then subsequently decreases
as α increases further. The maximum lift-to-drag ratio, (L/D)max = (CL /CD)max,
is a direct measure of the aerodynamic efficiency of the airplane, and therefore its
value is of great importance in airplane design and in the prediction of airplane
performance (see, for example, References 2 and 65). Since (L/D)max is an aero-
dynamic property of the airplane, we should be able to calculate its value from
other known aerodynamic properties. Let us see:

CL

CD
= CL

CD,o + C2
L/(πeAR)

(6.26)

For maximum CL /CD , differentiate Equation (6.26) with respect to CL and set
the result equal to 0:

d(CL/CD)

dCL
=

CD,o + C2
L

πeAR
− CL[2CL/(πeAR)]

[CD,o + C2
L/(πeAR)]2

= 0

Thus,

CD,o + C2
L

πeAR
− 2C2

L

πeAR
= 0

or

CD,o = C2
L

πeAR
(6.27)

Equation (6.27) is an interesting intermediate result. It states that when the airplane
is flying at the specific angle of attack where the lift-to-drag ratio is maximum,
the zero-lift drag and the drag due to lift are precisely equal. Solving Equation
(6.27) for CL , we have

CL = √
πeAR CD,o (6.28)

Equation (6.28) gives the value of CL when the airplane is flying at (L/D)max.
Return to Equation (6.25), which gives CL /CD as a function of CL . By substituting
the value of CL from Equation (6.28), which pertains just to the maximum value
of L/D, into Equation (6.25), we obtain for the maximum lift-to-drag ratio(

CL

CD

)
max

= (πeAR CD,o)
1/2

CD,o + πeARCD,o

πeAR
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or, (
CL

CD

)
max

= (πeAR CD,o)
1/2

2CD,o
(6.29)

Equation (6.29) is powerful. It tells us that the maximum value of lift-to-drag
ratio for a given airplane depends only on the zero-lift drag coefficient CD,o, the
Oswald efficiency factor e, and the wing aspect ratio. So our earlier supposition
that (L/D)max, being an aerodynamic property of the given airplane, should depend
only on other aerodynamic properties, is correct, the other aerodynamic properties
being simply CD,o and e.

EXAMPLE 6.2

Using the information obtained in Example 6.1, calculate the maximum lift-to-drag ratio
for the Seversky P-35.

■ Solution
From Example 6.1, we have

CD,o = 0.026

e = 0.873

AR = 5.89

From Equation (6.29), we have(
CL

CD

)
max

= (πeAR CD,o)
1/2

2CD,o

= [π(0.873)(5.89)(0.026)]1/2

2(0.026)(
CL

CD

)
max

= 12.46

The value for (L/D)max for the P-35 as tabulated by Loftin in Reference 45 is (L/D)max =
11.8, which is within 5 percent of the value calculated here.

6.7.3 Application of Computational Fluid Dynamics for the Calculation
of Lift and Drag

The role of computational fluid dynamics (CFD) for the numerical solution of
the continuity, momentum, and energy equations is discussed in Section 2.17.2.
Numerical solutions of the purely inviscid flow equations are labeled “Euler
solutions”; the CFD results discussed in Chapter 13 are examples of such Euler
solutions. Numerical solutions of the general viscous flow equations are labeled
“Navier-Stokes solutions”; examples of such Navier-Stokes solutions are given
in Chapter 20.
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These numerical solutions of the continuity, momentum, and energy equa-
tions give the variation of the flow field properties (p, T , V, etc.) as a function of
space and time throughout the flow. This includes, of course, the pressure at the
body surface. The shear stress at the surface is obtained from Equation (1.59),
repeated below

τw = μ

(
dV

dy

)
y=0

(1.59)

where the velocity gradient at the wall, (dV/dy)y=0, is obtained from the CFD
solution of the flow velocity at gridpoints adjacent to the wall using one-sided
differences (see Section 2.17.2). Finally, by numerically integrating the pressure
and shear stress distributions over the surface, the lift and drag of the airplane can
be obtained (see Section 1.5). This is how CFD results can be used to give lift
and drag on a body.

Some very recent CFD results for the flow field over a complete airplane are
described in seven coordinated papers in the Journal of Aircraft, Vol. 46, No. 2,
March–April 2009. These papers report CFD results obtained by different in-
vestigators using different computer programs and algorithms for the flow field
over the F-16XL cranked-wing configuration shown in Figure 6.14. As part of
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Figure 6.14 Three-view of the F-16XL.
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the Cranked-Arrow Wing Aerodynamics Project (CAWAP) organized by NASA
and administered through the AIAA Applied Aerodynamics Technical Commit-
tee, various investigators were invited to make CFD flow field calculations over
the F-16XL at various flight conditions. The purpose is to compare the results
in order to assess the state of the art of CFD calculations of flow fields around
complete airplane configurations, particularly with the airplane at relatively high
angle of attack with large regions of separated flow. A summary of the compar-
isons and conclusions is given in Reference 114. Although the main thrust of this
project was to evaluate and compare calculations of detailed flow field structure
and surface pressure distributions, some comparisons of lift and drag coefficients
were made. A representative comparison is given in Table 6.1, where CL and CD

obtained from seven different investigations are tabulated. The results apply to
the F-16XL flying at M∞ = 0.36, angle of attack α = 11.85◦, sideslip angle =
0.612◦, and Reynolds number = 46.8 × 106. In Table 6.1, the different investi-
gators are simply labeled by number; the actual sources and the particular CFD
codes are identified in Reference 114.

Note that the discrepancy between the lowest and highest number obtained is
26 percent for CL and 42 percent for CD . However, if the results from Investigator
3 are not counted, the discrepancies are 6.7 percent for CL and 21.5 percent for CD .

The three-dimensional flow field associated with the values of CL and CD in
Table 6.1 is complex; it contains primary and secondary vortices much like those
shown for flow over a delta wing in Figure 5.41. The airplane is at both an angle of
attack and angle of sideslip, and the resulting flow field is highly three-dimensional
with embedded vortices and large regions of flow separation. This is a severe test
for any CFD code, and indeed is the reason why this case has been chosen here to
illustrate the use of CFD for the calculation of lift and drag of a complete airplane.
The test cases used in the Cranked-Arrow Wing Aerodynamics Project represent
perhaps the upper limit of complexity, and therefore the discrepancies between
the results of the different CFD codes may represent an upper bound—a kind of
worst-case scenario.

With that caveat in mind, note that the discrepancies in the calculation of CL

are remarkably small, but that the results for CD vary considerably. The accurate
calculation of drag for most practical aerodynamic vehicles has been a challenge

Table 6.1 Tabulation of the calculated values of lift
and drag coefficients for the Cranked-Arrow Wing
Aerodynamics Project by various investigators.

Investigator No. CL CD

1 0.43846 0.13289
2 0.44693 0.13469
3 0.37006 0.11084
4 0.43851 0.15788
5 0.46798 0.13648
6 0.44190 0.16158
7 0.44590 0.14265
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and a problem for centuries, going back to the early nineteenth century flying
machine inventors (see References 2, 58, and 111, for example). Amazingly, in our
modern world of high technology and advanced CFD techniques, accurate drag
prediction remains a problem, although improvements are gradually being made.
Accurate CFD predictions of drag are compromised by at least the following:

1. The calculation of skin friction drag requires the accurate calculation of
shear stress, which requires an accurate calculation of the velocity gradient at
the surface [see for example Equation (1.59)], which requires a very fine, closely
spaced computational grid adjacent to the wall to obtain very accurate values
of the flow velocity at the first several gridpoints above the wall. The velocity
gradient at the surface is then obtained from these velocities by using one-sided
differencing.
2. The boundary layers on any practical-sized vehicle are turbulent, and any
CFD calculation of this flow must include this effect. Turbulence remains one
of the few unsolved problems in classical physics, so its effect must be modeled
in aerodynamic calculations. Most CFD calculations of turbulent flows use the
Reynolds averaged Navier-Stokes equations (RANS), discussed in Part 4 of this
book, and must incorporate some type of turbulence model. There are literally
dozens of different turbulence models in existence, each one depending, in one
way or another, on empirical data. Turbulence models by themselves introduce
a great deal of uncertainty in the calculation of drag. The seven different CFD
calculations noted in Table 6.1 all used different turbulence models.
3. The calculation of locations on a body where the flow separates is also uncer-
tain. For CFD, the calculation of separated flows can only be made with Navier-
Stokes solutions; only in a few (but interesting) instances can a solution of the
Euler equations yield a semblance of flow separation. The nature and location
of flow separation are different for laminar and turbulent flows (see for example
the discussion of the real flow over a sphere in Section 6.6). The uncertainty in
the calculation of separated flows, which is in part related to the uncertainty in
turbulence modeling discussed earlier, is another reason for the discrepancies
in drag coefficient as tabulated in Table 6.1. The high angle of attack flows asso-
ciated with these test cases for the F-16XL have large regions of complex flow
separation.

Considering these uncertainties, the discrepancy in the calculations of CD listed
in Table 6.1, all told, are not bad. Further advances in algorithms and modeling
will inevitably lead to even better results. Furthermore, because CL was accu-
rately calculated and the details of the flow field itself were accurately captured
by the CFD calculations, the investigators participating in the Cranked-Arrow
Wing Aerodynamics Project International (AWAPI) were moved to conclude
(Reference 114):

Although differences were observed in the comparison of results from 10 different
CFD solvers with measurements, these solvers all functioned robustly on an ac-
tual aircraft at flight conditions, with sufficient agreement among them to conclude
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that the overall objectives of the CAWAPI endeavor have been achieved. In partic-
ular, the status of CFD as a tool for understanding flight-test observations has been
confirmed.

This is also an appropriate conclusion to end our discussion of airplane lift and
drag.

6.8 SUMMARY

For a three-dimensional (point) source,

Vr = λ

4πr 2
(6.6)

and φ = − λ

4πr
(6.7)

For a three-dimensional doublet,

φ = − μ

4π

cos θ

r 2
(6.9)

and V = μ

2π

cos θ

r 3
er + μ

4π

sin θ

r 3
eθ (6.10)

The flow over a sphere is generated by superimposing a three-dimensional
doublet and a uniform flow. The resulting surface velocity and pressure distri-
butions are given by

Vθ = 3
2 V∞ sin θ (6.19)

and Cp = 1 − 9
4 sin2 θ (6.20)

In comparison with flow over a cylinder, the surface velocity and magnitude
of the pressure coefficient are smaller for the sphere—an example of the three-
dimensional relieving effect.

In modern aerodynamic applications, inviscid, incompressible flows over com-
plex three-dimensional bodies are usually computed via three-dimensional
panel techniques.
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6.9 PROBLEMS
6.1 Prove that three-dimensional source flow is irrotational.
6.2 Prove that three-dimensional source flow is a physically possible

incompressible flow.
6.3 A sphere and a circular cylinder (with its axis perpendicular to the flow)

are mounted in the same freestream. A pressure tap exists at the top of the
sphere, and this is connected via a tube to one side of a manometer. The
other side of the manometer is connected to a pressure tap on the surface
of the cylinder. This tap is located on the cylindrical surface such that no
deflection of the manometer fluid takes place. Calculate the location of
this tap.



P A R T 3
Inviscid, Compressible Flow

In Part 3, we deal with high-speed flows—subsonic, supersonic, and hyper-
sonic. In such flows, the density is a variable—this is compressible flow.
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C H A P T E R 7
Compressible Flow: Some
Preliminary Aspects

With the realization of aeroplane and missile speeds equal to or even surpassing
many times the speed of sound, thermodynamics has entered the scene and will
never again leave our considerations.

Jakob Ackeret, 1962

PREVIEW BOX

With this chapter we move into the wild and exciting
world of high-speed flow. To jump into this world,
however, we need some preparation. This chapter pre-
pares us to deal with the high-speed subsonic, tran-
sonic, supersonic, and hypersonic flows that are dis-
cussed in subsequent chapters. In the present chapter,
we once again add to our inventory of fundamental
principles and relations—those necessary to under-
stand and predict high-speed flow. View this chapter
as a continuation of Chapter 2 on some fundamen-
tal principles and equations, but a continuation with a
flair laced by high energy (figuratively and literally).

Energy? What do we mean? Consider that you are
in an automobile traveling at 65 miles per hour along
a highway. If you stick your hand out the window (not
recommended by the way, for safety reasons) you
will sense a certain amount of energy in the airflow,
and your hand will be forced back to some extent.

Now imagine that you are traveling at 650 mi/h and
you stick your hand out the window (figuratively).
You can just imagine what tremendous energy you
would sense, and what disaster would happen to your
hand. The point is that high-speed flow is high-energy
flow. The science of energy is thermodynamics. So
this chapter is, for the most part, a discussion of
thermodynamics—but only to the extent necessary
for our subsequent applications in high-speed flow.

High-speed flow is also compressible flow. With
this chapter, we can no longer assume that the density
is constant. Rather, the density is a variable, which in-
troduces some neat physics and analytical challenges
for our study of compressible flow. Indeed, the world
we are entering, beginning with this chapter, is quite
different than the incompressible world we dealt with
in Chapters 3 to 6. This is like a fresh start. So get on
board, and let’s start.
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7.1 INTRODUCTION
On September 30, 1935, the leading aerodynamicists from all corners of the world
converged on Rome, Italy. Some of them arrived in airplanes which, in those days,
lumbered along at speeds of 130 mi/h. Ironically, these people were gathering to
discuss airplane aerodynamics not at 130 mi/h but rather at the unbelievable speeds
of 500 mi/h and faster. By invitation only, such aerodynamic giants as Theodore
von Karman and Eastman Jacobs from the United States, Ludwig Prandtl and
Adolf Busemann from Germany, Jakob Ackeret from Switzerland, G. I. Taylor
from England, Arturo Crocco and Enrico Pistolesi from Italy, and others assem-
bled for the fifth Volta Conference, which had as its topic “High Velocities in
Aviation.” Although the jet engine had not yet been developed, these men were
convinced that the future of aviation was “faster and higher.” At that time, some
aeronautical engineers felt that airplanes would never fly faster than the speed
of sound—the myth of the “sound barrier” was propagating through the ranks
of aviation. However, the people who attended the fifth Volta Conference knew
better. For 6 days, inside an impressive Renaissance building that served as the
city hall during the Holy Roman Empire, these individuals presented papers that
discussed flight at high subsonic, supersonic, and even hypersonic speeds. Among
these presentations was the first public revelation of the concept of a swept wing
for high-speed flight; Adolf Busemann, who originated the concept, discussed the
technical reasons why swept wings would have less drag at high speeds than con-
ventional straight wings. (One year later, the swept-wing concept was classified
by the German Luftwaffe as a military secret. The Germans went on to produce
a large bulk of swept-wing research during World War II, resulting in the design
of the first operational jet airplane—the Me 262—which had a moderate degree of
sweep.) Many of the discussions at the Volta Conference centered on the effects of
“compressibility” at high subsonic speeds, that is, the effects of variable density,
because this was clearly going to be the first problem to be encountered by future
high-speed airplanes. For example, Eastman Jacobs presented wind-tunnel test re-
sults for compressibility effects on standard NACA four- and five-digit airfoils at
high subsonic speeds and noted extraordinarily large increases in drag beyond cer-
tain freestream Mach numbers. In regard to supersonic flows, Ludwig Prandtl pre-
sented a series of photographs showing shock waves inside nozzles and on various
bodies—with some of the photographs dating as far back as 1907, when Prandtl
started serious work in supersonic aerodynamics. (Clearly, Ludwig Prandtl was
busy with much more than just the development of his incompressible airfoil and
finite-wing theory discussed in Chapters 4 and 5.) Jakob Ackeret gave a paper
on the design of supersonic wind tunnels, which, under his direction, were being
established in Italy, Switzerland, and Germany. There were also presentations on
propulsion techniques for high-speed flight, including rockets and ramjets. The
atmosphere surrounding the participants in the Volta Conference was exciting and
heady; the conference launched the world aerodynamic community into the area
of high-speed subsonic and supersonic flight—an area which today is as common-
place as the 130-mi/h flight speeds of 1935. Indeed, the purpose of the next eight
chapters of this book is to present the fundamentals of such high-speed flight.
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In contrast to the low-speed, incompressible flows discussed in Chapters 3
to 6, the pivotal aspect of high-speed flow is that the density is a variable. Such
flows are called compressible flows and are the subject of Chapters 7 to 14. Return
to Figure 1.45, which gives a block diagram categorizing types of aerodynamic
flows. In Chapters 7 to 14, we discuss flows which fall into blocks D and F ; that
is, we will deal with inviscid compressible flow. In the process, we touch all the
flow regimes itemized in blocks G through J . These flow regimes are illustrated
in Figure 1.44; study Figures 1.44 and 1.45 carefully, and review the surrounding
discussion in Section 1.10 before proceeding further.

In addition to variable density, another pivotal aspect of high-speed com-
pressible flow is energy. A high-speed flow is a high-energy flow. For example,
consider the flow of air at standard sea level conditions moving at twice the speed
of sound. The internal energy of 1 kg of this air is 2.07×105 J, whereas the kinetic
energy is larger, namely, 2.31×105 J. When the flow velocity is decreased, some
of this kinetic energy is lost and reappears as an increase in internal energy,
hence increasing the temperature of the gas. Therefore, in a high-speed flow, en-
ergy transformations and temperature changes are important considerations. Such
considerations come under the science of thermodynamics. For this reason, ther-
modynamics is a vital ingredient in the study of compressible flow. One purpose
of the present chapter is to review briefly the particular aspects of thermodynamics
which are essential to our subsequent discussions of compressible flow.

The road map for this chapter is given in Figure 7.1. As our discussion
proceeds, refer to this road map in order to provide an orientation for our ideas.

Figure 7.1 Road map for Chapter 7.
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7.2 A BRIEF REVIEW OF THERMODYNAMICS
The importance of thermodynamics in the analysis and understanding of com-
pressible flow was underscored in Section 7.1. Hence, the purpose of the present
section is to review those aspects of thermodynamics that are important to com-
pressible flows. This is in no way intended to be an exhaustive discussion of
thermodynamics; rather, it is a review of only those fundamental ideas and equa-
tions that will be of direct use in subsequent chapters. If you have studied ther-
modynamics, this review should serve as a ready reminder of some important
relations. If you are not familiar with thermodynamics, this section is somewhat
self-contained so as to give you a feeling for the fundamental ideas and equations
that we use frequently in subsequent chapters.

7.2.1 Perfect Gas

As described in Section 1.2, a gas is a collection of particles (molecules, atoms,
ions, electrons, etc.) which are in more or less random motion. Due to the elec-
tronic structure of these particles, a force field pervades the space around them.
The force field due to one particle reaches out and interacts with neighboring
particles, and vice versa. Hence, these fields are called intermolecular forces.
However, if the particles of the gas are far enough apart, the influence of the inter-
molecular forces is small and can be neglected. A gas in which the intermolecular
forces are neglected is defined as a perfect gas. For a perfect gas, p, ρ, and T are
related through the following equation of state:

p = ρRT (7.1)

where R is the specific gas constant, which is a different value for different gases.
For air at standard conditions, R = 287 J/(kg · K) = 1716 (ft · lb)/(slug · ◦R).

At the temperatures and pressures characteristic of many compressible flow
applications, the gas particles are, on the average, more than 10 molecular diame-
ters apart; this is far enough to justify the assumption of a perfect gas. Therefore,
throughout the remainder of this book, we use the equation of state in the form
of Equation (7.1), or its counterpart,

pv = RT (7.2)

where v is the specific volume, that is, the volume per unit mass; v = 1/ρ.
(Please note: Starting with this chapter, we use the symbol v to denote both
specific volume and the y component of velocity. This usage is standard, and in
all cases it should be obvious and cause no confusion.)

7.2.2 Internal Energy and Enthalpy

Consider an individual molecule of a gas, say, an O2 molecule in air. This molecule
is moving through space in a random fashion, occasionally colliding with a
neighboring molecule. Because of its velocity through space, the molecule has
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translational kinetic energy. In addition, the molecule is made up of individual
atoms which we can visualize as connected to each other along various axes; for
example, we can visualize the O2 molecule as a “dumbbell” shape, with an O
atom at each end of a connecting axis. In addition to its translational motion, such
a molecule can execute a rotational motion in space; the kinetic energy of this
rotation contributes to the net energy of the molecule. Also, the atoms of a given
molecule can vibrate back and forth along and across the molecular axis, thus
contributing a potential and kinetic energy of vibration to the molecule. Finally,
the motion of the electrons around each of the nuclei of the molecule contributes
an “electronic” energy to the molecule. Hence, the energy of a given molecule is
the sum of its translational, rotational, vibrational, and electronic energies.

Now consider a finite volume of gas consisting of a large number of molecules.
The sum of the energies of all the molecules in this volume is defined as the
internal energy of the gas. The internal energy per unit mass of gas is defined
as the specific internal energy, denoted by e. A related quantity is the specific
enthalpy, denoted by h and defined as

h = e + pv (7.3)

For a perfect gas, both e and h are functions of temperature only:

e = e(T ) (7.4a)

h = h(T ) (7.4b)

Let de and dh represent differentials of e and h, respectively. Then, for a perfect
gas,

de = cv dT (7.5a)

dh = cp dT (7.5b)

where cv and cp are the specific heats at constant volume and constant pressure,
respectively. In Equations (7.5a and b), cv and cp can themselves be functions
of T . However, for moderate temperatures (for air, for T < 1000 K), the specific
heats are reasonably constant. A perfect gas where cv and cp are constants is
defined as a calorically perfect gas, for which Equations (7.5a and b) become

(7.6a)e = cvT

h = cpT (7.6b)

For a large number of practical compressible flow problems, the temperatures
are moderate. For this reason, in this book we always treat the gas as calorically
perfect; that is, we assume that the specific heats are constant. For a discussion of
compressible flow problems where the specific heats are not constant (such as the
high-temperature chemically reacting flow over a high-speed atmospheric entry
vehicle, that is, the space shuttle), see Reference 21.

Note that e and h in Equations (7.3) through (7.6) are thermodynamic state
variables—they depend only on the state of the gas and are independent of any
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process. Although cv and cp appear in these equations, there is no restriction to
just a constant volume or a constant pressure process. Rather, Equations (7.5a
and b) and (7.6a and b) are relations for thermodynamic state variables, namely,
e and h as functions of T, and have nothing to do with the process that may be
taking place.

For a specific gas, cp and cv are related through the equation

cp − cv = R (7.7)

Dividing Equation (7.7) by cp, we obtain

1 − cv

cp
= R

cp
(7.8)

Define γ ≡ cp/cv. For air at standard conditions, γ = 1.4. Then Equation (7.8)
becomes

1 − 1

γ
= R

cp

or cp = γ R

γ − 1
(7.9)

Similarly, dividing Equation (7.7) by cv, we obtain

cv = R

γ − 1
(7.10)

Equations (7.9) and (7.10) are particularly useful in our subsequent discussion of
compressible flow.

EXAMPLE 7.1

Consider a room with a rectangular floor that is 5 m by 7 m, and a 3.3 m high ceiling. The
air pressure and temperature in the room are 1 atm and 25◦C, respectively. Calculate the
internal energy and the enthalpy of the air in the room.

■ Solution
We first need to calculate the mass of air in the room. From Equation (7.1)

ρ = p

RT

where each quantity must be expressed in consistent SI units. Since 1 atm = 1.01 ×
105 N/m2 and 0◦C is 273 K, we have

p = 1.01 × 105 N/m2 and T = 273 + 25 = 298 K

Hence, ρ = p

RT
= 1.01 × 105

(287)(298)
= 1.181 kg/m3
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The volume of the room is (5)(7)(3.3) = 115.5 m3. The mass of air in the room is
therefore

M = (1.181)(115.5) = 136.4 kg

From Equation (7.6a), the internal energy per unit mass is

e = cvT

where cv = R

γ − 1
= (287)

1.4 − 1
= 287

0.4
= 717.5 joule/(kg · K)

Thus, e = cvT = (717.5)(298) = 2.138 × 105 joule/kg

The internal energy in the room, E , is then

E = Me = (136.4)(2.138 × 105) = 2.92 × 107 joule

From Equation (7.6b), the enthalpy per unit mass is

h = cpT

where cp = γ R

γ − 1
= (1.4)(287)

0.4
= 1004.5 joule/(kg · K)

Thus, h = cpT = (1004.5)(298) = 2.993 × 105 joule/kg

The enthalpy in the room, H , is then

H = Mh = (136.4)(2.993 × 105) = 4.08 × 107 joule

A check on two answers can be made knowing that

h

e
= cpT

cvT
= cp

cv
= γ = 1.4

From the answers,

H

E
= 4.08 × 107

2.92 × 107 = 1.4 It checks.

This simple example is intended to reinforce two basic points.

1. Consistent units must be used when making a calculation using basic equations from
physics, such as Equations (7.1), (7.6a), and (7.6b). Here we used SI units, because
the given information was given in terms of meters and degrees Celsius, which is
readily put in terms of the consistent unit of temperature, degrees Kelvin.

2. The internal energy and enthalpy per unit mass were calculated directly from the
temperature of the gas, using Equations (7.6a and b). There was no need to consider
a “constant volume process” or a “constant pressure process”; there is no process at
all to consider here. Internal energy and enthalpy per unit mass, e and h, are simply
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state variables, depending only on the thermodynamic state of the system. Even
though Equation (7.6a) contains cv , a constant volume process is not relevant here.
Similarly, even though Equation (7.6b) contains cp , a constant pressure process is
not relevant here.

EXAMPLE 7.2

One type of supersonic wind tunnel is a blow-down tunnel, where air is stored in a
high-pressure reservoir, and then, upon the opening of a valve, exhausted through the
tunnel into a vacuum tank or simply into the open atmosphere at the downstream end of
the tunnel. Supersonic wind tunnels are discussed in Chapter 10. For this example, we
consider just the high-pressure reservoir as a storage tank that is being charged with air by
a high-pressure pump. As air is being pumped into the constant-volume reservoir, the air
pressure inside the reservoir increases. The pump continues to charge the reservoir until
the desired pressure is achieved.

Consider a reservoir with an internal volume of 30 m3. As air is pumped into the
reservoir, the air pressure inside the reservoir continually increases with time. Consider
the instant during the charging process when the reservoir pressure is 10 atm. Assume the
air temperature inside the reservoir is held constant at 300 K by means of a heat exchanger.
Air is pumped into the reservoir at the rate of 1 kg/s. Calculate the time rate of increase
of pressure in the reservoir at this instant.

■ Solution
Let M be the total mass of air inside the reservoir at any instant. Since air is being pumped
into the reservoir at the rate of 1 kg/s, then the total mass of air is increasing at the rate of
d M/dt = 1 kg/s. The density of the air at any instant is

ρ = M

V
(E.7.1)

where V is the total volume of the reservoir and is constant; V = 30 m3. Since V is
constant, from Equation (E.7.1)

dρ

dt
= 1

V

d M

dt
= 1 kg/s

30 m3 = 0.0333

Differentiating Equation (7.1) with respect to time, and recalling that R and T are constant,

dp

dt
= RT

dρ

dt
(E.7.2)

dp

dt
= (287)(300)(0.0333) = 2867.13 N

m2s

EXAMPLE 7.3

In Example 7.2, if the pumping rate of 1 kg/s were maintained constant throughout the
charging process, how long will it take to increase the reservoir pressure from 10 to
20 atm?
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■ Solution
If the pumping rate is held constant at 1 kg/s, then the time rate of change of density,
dρ/dt = 0.0333 kg/m3s will remain constant, and consequently the time rate of change
of pressure, dp/dt = 2867.13 N/m2s, will remain constant. Hence, the time required to
increase the reservoir pressure from 10 atm to 20 atm is(

20 atm − 10 atm
)(

1.01 × 105
)

2867.13
= 352.27 s

or, in minutes,

352.27

60
= 5.87 min

7.2.3 First Law of Thermodynamics

Consider a fixed mass of gas, which we define as the system. (For simplicity,
assume a unit mass, for example, 1 kg or 1 slug.) The region outside the system is
called the surroundings. The interface between the system and its surroundings is
called the boundary, as shown in Figure 7.2. Assume that the system is stationary.
Let δq be an incremental amount of heat added to the system across the boundary,
as sketched in Figure 7.2. Examples of the source of δq are radiation from the
surroundings that is absorbed by the mass in the system and thermal conduction
due to temperature gradients across the boundary. Also, let δw denote the work
done on the system by the surroundings (say, by a displacement of the boundary,
squeezing the volume of the system to a smaller value). As discussed earlier,
due to the molecular motion of the gas, the system has an internal energy e. The
heat added and work done on the system cause a change in energy, and since the
system is stationary, this change in energy is simply de:

δq + δw = de (7.11)

This is the first law of thermodynamics: It is an empirical result confirmed
by experience. In Equation (7.11), e is a state variable. Hence, de is an exact

Figure 7.2 Thermodynamic system.
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differential, and its value depends only on the initial and final states of the sys-
tem. In contrast, δq and δw depend on the process in going from the initial to the
final states.

For a given de, there are in general an infinite number of different ways
(processes) by which heat can be added and work done on the system. We are
primarily concerned with three types of processes:

1. Adiabatic process. One in which no heat is added to or taken away from the
system

2. Reversible process. One in which no dissipative phenomena occur, that is,
where the effects of viscosity, thermal conductivity, and mass diffusion are
absent

3. Isentropic process. One that is both adiabatic and reversible

For a reversible process, it can be easily shown that δw = −p dv, where dv

is an incremental change in the volume due to a displacement of the boundary of
the system. Thus, Equation (7.11) becomes

δq − p dv = de (7.12)

7.2.4 Entropy and the Second Law of Thermodynamics

Consider a block of ice in contact with a red-hot plate of steel. Experience tells us
that the ice will warm up (and probably melt) and the steel plate will cool down.
However, Equation (7.11) does not necessarily say this will happen. Indeed, the
first law allows that the ice may get cooler and the steel plate hotter—just as long
as energy is conserved during the process. Obviously, in real life this does not
happen; instead, nature imposes another condition on the process, a condition
that tells us which direction a process will take. To ascertain the proper direction
of a process, let us define a new state variable, the entropy, as follows:

ds = δqrev

T
(7.13)

where s is the entropy of the system, δqrev is an incremental amount of heat added
reversibly to the system, and T is the system temperature. Do not be confused
by the above definition. It defines a change in entropy in terms of a reversible
addition of heat δqrev. However, entropy is a state variable, and it can be used
in conjunction with any type of process, reversible or irreversible. The quantity
δqrev in Equation (7.13) is just an artifice; an effective value of δqrev can always
be assigned to relate the initial and end points of an irreversible process, where
the actual amount of heat added is δq. Indeed, an alternative and probably more
lucid relation is

ds = δq

T
+ dsirrev (7.14)

In Equation (7.14), δq is the actual amount of heat added to the system during
an actual irreversible process, and dsirrev is the generation of entropy due to
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the irreversible, dissipative phenomena of viscosity, thermal conductivity, and
mass diffusion occurring within the system. These dissipative phenomena always
increase the entropy:

dsirrev ≥ 0 (7.15)

In Equation (7.15), the equals sign denotes a reversible process, where by def-
inition no dissipative phenomena occur within the system. Combining Equa-
tions (7.14) and (7.15), we have

ds ≥ δq

T
(7.16)

Furthermore, if the process is adiabatic, δq = 0, and Equation (7.16) becomes

ds ≥ 0 (7.17)

Equations (7.16) and (7.17) are forms of the second law of thermodynamics. The
second law tells us in what direction a process will take place. A process will pro-
ceed in a direction such that the entropy of the system plus that of its surroundings
always increases or, at best, stays the same. In our example of the ice in contact
with hot steel, consider the system to be both the ice and steel plate combined.
The simultaneous heating of the ice and cooling of the plate yield a net increase in
entropy for the system. On the other hand, the impossible situation of the ice get-
ting cooler and the plate hotter would yield a net decrease in entropy, a situation
forbidden by the second law. In summary, the concept of entropy in combination
with the second law allows us to predict the direction that nature takes.

The practical calculation of entropy is carried out as follows. In Equa-
tion (7.12), assume that heat is added reversibly; then the definition of entropy,
Equation (7.13), substituted in Equation (7.12) yields

T ds − p dv = de

or T ds = de + p dv (7.18)

From the definition of enthalpy, Equation (7.3), we have

dh = de + p dv + v dp (7.19)

Combining Equations (7.18) and (7.19), we obtain

T ds = dh − v dp (7.20)

Equations (7.18) and (7.20) are important; they are essentially alternate forms of
the first law expressed in terms of entropy. For a perfect gas, recall Equations (7.5a
and b), namely, de = cv dT and dh = cp dT . Substituting these relations into
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Equations (7.18) and (7.20), we obtain

ds = cv

dT

T
+ p dv

T
(7.21)

and ds = cp
dT

T
− v dp

T
(7.22)

Working with Equation (7.22), substitute the equation of state pv = RT , or
v/T = R/p, into the last term:

ds = cp
dT

T
− R

dp

p
(7.23)

Consider a thermodynamic process with initial and end states denoted by 1 and
2, respectively. Equation (7.23), integrated between states 1 and 2, becomes

s2 − s1 =
∫ T2

T1

cp
dT

T
−

∫ p2

p1

R
dp

p
(7.24)

For a calorically perfect gas, both R and cp are constants; hence, Equation (7.24)
becomes

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1
(7.25)

In a similar fashion, Equation (7.21) leads to

s2 − s1 = cv ln
T2

T1
+ R ln

v2

v1
(7.26)

Equations (7.25) and (7.26) are practical expressions for the calculation of the
entropy change of a calorically perfect gas between two states. Note from these
equations that s is a function of two thermodynamic variables, for example,
s = s(p, T ), s = s(v, T ).

7.2.5 Isentropic Relations

We have defined an isentropic process as one which is both adiabatic and re-
versible. Consider Equation (7.14). For an adiabatic process, δq = 0. Also, for a
reversible process, dsirrev = 0. Thus, for an adiabatic, reversible process, Equa-
tion (7.14) yields ds = 0, or entropy is constant; hence, the word “isentropic.”
For such an isentropic process, Equation (7.25) is written as

0 = cp ln
T2

T1
− R ln

p2

p1

ln
p2

p1
= cp

R
ln

T2

T1

or
p2

p1
=

(
T2

T1

)cp/R

(7.27)
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However, from Equation (7.9),
cp

R
= γ

γ − 1

and hence Equation (7.27) is written as

p2

p1
=

(
T2

T1

)γ /(γ−1)

(7.28)

In a similar fashion, Equation (7.26) written for an isentropic process gives

0 = cv ln
T2

T1
+ R ln

v2

v1

ln
v2

v1
= −cv

R
ln

T2

T1

v2

v1
=

(
T2

T1

)−cv/R

(7.29)

From Equation (7.10),

cv

R
= 1

γ − 1

and hence Equation (7.29) is written as

v2

v1
=

(
T2

T1

)−1/(γ−1)

(7.30)

Since ρ2/ρ1 = v1/v2, Equation (7.30) becomes

ρ2

ρ1
=

(
T2

T1

)1/(γ−1)

(7.31)

Combining Equations (7.28) and (7.31), we can summarize the isentropic rela-
tions as

p2

p1
=

(
ρ2

ρ1

)γ

=
(

T2

T1

)γ /(γ−1)

(7.32)

Equation (7.32) is very important; it relates pressure, density, and temperature for
an isentropic process. We use this equation frequently, so make certain to brand
it on your mind. Also, keep in mind the source of Equation (7.32); it stems from
the first law and the definition of entropy. Therefore, Equation (7.32) is basically
an energy relation for an isentropic process.

Why is Equation (7.32) so important? Why is it frequently used? Why are we
so interested in an isentropic process when it seems so restrictive—requiring both
adiabatic and reversible conditions? The answers rest on the fact that a large num-
ber of practical compressible flow problems can be assumed to be isentropic—
contrary to what you might initially think. For example, consider the flow over
an airfoil or through a rocket engine. In the regions adjacent to the airfoil surface
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and the rocket nozzle walls, a boundary layer is formed wherein the dissipative
mechanisms of viscosity, thermal conduction, and diffusion are strong. Hence,
the entropy increases within these boundary layers. However, consider the fluid
elements moving outside the boundary layer. Here, the dissipative effects of vis-
cosity, etc., are very small and can be neglected. Moreover, no heat is being trans-
ferred to or from the fluid element (i.e., we are not heating the fluid element with a
Bunsen burner or cooling it in a refrigerator); thus, the flow outside the boundary
layer is adiabatic. Consequently, the fluid elements outside the boundary layer are
experiencing an adiabatic reversible process—namely, isentropic flow. In the vast
majority of practical applications, the viscous boundary layer adjacent to the sur-
face is thin compared with the entire flow field, and hence large regions of the
flow can be assumed isentropic. This is why a study of isentropic flow is directly
applicable to many types of practical compressible flow problems. In turn, Equa-
tion (7.32) is a powerful relation for such flows, valid for a calorically perfect gas.

This ends our brief review of thermodynamics. Its purpose has been to give
a quick summary of ideas and equations that will be employed throughout our
subsequent discussions of compressible flow. Indeed, this author knows of no
practical problem dealing with compressible flow that can be solved without in-
voking some aspect of thermodynamics—it is that important. For a more thorough
discussion of the power and beauty of thermodynamics, see any good thermody-
namics text, such as References 22 to 24.

EXAMPLE 7.4

Consider a Boeing 747 flying at a standard altitude of 36,000 ft. The pressure at a point on
the wing is 400 lb/ft2. Assuming isentropic flow over the wing, calculate the temperature
at this point.

■ Solution
From Appendix E, at a standard altitude of 36,000 ft, p∞ = 476 lb/ft2 and T∞ = 391 ◦R.
From Equation (7.32),

p

p∞
=

(
T

T∞

)γ /(γ−1)

or T = T∞
(

p

p∞

)(γ−1)/γ

= 391

(
400

476

)0.4/1.4

= 372 ◦R

EXAMPLE 7.5

Consider the gas in the reservoir of the supersonic wind tunnel discussed in Examples 7.2
and 7.3. The pressure and temperature of the air in the reservoir are 20 atm and 300 K,
respectively. The air in the reservoir expands through the wind tunnel duct. At a certain
location in the duct, the pressure is 1 atm. Calculate the air temperature at this location
if: (a) the expansion is isentropic and (b) the expansion is nonisentropic with an entropy
increase through the duct to this location of 320 J/(kg · K).
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■ Solution
(a) From Equation (7.32),

p2

p1
=

(
T2

T1

)γ /(γ−1)

or,

T2 = T1

(
p2

p1

) γ−1
γ

= 300

(
1

20

) 0.4
1.4

= 300 (0.05)0.2857

= 300 (0.4249) = 127.5 K

(b) From Equation (7.25),

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1

Using Equation (7.9) to obtain the value of cp ,

cp = γ R

γ − 1
= (1.4)(287)

0.4
= 1004.5

J

kg · K

we have from Equation (7.25),

320 = 1004.5 ln

(
T2

300

)
− (287) ln

(
1

20

)

= 1004.5 ln

(
T2

300

)
− (−859.78)

Thus,

ln

(
T2

300

)
= 320 − 859.78

1004.5
= −0.5374

T2

300
= e−0.5374 = 0.5843

T2 = (0.5843)(300) = 175.3 K

Comment: Comparing the results from parts (a) and (b), note that the entropy increase
results in a higher temperature at the point in the expansion where p = 1 atm compared
to that for the isentropic expansion. This makes sense. From Equation (7.25) we see
that entropy is a function of both temperature and pressure, increasing with an increase
in temperature and decreasing with an increase in pressure. In this example, the final
pressure for both cases (a) and (b) is the same, but the entropy for case (b) is higher.
Thus, from Equation (7.25), we see that the final temperature for case (b) must be higher
than that for case (a). On a more qualitative basis, the physical mechanisms that could
produce the change in entropy would be viscous dissipation (friction), the presence of
shock waves in the duct, or heat addition from the surroundings through the walls of the
duct. Intuitively, all these irreversible mechanisms would result in a higher gas temperature
than the isentropic expansion that, by definition, assumes an adiabatic and reversible (no
friction) expansion.
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Figure 7.3 Definition of compressibility.

7.3 DEFINITION OF COMPRESSIBILITY
All real substances are compressible to some greater or lesser extent; that is, when
you squeeze or press on them, their density will change. This is particularly true of
gases, much less so for liquids, and virtually unnoticeable for solids. The amount
by which a substance can be compressed is given by a specific property of the
substance called the compressibility, defined below.

Consider a small element of fluid of volume v, as sketched in Figure 7.3. The
pressure exerted on the sides of the element is p. Assume the pressure is now
increased by an infinitesimal amount dp. The volume of the element will change
by a corresponding amount dv; here, the volume will decrease; hence, dv shown
in Figure 7.3 is a negative quantity. By definition, the compressibility τ of the
fluid is

τ = −1

v

dv

dp
(7.33)

Physically, the compressibility is the fractional change in volume of the fluid
element per unit change in pressure. However, Equation (7.33) is not precise
enough. We know from experience that when a gas is compressed (say, in a
bicycle pump), its temperature tends to increase, depending on the amount of
heat transferred into or out of the gas through the boundaries of the system. If
the temperature of the fluid element in Figure 7.3 is held constant (due to some
heat transfer mechanism), then τ is identified as the isothermal compressibility
τT , defined from Equation (7.33) as

τT = −1

v

(
∂v

∂p

)
T

(7.34)

On the other hand, if no heat is added to or taken away from the fluid element,
and if friction is ignored, the compression of the fluid element takes place isen-
tropically, and τ is identified as the isentropic compressibility τs , defined from
Equation (7.33) as

τs = −1

v

(
∂v

∂p

)
s

(7.35)

where the subscript s denotes that the partial derivative is taken at constant entropy.
Both τT and τs are precise thermodynamic properties of the fluid; their values for
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different gases and liquids can be obtained from various handbooks of physical
properties. In general, the compressibility of gases is several orders of magnitude
larger than that of liquids.

The role of the compressibility τ in determining the properties of a fluid in
motion is seen as follows. Define v as the specific volume (i.e., the volume per
unit mass). Hence, v = 1/ρ. Substituting this definition into Equation (7.33), we
obtain

τ = 1

ρ

dρ

dp
(7.36)

Thus, whenever the fluid experiences a change in pressure dp, the corresponding
change in density dρ from Equation (7.36) is

dρ = ρτ dp (7.37)

Consider a fluid flow, say, for example, the flow over an airfoil. If the fluid is a
liquid, where the compressibility τ is very small, then for a given pressure change
dp from one point to another in the flow, Equation (7.37) states that dρ will be
negligibly small. In turn, we can reasonably assume that ρ is constant and that
the flow of a liquid is incompressible. On the other hand, if the fluid is a gas,
where the compressibility τ is large, then for a given pressure change dp from one
point to another in the flow, Equation (7.37) states that dρ can be large. Thus, ρ is
not constant, and in general, the flow of a gas is a compressible flow. The exception
to this is the low-speed flow of a gas; in such flows, the actual magnitude of the
pressure changes throughout the flow field is small compared with the pressure
itself. Thus, for a low-speed flow, dp in Equation (7.37) is small, and even though
τ is large, the value of dρ can be dominated by the small dp. In such cases, ρ can
be assumed to be constant, hence allowing us to analyze low-speed gas flows as
incompressible flows (such as discussed in Chapters 3 to 6).

Later, we demonstrate that the most convenient index to gage whether a
gas flow can be considered incompressible, or whether it must be treated as
compressible, is the Mach number M , defined in Chapter 1 as the ratio of local
flow velocity V to the local speed of sound a:

M ≡ V

a
(7.38)

We show that, when M > 0.3, the flow should be considered compressible. Also,
we show that the speed of sound in a gas is related to the isentropic compressibility
τs , given by Equation (7.35).

7.4 GOVERNING EQUATIONS FOR INVISCID,
COMPRESSIBLE FLOW

In Chapters 3 to 6, we studied inviscid, incompressible flow; recall that the pri-
mary dependent variables for such flows are p and V, and hence we need only two
basic equations, namely, the continuity and momentum equations, to solve for
these two unknowns. Indeed, the basic equations are combined to obtain Laplace’s
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equation and Bernoulli’s equation, which are the primary tools used for the ap-
plications discussed in Chapters 3 to 6. Note that both ρ and T are assumed to be
constant throughout such inviscid, incompressible flows. As a result, no additional
governing equations are required; in particular, there is no need for the energy
equation or energy concepts in general. Basically, incompressible flow obeys
purely mechanical laws and does not require thermodynamic considerations.

In contrast, for compressible flow, ρ is variable and becomes an unknown.
Hence, we need an additional governing equation—the energy equation—which
in turn introduces internal energy e as an unknown. Since e is related to
temperature, then T also becomes an important variable. Therefore, the primary
dependent variables for the study of compressible flow are p, V, ρ, e, and T ; to
solve for these five variables, we need five governing equations. Let us examine
this situation further.

To begin with, the flow of a compressible fluid is governed by the basic
equations derived in Chapter 2. At this point in our discussion, it is most important
for you to be familiar with these equations as well as their derivation. Therefore,
before proceeding further, return to Chapter 2 and carefully review the basic ideas
and relations contained therein. This is a serious study tip, and if you follow it, the
material in our next seven chapters will flow much easier for you. In particular,
review the integral and differential forms of the continuity equation (Section 2.4),
the momentum equation (Section 2.5), and the energy equation (Section 2.7);
indeed, pay particular attention to the energy equation because this is an important
aspect which sets compressible flow apart from incompressible flow.

For convenience, some of the more important forms of the governing equa-
tions for an inviscid, compressible flow from Chapter 2 are repeated below:

Continuity: From Equation (2.48),

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV + .......................................................................
.........

∫∫
S

ρV · dS = 0 (7.39)

From Equation (2.52),
∂ρ

∂t
+ ∇ · ρV = 0 (7.40)

Momentum: From Equation (2.64),

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρV dV + .......................................................................
.........

∫∫
S

(ρV · dS)V = − .......................................................................
.........

∫∫
S

p dS + ..........................................................................................................................
..............

∫∫∫
V

ρf dV (7.41)

From Equations (2.113a to c),

ρ
Du

Dt
= −∂p

∂x
+ ρ fx (7.42a)

ρ
Dv

Dt
= −∂p

∂y
+ ρ fy (7.42b)

ρ
Dw

Dt
= −∂p

∂z
+ ρ fz (7.42c)
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Energy: From Equation (2.95),

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ

(
e + V 2

2

)
dV + .......................................................................

.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS

= ..........................................................................................................................
..............

∫∫∫
V

q̇ρ dV − .......................................................................
.........

∫∫
S

pV · dS + ..........................................................................................................................
..............

∫∫∫
V

ρ(f · V) dV (7.43)

From Equation (2.114),

ρ
D(e + V 2/2)

Dt
= ρq̇ − ∇ · pV + ρ(f · V) (7.44)

The above continuity, momentum, and energy equations are three equations in
terms of the five unknowns p, V, ρ, T , and e. Assuming a calorically perfect gas,
the additional two equations needed to complete the system are obtained from
Section 7.2:

Equation of state: p = ρRT (7.1)

Internal energy: e = cvT (7.6a)

In regard to the basic equations for compressible flow, please note that
Bernoulli’s equation as derived in Section 3.2 and given by Equation (3.13) does
not hold for compressible flow; it clearly contains the assumption of constant
density, and hence is invalid for compressible flow. This warning is necessary
because experience shows that a certain number of students of aerodynamics,
apparently attracted by the simplicity of Bernoulli’s equation, attempt to use it
for all situations, compressible as well as incompressible. Do not do it! Always
remember that Bernoulli’s equation in the form of Equation (3.13) holds for in-
compressible flow only, and we must dismiss it from our thinking when dealing
with compressible flow.

As a final note, we use both the integral and differential forms of the above
equations in our subsequent discussions. Make certain that you feel comfortable
with these equations before proceeding further.

7.5 DEFINITION OF TOTAL (STAGNATION)
CONDITIONS

At the beginning of Section 3.4, the concept of static pressure p was discussed
in some detail. Static pressure is a measure of the purely random motion of
molecules in a gas; it is the pressure you feel when you ride along with the gas at
the local flow velocity. In contrast, the total (or stagnation) pressure was defined
in Section 3.4 as the pressure existing at a point (or points) in the flow where
V = 0. Let us now define the concept of total conditions more precisely.

Consider a fluid element passing through a given point in a flow where the lo-
cal pressure, temperature, density, Mach number, and velocity are p, T , ρ, M , and
V, respectively. Here, p, T , and ρ are static quantities (i.e., static pressure, static
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temperature, and static density, respectively); they are the pressure, temperature,
and density you feel when you ride along with the gas at the local flow velocity.
Now imagine that you grab hold of the fluid element and adiabatically slow it
down to zero velocity. Clearly, you would expect (correctly) that the values of p,
T , and ρ would change as the fluid element is brought to rest. In particular, the
value of the temperature of the fluid element after it has been brought to rest adi-
abatically is defined as the total temperature, denoted by T0. The corresponding
value of enthalpy is defined as the total enthalpy h0, where h0 = cpT0 for a calor-
ically perfect gas. Keep in mind that we do not actually have to bring the flow
to rest in real life in order to talk about the total temperature or total enthalpy;
rather, they are defined quantities that would exist at a point in a flow if (in our
imagination) the fluid element passing through that point were brought to rest adi-
abatically. Therefore, at a given point in a flow, where the static temperature and
enthalpy are T and h, respectively, we can also assign a value of total temperature
T0 and a value of total enthalpy h0 defined as above.

The energy equation, Equation (7.44), provides some important information
about total enthalpy and hence total temperature, as follows. Assume that the flow
is adiabatic (q̇ = 0), and that body forces are negligible (f = 0). For such a flow,
Equation (7.44) becomes

ρ
D(e + V 2/2)

Dt
= −∇ · pV (7.45)

Expand the right-hand side of Equation (7.45) using the following vector identity:

∇ · pV ≡ p∇ · V + V · ∇ p (7.46)

Also, note that the substantial derivative defined in Section 2.9 follows the normal
laws of differentiation; for example,

ρ
D(p/ρ)

Dt
= ρ

ρDp/Dt − pDρ/Dt

ρ2
= Dp

Dt
− p

ρ

Dρ

Dt
(7.47)

Recall the form of the continuity equation given by Equation (2.108):

Dρ

Dt
+ ρ∇ · V = 0 (2.108)

Substituting Equation (2.108) into (7.47), we obtain

ρ
D(p/ρ)

Dt
= Dp

Dt
+ p∇ · V = ∂p

∂t
+ V · ∇ p + p∇ · V (7.48)

Substituting Equation (7.46) into (7.45), and adding Equation (7.48) to the result,
we obtain

ρ
D

Dt

(
e + p

ρ
+ V 2

2

)
= −p∇ · V − V · ∇ p + ∂p

∂t
+ V · ∇ p + p∇ · V (7.49)

Note that

e + p

ρ
= e + pv ≡ h (7.50)
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Substituting Equation (7.50) into (7.49), and noting that some of the terms on the
right-hand side of Equation (7.49) cancel each other, we have

ρ
D(h + V 2/2)

Dt
= ∂p

∂t
(7.51)

If the flow is steady, ∂p/∂t = 0, and Equation (7.51) becomes

ρ
D(h + V 2/2)

Dt
= 0 (7.52)

From the definition of the substantial derivative given in Section 2.9, Equa-
tion (7.52) states that the time rate of change of h + V 2/2 following a moving
fluid element is zero; that is,

h + V 2

2
= const (7.53)

along a streamline. Recall that the assumptions which led to Equation (7.53) are
that the flow is steady, adiabatic, and inviscid. In particular, since Equation (7.53)
holds for an adiabatic flow, it can be used to elaborate on our previous definition
of total enthalpy. Since h0 is defined as that enthalpy that would exist at a point if
the fluid element were brought to rest adiabatically, we find from Equation (7.53)
with V = 0 and hence h = h0 that the value of the constant in Equation (7.53) is
h0. Hence, Equation (7.53) can be written as

h + V 2

2
= h0 (7.54)

Equation (7.54) is important; it states that at any point in a flow, the total enthalpy
is given by the sum of the static enthalpy plus the kinetic energy, all per unit mass.
Whenever we have the combination h + V 2/2 in any subsequent equations, it can
be identically replaced by h0. For example, Equation (7.52), which was derived
for a steady, adiabatic, inviscid flow, states that

ρ
Dh0

Dt
= 0

that is, the total enthalpy is constant along a streamline. Moreover, if all the
streamlines of the flow originate from a common uniform freestream (as is usually
the case), then h0 is the same for each streamline. Consequently, we have for such
a steady, adiabatic flow that

h0 = const (7.55)

throughout the entire flow, and h0 is equal to its freestream value. Equation (7.55),
although simple in form, is a powerful tool. For steady, inviscid, adiabatic flow,
Equation (7.55) is a statement of the energy equation, and hence it can be used in
place of the more complex partial differential equation given by Equation (7.52).
This is a great simplification, as we will see in subsequent discussions.
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For a calorically perfect gas, h0 = cpT0. Thus, the above results also state
that the total temperature is constant throughout the steady, inviscid, adiabatic
flow of a calorically perfect gas; that is,

T0 = const (7.56)

For such a flow, Equation (7.56) can be used as a form of the governing energy
equation.

Keep in mind that the above discussion marbled two trains of thought: On
the one hand, we dealt with the general concept of an adiabatic flow field [which
led to Equations (7.51) to (7.53)], and on the other hand, we dealt with the
definition of total enthalpy [which led to Equation (7.54)]. These two trains of
thought are really separate and should not be confused. Consider, for example, a
general nonadiabatic flow, such as a viscous boundary layer with heat transfer.
A generic nonadiabatic flow is sketched in Figure 7.4a. Clearly, Equations (7.51)
to (7.53) do not hold for such a flow. However, Equation (7.54) holds locally at
each point in the flow, because the assumption of an adiabatic flow contained in
Equation (7.54) is made through the definition of h0 and has nothing to do with
the general overall flow field. For example, consider two different points, 1 and 2,
in the general flow, as shown in Figure 7.4a. At point 1, the local static enthalpy
and velocity are h1 and V1, respectively. Hence, the local total enthalpy at point 1
is h0,1 = h1 + V 2

1 /2. At point 2, the local static enthalpy and velocity are h2 and
V2, respectively. Hence, the local total enthalpy at point 2 is h0,2 = h2 + V 2

2 /2.
If the flow between points 1 and 2 is nonadiabatic, then h0,1 �= h0,2. Only for the
special case where the flow is adiabatic between the two points would h0,1 = h0,2.
This case is illustrated in Figure 7.4b. Of course, this is the special case treated
by Equations (7.55) and (7.56).

Return to the beginning of this section, where we considered a fluid element
passing through a point in a flow where the local properties are p, T , ρ, M , and V.
Once again, imagine that you grab hold of the fluid element and slow it down to
zero velocity, but this time, let us slow it down both adiabatically and reversibly.
That is, let us slow the fluid element down to zero velocity isentropically. When the
fluid element is brought to rest isentropically, the resulting pressure and density
are defined as the total pressure p0 and total density ρ0. (Since an isentropic
process is also adiabatic, the resulting temperature is the same total temperature
T0 as discussed earlier.) As before, keep in mind that we do not have to actually
bring the flow to rest in real life in order to talk about total pressure and total
density; rather, they are defined quantities that would exist at a point in a flow if
(in our imagination) the fluid element passing through that point were brought to
rest isentropically. Therefore, at a given point in a flow, where the static pressure
and static density are p and ρ, respectively, we can also assign a value of total
pressure p0, and total density ρ0 defined as above.

The definition of p0 and ρ0 deals with an isentropic compression to zero
velocity. Keep in mind that the isentropic assumption is involved with the defi-
nition only. The concept of total pressure and density can be applied throughout
any general nonisentropic flow. For example, consider two different points, 1 and
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Nonadiabatic flow

1
2

h1, h0,1

h0, 2 ≠ h0,1
T0, 2 ≠ T0,1

T1, T0,1
h2, h0, 2
T2, T0, 2

h2, h0, 2
T2, T0, 2

Adiabatic flow

1
2

h1, h0,1

h0, 2 = h0,1
T0, 2 = T0,1

T1, T0,1

Nonisentropic flow

1
2

p1, p0,1

p0, 2 ≠ p0,1
�0, 2 ≠ �0,1

�1, �0,1
p2, p0, 2
�2, �0, 2

p2, p0, 2
�2, �0, 2

Isentropic flow

1
2

p1, p0,1

p0, 2 = p0,1
�0, 2 = �0,1

�1, �0,1

(a)

(c)

(b)

(d)

Figure 7.4 Comparisons between (a) nonadiabatic, (b) adiabatic, (c) nonisentropic,
and (d) isentropic flows.

2, in a general flow field, as sketched in Figure 7.4c. At point 1, the local static
pressure and static density are p1 and ρ1, respectively; also the local total pressure
and total density are p0,1 and ρ0,1, respectively, defined as above. Similarly, at
point 2, the local static pressure and static density are p2 and ρ2, respectively,
and the local total pressure and total density are p0,2 and ρ0,2, respectively. If the
flow is nonisentropic between points 1 and 2, then p0,1 �= p0,2 and ρ0,1 �= ρ0,2, as
shown in Figure 7.4c. On the other hand, if the flow is isentropic between points
1 and 2, then p0,1 = p0,2 and ρ0,1 = ρ0,2, as shown in Figure 7.4d. Indeed, if
the general flow field is isentropic throughout, then both p0 and ρ0 are constant
values throughout the flow.

As a corollary to the above considerations, we need another defined tem-
perature, denoted by T ∗, and defined as follows. Consider a point in a subsonic
flow where the local static temperature is T . At this point, imagine that the fluid
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element is speeded up to sonic velocity, adiabatically. The temperature it would
have at such sonic conditions is denoted as T ∗. Similarly, consider a point in a
supersonic flow, where the local static temperature is T . At this point, imagine
that the fluid element is slowed down to sonic velocity, adiabatically. Again, the
temperature it would have at such sonic conditions is denoted as T ∗. The quantity
T ∗ is simply a defined quantity at a given point in a flow, in exactly the same vein
as T0, p0, and ρ0 are defined quantities. Also, a∗ = √

γ RT ∗.

EXAMPLE 7.6

At a point in an airflow the pressure, temperature, and velocity are 1 atm, 320 K, and
1000 m/s. Calculate the total temperature and total pressure at this point.

■ Solution
From Equation (7.54),

h + V 2

2
= h0

Since h = cpT

and cp = γ R

γ − 1
,

we have cpT + V 2

2
= cpT0

T0 = T + V 2

2cp
= T +

(
γ − 1

2γ R

)
V 2

T0 = 320 +
[

0.4

2(1.4)(287)

]
(1000)2 = 320 + 497.8

T0 = 817.8 K

By definition, the total pressure is the pressure that would exist if the flow at the point
were slowed isentropically to zero velocity. Hence, we can use the isentropic relations in
Equation (7.32) to relate total to static conditions. That is, from Equation (7.32),

p0

p
=

(
T0

T

) γ
γ−1

Hence, p0 = p

(
T0

T

) γ
γ−1

= (1 atm)

(
817.8

320

) 1.4
0.4

P0 = 26.7 atm

Note: In the above calculation of total pressure, we continued to use the nonconsistent
unit of atmospheres. This is okay because Equation (7.32) contains a ratio of pressures,
and therefore it would just be extra work to convert 1 atm to 1.01 × 105 N/m2, and then
carry out the calculation. The result is the same.
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EXAMPLE 7.7

An airplane is flying at a standard altitude of 10,000 ft. A Pitot tube mounted at the
nose measures a pressure of 2220 lb/ft2. The airplane is flying at a high subsonic speed,
faster than 300 mph. From our comments in Section 3.1, the flow should be considered
compressible. Calculate the velocity of the airplane.

■ Solution
From our discussion in Section 3.4, the pressure measured by a Pitot tube immersed in
an incompressible flow is the total pressure. For the same physical reasons discussed in
Section 3.4, a Pitot tube also measures the total pressure in a high-speed subsonic com-
pressible flow. (This is further discussed in Section 8.7.1 on the measurement of velocity
in a subsonic compressible flow.) Caution: Because we are dealing with a compressible
flow in this example, we cannot use Bernoulli’s equation to calculate the velocity.

The flow in front of the Pitot tube is compressed isentropically to zero velocity at the
mouth of the tube, hence the pressure at the mouth is the total pressure, p0. From Equation
(7.32), we can write:

p0

p∞
=

(
T0

T∞

)γ /(γ−1)

(E.7.3)

where p0 and T0 are the total pressure and temperature, respectively, at the mouth of
the Pitot tube, and p∞ and T∞ are the freestream static pressure and static temperature,
respectively. Solving Equation (E7.3) above for T0, we get

T0 = T∞
(

p0

p∞

)(γ−1)/γ

(E.7.4)

From Appendix E, the pressure and temperature at a standard altitude of 10,000 ft are
1455.6 lb/ft2 and 483.04 ◦R, respectively. These are the values of p∞ and T∞ in Equation
(E7.4). Thus, from Equation (E7.4),

T0 = (483.04)

(
2220

1455.6

)0.4/1.4

= 544.9 ◦R

From the energy equation, Equation (7.54), written in terms of temperature, we have

cp T + V 2

2
= cp T0 (E.7.5)

In Equation (E7.5), both T and V are the freestream values, hence we have

cp T∞ + V 2∞
2

= cp T0 (E.7.6)

Also,

cp = γ R

γ − 1
= (1.4)(1716)

0.4
= 6006

ft · lb

slug · ◦R
Solving Equation (E7.6) for V∞, we have

V∞ = [2 cp (T0 − T∞)]1/2

= [2 (6006)(544.9 − 483.04]1/2

= 862 ft/s
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Note: From this example, we see that the total pressure measured by a Pitot tube in a
subsonic compressible flow is a measure of the flow velocity, but we need also the value
of the flow static temperature in order to calculate the velocity. In Section 8.7, we show
more fundamentally that the ratio of Pitot pressure to flow static pressure in a compressible
flow, subsonic or supersonic, is a direct measure of the Mach number, not the velocity.
But more on this later.

7.6 SOME ASPECTS OF SUPERSONIC FLOW:
SHOCK WAVES

Return to the different regimes of flow sketched in Figure 1.44. Note that subsonic
compressible flow is qualitatively (but not quantitatively) the same as incompress-
ible flow; Figure 1.44a shows a subsonic flow with a smoothly varying streamline
pattern, where the flow far ahead of the body is forewarned about the presence
of the body and begins to adjust accordingly. In contrast, supersonic flow is quite
different, as sketched in Figure 1.44d and e. Here, the flow is dominated by shock
waves, and the flow upstream of the body does not know about the presence of
the body until it encounters the leading-edge shock wave. In fact, any flow with
a supersonic region, such as those sketched in Figure 1.44b to e, is subject to
shock waves. Thus, an essential ingredient of a study of supersonic flow is the
calculation of the shape and strength of shock waves. This is the main thrust of
Chapters 8 and 9.

A shock wave is an extremely thin region, typically on the order of 10−5 cm,
across which the flow properties can change drastically. The shock wave is usua-
lly at an oblique angle to the flow, such as sketched in Figure 7.5a; however, there
are many cases where we are interested in a shock wave normal to the flow, as
sketched in Figure 7.5b. Normal shock waves are discussed at length in Chapter 8,
whereas oblique shocks are considered in Chapter 9. In both cases, the shock wave
is an almost explosive compression process, where the pressure increases almost
discontinuously across the wave. Examine Figure 7.5 closely. In region 1 ahead
of the shock, the Mach number, flow velocity, pressure, density, temperature,
entropy, total pressure, and total enthalpy are denoted by M1, V1, p1, ρ1, T1, s1,
p0,1, and h0,1, respectively. The analogous quantities in region 2 behind the shock
are M2, V2, p2, ρ2, T2, s2, p0,2, and h0,2, respectively. The qualitative changes
across the wave are noted in Figure 7.5. The pressure, density, temperature, and
entropy increase across the shock, whereas the total pressure, Mach number, and
velocity decrease. Physically, the flow across a shock wave is adiabatic (we are
not heating the gas with a laser beam or cooling it in a refrigerator, for example).
Therefore, recalling the discussion in Section 7.5, the total enthalpy is constant
across the wave. In both the oblique shock and normal shock cases, the flow ahead
of the shock wave must be supersonic (i.e., M1 > 1). Behind the oblique shock, the
flow usually remains supersonic (i.e., M2 > 1), but at a reduced Mach number (i.e.,
M2 < M1). However, as discussed in Chapter 9, there are special cases where the
oblique shock is strong enough to decelerate the downstream flow to a subsonic
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Figure 7.5 Qualitative pictures of flow
through oblique and normal shock waves.

Mach number; hence, M2 < 1 can occur behind an oblique shock. For the normal
shock, as sketched in Figure 7.5b, the downstream flow is always subsonic (i.e.,
M2 < 1). Study the qualitative variations illustrated in Figure 7.5 closely. They are
important, and you should have them in mind for our subsequent discussions. One
of the primary purposes of Chapters 8 and 9 is to develop a shock-wave theory
that allows the quantitative evaluation of these variations. We prove that pressure
increases across the shock, that the upstream Mach number must be supersonic,
etc. Moreover, we obtain equations that allow the direct calculation of changes
across the shock.

Several photographs of shock waves are shown in Figure 7.6. Since air is
transparent, we cannot usually see shock waves with the naked eye. However,
because the density changes across the shock wave, light rays propagating through
the flow will be refracted across the shock. Special optical systems, such as
shadowgraphs, schlieren, and interferometers, take advantage of this refraction
and allow the visual imaging of shock waves on a screen or a photographic
negative. For details of the design and characteristics of these optical systems,
see References 25 and 26. (Under certain conditions, you can see the refracted
light from a shock wave with your naked eye. Recall from Figure 1.43b that a
shock wave can form in the locally supersonic region on the top surface of an
airfoil if the freestream subsonic Mach number is high enough. The next time you
are flying in a jet transport, and the sun is directly overhead, look out the window
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(a)

(b)

Figure 7.6 Schlieren photographs illustrating shock waves on various
bodies. (a) Mercury capsule wind-tunnel model at Mach 8. (b) X-15 wind
tunnel model at Mach 7. (Both photos: NASA).
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(c)

(d)

Figure 7.6 (continued) (c) Space Shuttle Orbiter model at Mach 6. (d) A
computational fluid dynamics generated flow (not a Schileren photograph)
for the X-43 Hypersonic test vehicle. (Both photos: NASA).

along the span of the wing. If you are lucky, you will see the shock wave dancing
back and forth over the top of the wing.)

In summary, compressible flows introduce some very exciting physical phe-
nomena into our aerodynamic studies. Moreover, as the flow changes from sub-
sonic to supersonic, the complete nature of the flow changes, not the least of
which is the occurrence of shock waves. The purpose of the next seven chapters
is to describe and analyze these flows.
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7.7 SUMMARY
As usual, examine the road map for this chapter (Figure 7.1), and make certain
that you feel comfortable with the material represented by this road map before
continuing further.

Some of the highlights of this chapter are summarized below:

Thermodynamic relations:

Equation of state: p = ρRT (7.1)

For a calorically perfect gas,

e = cvT and h = cpT (7.6a and b)

cp = γ R

γ − 1
(7.9)

cv = R

γ − 1
(7.10)

Forms of the first law:

δq + δw = de (7.11)

T ds = de + p dv (7.18)

T ds = dh − v dp (7.20)

Definition of entropy:

ds = δqrev

T
(7.13)

Also ds = δq

T
+ dsirrev (7.14)

The second law:

ds ≥ δq

T
(7.16)

or, for an adiabatic process,

ds ≥ 0 (7.17)

Entropy changes can be calculated from (for a calorically perfect gas)

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1
(7.25)

and s2 − s1 = cv ln
T2

T1
+ R ln

v2

v1
(7.26)
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For an isentropic flow,

p2

p1
=

(
ρ2

ρ1

)γ

=
(

T2

T1

)γ /(γ−1)

(7.32)

General definition of compressibility:

τ = −1

v

dv

dp
(7.33)

For an isothermal process,

τT = −1

v

(
∂v

∂p

)
T

(7.34)

For an isentropic process,

τs = −1

v

(
∂v

∂p

)
s

(7.35)

The governing equations for inviscid, compressible flow are

Continuity:

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ dV + .......................................................................
.........

∫∫
S

ρV · dS = 0 (7.39)

∂ρ

∂t
+ ∇ · ρV = 0 (7.40)

Momentum:

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρV dV + .......................................................................
.........

∫∫
S

(ρV · dS)V = − .......................................................................
.........

∫∫
S

p dS + ..........................................................................................................................
..............

∫∫∫
V

ρf dV (7.41)

ρ
Du

Dt
= −∂p

∂x
+ ρ fx (7.42a)

ρ
Dv

Dt
= −∂p

∂y
+ ρ fy (7.42b)

ρ
Dw

Dt
= −∂p

∂z
+ ρ fz (7.42c)

Energy:

∂

∂t
..........................................................................................................................

..............

∫∫∫
V

ρ

(
e + V 2

2

)
dV + .......................................................................

.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS

(continued)
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= ..........................................................................................................................
..............

∫∫∫
V

q̇ρ dV − .......................................................................
.........

∫∫
S

pV · dS + ..........................................................................................................................
..............

∫∫∫
V

ρ(f · V) dV (7.43)

ρ
D(e + V 2/2)

Dt
= ρq̇ − ∇ · pV + ρ(f · V) (7.44)

If the flow is steady and adiabatic, Equations (7.43) and (7.44) can be replaced
by

h0 = h + V 2

2
= const

Equation of state (perfect gas):

p = ρRT (7.1)

Internal energy (calorically perfect gas):

e = cvT (7.6a)

Total temperature T0 and total enthalpy h0 are defined as the properties that
would exist if (in our imagination) we slowed the fluid element at a point in the
flow to zero velocity adiabatically. Similarly, total pressure p0 and total density
ρ0 are defined as the properties that would exist if (in our imagination) we
slowed the fluid element at a point in the flow to zero velocity isentropically. If
a general flow field is adiabatic, h0 is constant throughout the flow; in contrast, if
the flow field is nonadiabatic, h0 varies from one point to another. Similarly, if
a general flow field is isentropic, p0 and ρ0 are constant throughout the flow;
in contrast, if the flow field is nonisentropic, p0 and ρ0 vary from one point to
another.

Shock waves are very thin regions in a supersonic flow across which the
pressure, density, temperature, and entropy increase; the Mach number, flow
velocity, and total pressure decrease; and the total enthalpy stays the same.

7.8 PROBLEMS
Note: In the following problems, you will deal with both the International
System of Units (SI) (N, kg, m, s, K) and the English Engineering System
(lb, slug, ft, s, ◦R). Which system to use will be self-evident in each problem.
All problems deal with calorically perfect air as the gas, unless otherwise noted.
Also, recall that 1 atm = 2116 lb/ft2 = 1.01 × 105 N/m2.

7.1 The temperature and pressure at the stagnation point of a high-speed
missile are 934 ◦R and 7.8 atm, respectively. Calculate the density at this
point.
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7.2 Calculate cp, cv, e, and h for
a. The stagnation point conditions given in Problem 7.1
b. Air at standard sea level conditions

(If you do not remember what standard sea level conditions are, find them
in an appropriate reference, such as Reference 2.)

7.3 Just upstream of a shock wave, the air temperature and pressure are 288 K
and 1 atm, respectively; just downstream of the wave, the air temperature
and pressure are 690 K and 8.656 atm, respectively. Calculate the changes
in enthalpy, internal energy, and entropy across the wave.

7.4 Consider the isentropic flow over an airfoil. The freestream conditions are
T∞ = 245 K and p∞ = 4.35 × 104 N/m2. At a point on the airfoil, the
pressure is 3.6 × 104 N/m2. Calculate the density at this point.

7.5 Consider the isentropic flow through a supersonic wind-tunnel nozzle. The
reservoir properties are T0 = 500 K and p0 = 10 atm. If p = 1 atm at the
nozzle exit, calculate the exit temperature and density.

7.6 Consider air at a pressure of 0.2 atm. Calculate the values of τT and τs .
Express your answer in SI units.

7.7 Consider a point in a flow where the velocity and temperature are 1300 ft/s
and 480 ◦R, respectively. Calculate the total enthalpy at this point.

7.8 In the reservoir of a supersonic wind tunnel, the velocity is negligible, and
the temperature is 1000 K. The temperature at the nozzle exit is 600 K.
Assuming adiabatic flow through the nozzle, calculate the velocity at
the exit.

7.9 An airfoil is in a freestream where p∞ = 0.61 atm, ρ∞ = 0.819 kg/m3,
and V∞ = 300 m/s. At a point on the airfoil surface, the pressure is
0.5 atm. Assuming isentropic flow, calculate the velocity at that point.

7.10 Calculate the percentage error obtained if Problem 7.9 is solved using
(incorrectly) the incompressible Bernoulli equation.

7.11 Repeat Problem 7.9, considering a point on the airfoil surface where the
pressure is 0.3 atm.

7.12 Repeat Problem 7.10, considering the flow of Problem 7.11.
7.13 Bernoulli’s equation, Equation (3.13), (3.14), or (3.15), was derived in

Chapter 3 from Newton’s second law; it is fundamentally a statement that
force = mass × acceleration. However, the terms in Bernoulli’s equation
have dimensions of energy per unit volume (check it out), which prompt
some argument that Bernoulli’s equation is an energy equation for
incompressible flow. If this is so, then it should be derivable from the
energy equation for compressible flow discussed in the present chapter.
Starting with Equation (7.53) for inviscid, adiabatic compressible flow,
make the appropriate assumptions for an incompressible flow and see
what you need to do to obtain Bernoulli’s equation.





C H A P T E R 8
Normal Shock Waves
and Related Topics

Shock wave: A large-amplitude compression wave, such as that produced by an
explosion, caused by supersonic motion of a body in a medium.

From the American Heritage Dictionary
of the English Language, 1969

PREVIEW BOX

When you have a supersonic flow, chances are that
you also have shock waves. Shock waves are excep-
tionally thin regions—usually much thinner than the
thickness of this page—across which the flow prop-
erties change drastically. Take pressure for example.
The gas pressure in front of the shock wave may be
1 atm, and immediately behind it the pressure may be
20 atm. Imagine that you are a fluid element cross-
ing the shock wave; at one moment you are at 1 atm
pressure and a split second later you are at 20 atm. I
do not know about you, but if it were me I would be
shocked out of my mind. (Perhaps this is why we call
them “shock” waves.)

This chapter is all about shock waves. Here we
learn how to calculate the change in flow properties

across a shock, and we examine the important phys-
ical aspects and consequences of shock waves. In
this chapter, we focus on shock waves that are per-
pendicular to the flow—normal shock waves. What
we learn here is directly transferable to the study of
shock waves that make an oblique angle to the flow—
oblique shock waves—discussed in the next chapter.
A study of shock-wave phenomena is one of the most
important aspects of learning about supersonic flows.
So take this chapter very seriously. Besides, shock
waves are rather exciting events in nature, so enjoy
this excitement.

561
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8.1 INTRODUCTION
The purpose of this chapter and Chapter 9 is to develop shock-wave theory, thus
giving us the means to calculate the changes in the flow properties across a wave.
These changes were discussed qualitatively in Section 7.6; make certain that you
are familiar with these changes before continuing.

The focus of this chapter is on normal shock waves, as sketched in Figure 7.4b.
At first thought, a shock wave that is normal to the upstream flow may seem to be
a very special case—and therefore a case of little practical interest—but nothing
could be further from the truth. Normal shocks occur frequently in nature. Two
such examples are sketched in Figure 8.1; there are many more. The supersonic
flow over a blunt body is shown at the left of Figure 8.1. Here, a strong bow
shock wave exists in front of the body. (We study such bow shocks in Chapter 9.)
Although this wave is curved, the region of the shock closest to the nose is
essentially normal to the flow. Moreover, the streamline that passes through this
normal portion of the bow shock later impinges on the nose of the body and
controls the values of stagnation (total) pressure and temperature at the nose. Since
the nose region of high-speed blunt bodies is of practical interest in the calculation
of drag and aerodynamic heating, the properties of the flow behind the normal
portion of the shock wave take on some importance. In another example, shown
at the right of Figure 8.1, supersonic flow is established inside a nozzle (which
can be a supersonic wind tunnel, a rocket engine, etc.) where the back pressure
is high enough to cause a normal shock wave to stand inside the nozzle. (We
discuss such “overexpanded” nozzle flows in Chapter 10.) The conditions under
which this shock wave will occur and the determination of flow properties at the
nozzle exit downstream of the normal shock are both important questions to be
answered. In summary, for these and many other applications, the study of normal
shock waves is important.

Finally, we will find that many of the normal shock relations derived in this
chapter carry over directly to the analysis of oblique shock waves, as discussed

Figure 8.1 Two examples where normal shock waves are of interest.
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Figure 8.2 Road map for Chapter 8.

in Chapter 9. So once again, time spent on normal shock waves is time well
spent.

The road map for this chapter is given in Figure 8.2. As you can see, our
objectives are fairly short and straightforward. We start with a derivation of the
basic continuity, momentum, and energy equations for normal shock waves, and
then we employ these basic relations to obtain detailed equations for the calcu-
lation of flow properties across the shock wave. In addition, we emphasize the
physical trends indicated by the equations. On the way toward this objective,
we take three side streets having to do with (1) the speed of sound, (2) special
forms of the energy equation, and (3) a further discussion of the criteria used to
judge when a flow must be treated as compressible. Finally, we apply the results
of this chapter to the measurement of airspeed in a compressible flow using a
Pitot tube. Keep the road map in Figure 8.2 in mind as you progress through the
chapter.

8.2 THE BASIC NORMAL SHOCK EQUATIONS
Consider the normal shock wave sketched in Figure 8.3. Region 1 is a uniform
flow upstream of the shock, and region 2 is a different uniform flow downstream
of the shock. The pressure, density, temperature, Mach number, velocity, total
pressure, total enthalpy, total temperature, and entropy in region 1 are p1, ρ1,
T1, M1, u1, p0,1, h0,1, T0,1, and s1, respectively. The corresponding variables in
region 2 are denoted by p2, ρ2, T2, M2, u2, p0,2, h0,2, T0,2, and s2. (Note that we
are denoting the magnitude of the flow velocity by u rather than V ; reasons for
this will become obvious as we progress.) The problem of the normal shock wave
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Figure 8.3 Sketch of a normal wave.

is simply stated as follows: given the flow properties upstream of the wave (p1,
T1, M1, etc.), calculate the flow properties (p2, T2, M2, etc.) downstream of the
wave. Let us proceed.

Consider the rectangular control volume abcd given by the dashed line in
Figure 8.3. The shock wave is inside the control volume, as shown. Side ab is the
edge view of the left face of the control volume; this left face is perpendicular
to the flow, and its area is A. Side cd is the edge view of the right face of the
control volume; this right face is also perpendicular to the flow, and its area is
A. We apply the integral form of conservation equations to this control volume.
In the process, we observe three important physical facts about the flow given in
Figure 8.3:

1. The flow is steady, that is, ∂/∂t = 0.
2. The flow is adiabatic, that is, q̇ = 0. We are not adding or taking away heat

from the control volume (we are not heating the shock wave with a Bunsen
burner, for example). The temperature increases across the shock wave, not
because heat is being added, but rather, because kinetic energy is converted
to internal energy across the shock wave.

3. There are no viscous effects on the sides of the control volume. The shock
wave itself is a thin region of extremely high velocity and temperature
gradients; hence, friction and thermal conduction play an important role on
the flow structure inside the wave. However, the wave itself is buried inside
the control volume, and with the integral form of the conservation
equations, we are not concerned about the details of what goes on inside
the control volume.

4. There are no body forces; f = 0.
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Consider the continuity equation in the form of Equation (7.39). For the
conditions described above, Equation (7.39) becomes

.......................................................................
.........

∫∫
S

ρV · dS = 0 (8.1)

To evaluate Equation (8.1) over the face ab, note that V is pointing into the
control volume, whereas dS by definition is pointing out of the control volume,
in the opposite direction of V; hence, V · dS is negative. Moreover, ρ and |V|
are uniform over the face ab and equal to ρ1 and u1, respectively. Hence, the
contribution of face ab to the surface integral in Equation (8.1) is simply −ρ1u1 A.
Over the right face cd both V and dS are in the same direction, and hence V · dS
is positive. Moreover, ρ and |V| are uniform over the face cd and equal to ρ2 and
u2, respectively. Thus, the contribution of face cd to the surface integral is ρ2u2 A.
On sides bc and ad , V and dS are always perpendicular; hence, V · dS = 0, and
these sides make no contribution to the surface integral. Hence, for the control
volume shown in Figure 8.3, Equation (8.1) becomes

−ρ1u1 A + ρ2u2 A = 0

or ρ1u1 = ρ2u2 (8.2)

Equation (8.2) is the continuity equation for normal shock waves.
Consider the momentum equation in the form of Equation (7.41). For the

flow we are treating here, Equation (7.41) becomes

.......................................................................
.........

∫∫
S

(ρV · dS)V = − .......................................................................
.........

∫∫
S

p dS (8.3)

Equation (8.3) is a vector equation. Note that in Figure 8.3, the flow is moving
only in one direction (i.e., in the x direction). Hence, we need to consider only
the scalar x component of Equation (8.3), which is

.......................................................................
.........

∫∫
S

(ρV · dS)u = − .......................................................................
.........

∫∫
S

(p d S)x (8.4)

In Equation (8.4), (p d S)x is the x component of the vector (p dS). Note that over
the face ab, dS points to the left (i.e., in the negative x direction). Hence, (p d S)x

is negative over face ab. By similar reasoning, (p d S)x is positive over the face
cd. Again noting that all the flow variables are uniform over the faces ab and cd,
the surface integrals in Equation (8.4) become

ρ1(−u1 A)u1 + ρ2(u2 A)u2 = −(−p1 A + p2 A) (8.5)

or p1 + ρ1u2
1 = p2 + ρ2u2

2 (8.6)

Equation (8.6) is the momentum equation for normal shock waves.
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Consider the energy equation in the form of Equation (7.43). For steady,
adiabatic, inviscid flow with no body forces, this equation becomes

.......................................................................
.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS = − .......................................................................

.........

∫∫
S

pV · dS (8.7)

Evaluating Equation (8.7) for the control surface shown in Figure 8.3, we have

−ρ1

(
e1 + u2

1

2

)
u1 A + ρ2

(
e2 + u2

2

2

)
u2 A = −(−p1u1 A + p2u2 A)

Rearranging, we obtain

p1u1 + ρ1

(
e1 + u2

1

2

)
u1 = p2u2 + ρ2

(
e2 + u2

2

2

)
u2 (8.8)

Dividing by Equation (8.2), that is, dividing the left-hand side of Equation (8.8)
by ρ1u1 and the right-hand side by ρ2u2, we have

p1

ρ1
+ e1 + u2

1

2
= p2

ρ2
+ e2 + u2

2

2
(8.9)

From the definition of enthalpy, h ≡ e + pv = e + p/ρ. Hence, Equation (8.9)
becomes

h1 + u2
1

2
= h2 + u2

2

2
(8.10)

Equation (8.10) is the energy equation for normal shock waves. Equation (8.10)
should come as no surprise; the flow through a shock wave is adiabatic, and we
derived in Section 7.5 the fact that for a steady, adiabatic flow, h0 = h + V 2/2 =
const. Equation (8.10) simply states that h0 (hence, for a calorically perfect gas
T0) is constant across the shock wave. Therefore, Equation (8.10) is consistent
with the general results obtained in Section 7.5.

Repeating the above results for clarity, the basic normal shock equations are

Continuity: ρ1u1 = ρ2u2 (8.2)

Momentum: p1 + ρ1u2
1 = p2 + ρ2u2

2 (8.6)

Energy: h1 + u2
1

2
= h2 + u2

2

2
(8.10)

Examine these equations closely. Recall from Figure 8.3 that all conditions up-
stream of the wave, ρ1, u1, p1, etc., are known. Thus, the above equations are a
system of three algebraic equations in four unknowns, ρ2, u2, p2, and h2. However,
if we add the following thermodynamic relations

Enthalpy: h2 = cpT2

Equation of state: p2 = ρ2 RT2

we have five equations for five unknowns, namely, ρ2, u2, p2, h2, and T2. In Sec-
tion 8.6, we explicitly solve these equations for the unknown quantities behind
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the shock. However, rather than going directly to that solution, we first take three
side trips as shown in the road map in Figure 8.2. These side trips involve discus-
sions of the speed of sound (Section 8.3), alternate forms of the energy equation
(Section 8.4), and compressibility (Section 8.5)—all of which are necessary for
a viable discussion of shock-wave properties in Section 8.6.

Finally, we note that Equations (8.2), (8.6), and (8.10) are not limited to
normal shock waves; they describe the changes that take place in any steady,
adiabatic, inviscid flow where only one direction is involved. That is, in Figure 8.3,
the flow is in the x direction only. This type of flow, where the flow-field variables
are functions of x only [p = p(x), u = u(x), etc.], is defined as one-dimensional
flow. Thus, Equations (8.2), (8.6), and (8.10) are governing equations for one-
dimensional, steady, adiabatic, inviscid flow.

8.3 SPEED OF SOUND
Common experience tells us that sound travels through air at some finite velocity.
For example, you see a flash of lightning in the distance, but you hear the corre-
sponding thunder at some later moment. What is the physical mechanism of the
propagation of sound waves? How can we calculate the speed of sound? What
properties of the gas does it depend on? The speed of sound is an extremely impor-
tant quantity which dominates the physical properties of compressible flow, and
hence the answers to the above questions are vital to our subsequent discussions.
The purpose of this section is to address these questions.

The physical mechanism of sound propagation in a gas is based on molecular
motion. For example, imagine that you are sitting in a room, and suppose that a
firecracker goes off in one corner. When the firecracker detonates, chemical energy
(basically a form of heat release) is transferred to the air molecules adjacent
to the firecracker. These energized molecules are moving about in a random
fashion. They eventually collide with some of their neighboring molecules and
transfer their high energy to these neighbors. In turn, these neighboring molecules
eventually collide with their neighbors and transfer energy in the process. By
means of this “domino” effect, the energy released by the firecracker is propagated
through the air by molecular collisions. Moreover, because T , p, and ρ for a
gas are macroscopic averages of the detailed microscopic molecular motion, the
regions of energized molecules are also regions of slight variations in the local
temperature, pressure, and density. Hence, as this energy wave from the firecracker
passes over our eardrums, we “hear” the slight pressure changes in the wave. This
is sound, and the propagation of the energy wave is simply the propagation of a
sound wave through the gas.

Because a sound wave is propagated by molecular collisions, and because
the molecules of a gas are moving with an average velocity of

√
8RT/π given by

kinetic theory, then we would expect the velocity of propagation of a sound wave
to be approximately the average molecular velocity. Indeed, the speed of sound is
about three-quarters of the average molecular velocity. In turn, because the kinetic
theory expression given above for the average molecular velocity depends only
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Figure 8.4 Moving and stationary sound waves; two
analogous pictures, only the perspective is different.

on the temperature of the gas, we might expect the speed of sound to also depend
on temperature only. Let us explore this matter further; indeed, let us now derive
an equation for the speed of sound in a gas. Although the propagation of sound
is due to molecular collisions, we do not use such a microscopic picture for our
derivation. Rather, we take advantage of the fact that the macroscopic properties
p, T , ρ, etc., change across the wave, and we use our macroscopic equations of
continuity, momentum, and energy to analyze these changes.

Consider a sound wave propagating through a gas with velocity a, as sketched
in Figure 8.4a. Here, the sound wave is moving from right to left into a stagnant
gas (region 1), where the local pressure, temperature, and density are p, T , and
ρ, respectively. Behind the sound wave (region 2), the gas properties are slightly
different and are given by p + dp, T + dT , andρ + dρ, respectively. Now imagine
that you hop on the wave and ride with it. When you look upstream, into region 1,
you see the gas moving toward you with a relative velocity a, as sketched in
Figure 8.4b. When you look downstream, into region 2, you see the gas receding
away from you with a relative velocity a + da, as also shown in Figure 8.4. (We
have enough fluid-dynamic intuition by now to realize that because the pressure
changes across the wave by the amount dp, then the relative flow velocity must
also change across the wave by some amount da. Hence, the relative flow velocity
behind the wave is a + da.) Consequently, in Figure 8.4b, we have a picture of
a stationary sound wave, with the flow ahead of it moving left to right with
velocity a. The pictures in Figure 8.4a and b are analogous; only the perspective
is different. For purposes of analysis, we use Figure 8.4b.

(Note: Figure 8.4b is similar to the picture of a normal shock wave shown in
Figure 8.3. In Figure 8.3, the normal shock wave is stationary, and the upstream
flow is moving left to right at a velocity u1. If the upstream flow were to be
suddenly shut off, then the normal shock wave in Figure 8.3 would suddenly
propagate to the left with a wave velocity of u1, similar to the moving sound
wave shown in Figure 8.4a. The analysis of moving waves is slightly more subtle
than the analysis of stationary waves; hence, it is simpler to begin a study of
shock waves and sound waves with the pictures of stationary waves as shown
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in Figures 8.3 and 8.4b. Also, please note that the sound wave in Figure 8.4b is
nothing more than an infinitely weak normal shock wave.)

Examine closely the flow through the sound wave sketched in Figure 8.4b.
The flow is one-dimensional. Moreover, it is adiabatic, because we have no source
of heat transfer into or out of the wave (e.g., we are not “zapping” the wave with
a laser beam or heating it with a torch). Finally, the gradients within the wave
are very small—the changes dp, dT , dρ, and da are infinitesimal. Therefore,
the influence of dissipative phenomena (viscosity and thermal conduction) is
negligible. As a result, the flow through the sound wave is both adiabatic and
reversible—the flow is isentropic. Since we have now established that the flow is
one-dimensional and isentropic, let us apply the appropriate governing equations
to the picture shown in Figure 8.4b.

Applying the continuity equation, Equation (8.2), to Figure 8.4b, we have

ρa = (ρ + dρ)(a + da)

or ρa = ρa + a dρ + ρ da + dρ da (8.11)

The product of two differentials, dρ da, can be neglected in comparison with the
other terms in Equation (8.11). Hence, solving Equation (8.11) for a, we obtain

a = −ρ
da

dρ
(8.12)

Now consider the one-dimensional momentum equation, Equation (8.6), applied
to Figure 8.4b:

p + ρa2 = (p + dp) + (ρ + dρ)(a + da)2 (8.13)

Again ignoring products of differentials, Equation (8.13) becomes

dp = −2aρ da − a2 dρ (8.14)

Solving Equation (8.14) for da, we have

da = dp + a2 dρ

−2aρ
(8.15)

Substituting Equation (8.15) into (8.12), we obtain

a = −ρ
dp/dρ + a2

−2aρ
(8.16)

Solving Equation (8.16) for a2, we have

a2 = dp

dρ
(8.17)

As discussed above, the flow through a sound wave is isentropic; hence, in Equa-
tion (8.17), the rate of change of pressure with respect to density, dp/dρ, is an
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isentropic change. Hence, we can rewrite Equation (8.17) as

a =
√(

∂p

∂ρ

)
s

(8.18)

Equation (8.18) is a fundamental expression for the speed of sound in a gas.
Assume that the gas is calorically perfect. For such a case, the isentropic

relation given by Equation (7.32) holds, namely,

p1

p2
=

(
ρ1

ρ2

)γ

(8.19)

From Equation (8.19), we have
p

ργ
= const = c

or p = cργ (8.20)

Differentiating Equation (8.20) with respect to ρ, we obtain(
∂p

∂ρ

)
s

= cγργ−1 (8.21)

Substituting Equation (8.20) for the constant c in Equation (8.21), we have(
∂p

∂ρ

)
s

=
(

p

ργ

)
γργ−1 = γ p

ρ
(8.22)

Substituting Equation (8.22) into (8.18), we obtain

a =
√

γ p

ρ
(8.23)

Equation (8.23) is an expression for the speed of sound in a calorically perfect
gas. At first glance, Equation (8.23) seems to imply that the speed of sound would
depend on both p and ρ. However, pressure and density are related through the
perfect gas equation of state,

p

ρ
= RT (8.24)

Hence, substituting Equation (8.24) into (8.23), we have

a = √
γ RT (8.25)

which is our final expression for the speed of sound; it clearly states that the
speed of sound in a calorically perfect gas is a function of temperature only. This
is consistent with our earlier discussion of the speed of sound being a molec-
ular phenomenon, and therefore it is related to the average molecular velocity√

8RT/π .
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The speed of sound at standard sea level is a useful value to remember; it is

as = 340.9 m/s = 1117 ft/s

Recall the definition of compressibility given in Section 7.3. In particular,
from Equation (7.35) for the isentropic compressibility, repeated below,

τs = −1

v

(
∂v

∂p

)
s

and recalling that v = 1/ρ (hence, dv = −dρ/ρ2), we have

τs = −ρ

[
− 1

ρ2

(
∂ρ

∂p

)
s

]
= 1

ρ(∂p/∂ρ)s
(8.26)

However, recall from Equation (8.18) that (∂p/∂ρ)s = a2. Hence, Equation (8.26)
becomes

τs = 1

ρa2

or a =
√

1

ρτs
(8.27)

Equation (8.27) relates the speed of sound to the compressibility of a gas. The
lower the compressibility, the higher the speed of sound. Recall that for the
limiting case of an incompressible fluid τs = 0. Hence, Equation (8.27) states
that the speed of sound in a theoretically incompressible fluid is infinite. In turn,
for an incompressible flow with finite velocity V , the Mach number, M = V/a, is
zero. Hence, the incompressible flows treated in Chapters 3 to 6 are theoretically
zero-Mach-number flows.

Finally, in regard to additional physical meaning of the Mach number, consider
a fluid element moving along a streamline. The kinetic and internal energies per
unit mass are V 2/2 and e, respectively. Their ratio is [recalling Equations (7.6a),
(7.10), and (8.25)]

V 2/2

e
= V 2/2

cvT
= V 2/2

RT/(γ − 1)
= (γ /2)V 2

a2/(γ − 1)
= γ (γ − 1)

2
M2

Hence, we see that the square of the Mach number is proportional to the ratio of
kinetic energy to internal energy of a gas flow. In other words, the Mach number
is a measure of the directed motion of the gas compared with the random thermal
motion of the molecules.

EXAMPLE 8.1

Consider an airplane flying at a velocity of 250 m/s. Calculate its Mach number if it is
flying at a standard altitude of (a) sea level, (b) 5 km, (c) 10 km.
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■ Solution
(a) From Appendix D for the standard atmosphere, at sea level, T∞ = 288 K.

a∞ =
√

γ RT =
√

(1.4)(287)(288) = 340.2 m/s

Hence, M∞ = V∞
a∞

= 250

340.2
= 0.735

(b) At 5 km, from Appendix D, T∞ = 255.7.

a∞ =
√

(1.4)(287)(255.7) = 320.5 m/s

M∞ = V∞
a∞

= 250

320.2
= 0.78

(c) At 10 km, from Appendix D, T∞ = 223.3.

a∞ =
√

(1.4)(287)(223.3) = 299.5 m/s

M∞ = V∞
a∞

= 250

299.5
= 0.835

Note: (1) The Mach number used here is the freestream Mach number. When we refer to
the Mach number of an airplane or any other object in flight, it is the velocity of the object
divided by the freestream speed of sound.

(2) The Mach number of the airplane in this example obviously depends on the
altitude at which it is flying, because the speed of sound is different at different altitudes.
In this example, an airplane velocity of 250 m/s corresponds to a Mach number of 0.735
at sea level, but a higher Mach number of 0.835 at an altitude of 10 km.

EXAMPLE 8.2

Consider the flow properties at the point in the flow described in Example 7.3, where the
temperature is 320 K and the velocity is 1000 m/s. Calculate the Mach number at this
point.

■ Solution

a =
√

γ RT =
√

(1.4)(287)(320) = 358.6 m/s

M = V

a
= 1000

358.6
= 2.79

Note: This simple calculation is given here to demonstrate that Mach number is a local
property of the flow; it varies from point-to-point throughout the flow field. This is in
contrast to the freestream Mach number calculated in Example 8.1. A purpose of these
two examples is to illustrate the two uses of Mach number.

EXAMPLE 8.3

Calculate the ratio of kinetic energy to internal energy at a point in an airflow where the
Mach number is: (a) M = 2, and (b) M = 20.
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■ Solution

(a)
V 2/2

e
= γ (γ − 1)

2
M2 = (1.4)(0.4)

2
(2)2 = 1.12

(b)
V 2/2

e
= γ (γ − 1)

2
M2 = (1.4)(0.4)

2
(20)2 = 112

Note: Examining these two results, we see that at Mach 2, the kinetic energy and internal
energy are about the same, whereas at the large hypersonic Mach number of 20, the
kinetic energy is more than a hundred times larger than the internal energy. This is one
characteristic of hypersonic flows—high ratios of kinetic to internal energy.

EXAMPLE 8.4

Consider a point in a flow of air where the pressure and density are 0.7 atm and 0.0019
slug/ft3, respectively. (a) Calculate the corresponding value of the isentropic compress-
ibility. (b) From that value of the isentropic compressibility, calculate the speed of sound
at the point in the flow.

■ Solution
(a) The isentropic compressibility, τs , is defined by Equation (7.35),

τs = −1

v

(
∂v

∂p

)
s

(7.35)

The relation between p and v for an isentropic process is given by Equation (7.32), which
can be written in the form:

p = c ργ = c

(
1

v

)γ

(E8.1)

where c is a constant. Solving Equation (E8.1) for v gives

v = c1 p−(1/γ ) (E8.2)

where c1 = c(1/γ ), another constant value. Differentiating Equation (E8.2), we have(
∂v

∂p

)
s

= c1

(
− 1

γ

)
p−(1/γ )−1 (E8.3)

From Equation (E8.2)

c1 = vp1/γ

Substituting this expression for c1 into Equation (E8.3),(
∂v

∂p

)
s

= − 1

γ

(
vp1/γ

)
p−(1/γ )−1 = − v

γ p

Substituting this result into Equation (7.35), we have

τs = −1

v

(
− v

γ p

)
= 1

γ p
(E8.4)
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Thus, for air at a pressure of 0.7 atm, Equation (E8.4) yields

τs = 1

(1.4)(0.7)
= 1.02 atm−1

(b) From Equation (8.27)

a =
√

1

ρτs
(8.27)

and using consistent units for τs gives

τs = 1.02 atm−1
(

1atm

2116 lb/ft2

)
= 4.82 × 10−4(lb/ft2)−1

we have

a =
√

1

ρτs
=

√
1

0.0019(4.82 × 10−4)
= 1045 ft/s

Check:

T = p

ρR
= (0.7)(2116)

(0.0019)(1716)
= 454.3 ◦R

From Equation (8.25)

a =
√

γ RT =
√

(1.4)(1716)(454.3) = 1045 ft/s

The answer checks!

EXAMPLE 8.5

By the seventeenth century it was understood that sound propagates through air at some
finite velocity. By the time Isaac Newton published his Principia in 1687, artillery tests had
already shown that the sea-level speed of sound was approximately 1140 ft/s. Comparing
that result with today’s knowledge of the standard speed of sound at sea level, namely
1117 ft/s, shows that these early seventeenth century measurements were remarkably
accurate. Armed with this experimental result for the speed of sound, Isaac Newton in
his Principia made the first calculation of the speed of sound (see Reference 58). Here
Newton correctly theorized that the speed of sound was related to the “elasticity” of the
air, which is the reciprocal of the compressibility, τ . However, he incorrectly assumed
that the changes of properties in a sound wave took place isothermally. Using Newton’s
assumption of isothermal changes through the sound wave, calculate the value obtained
by Newton for sea-level speed of sound.

■ Solution
The isothermal compressibility is defined as

τT = −1

v

(
∂v

∂p

)
T

(7.34)
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From the equation of state, v = RT/p. Thus(
∂v

∂p

)
T

= − RT

p2

Substituting this result into Equation (7.34), we have

τT = −1

v

(
− RT

p2

)
= RT

(pv)p
= RT

(RT )p
= 1

p
(E8.5)

Using this isothermal value for the compressibility in Equation (8.27) rather than the
correct isentropic compressibility, we have (incorrectly)

aT =
√

1

ρτT
(Newton’s incorrect result) (E8.6)

At standard sea level, p = 2116 lb/ft2 and ρ = 0.002377 slug/ft3. Hence, the calculation
of the speed of sound assuming isothermal conditions through the sound wave is, from
Equations (E8.5) and (E8.6),

aT =
√

1

ρτT
=

√
p

ρ
=

√
2116

0.002377
= 943.5 ft/s

Isaac Newton reported in his Principia a value of 979 ft/s for the speed of sound, about
4 percent higher than the value calculated in this example. The difference is most likely
due to the rather imprecise values for sea-level atmospheric properties known in Newton’s
time. Note: The isentropic compressibility is given by

τs = 1

γ p
(E8.4)

The isothermal compressibility is given by

τT = 1

p
(E8.5)

The two values differ by the factor γ . The speed of sound calculated from the isothermal
compressibility will be smaller than that calculated from the isentropic compressibility
by the factor (γ )−1/2, or by 0.845. The isothermal calculation will yield a speed of sound
about 15 percent lower than the correct value. It is interesting that Newton’s calculated
value of the speed of sound, as reported in his Principia, was about 15 percent lower
than the measured value at that time of 1140 ft/s. Undaunted, Newton tried to explain
away the differences as due to the presence of dust particles and water vapor in the
atmosphere. Finally, a century later the French mathematician Laplace corrected Newton’s
error by correctly assuming that a sound wave was adiabatic, not isothermal. Therefore,
by Napoleon’s time in the 1820s, the process and relationship for the propagation of sound
in a gas were fully understood.

8.3.1 Comments

In Examples 8.4 and 8.5 we dealt with the role of compressibility, τ , in the
determination of the speed of sound. We found that both τT and τs are functions
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of pressure. When τs is used in Equation (8.27) to obtain the speed of sound,
density also appears in the equation, making it seem that a = a(ρ, p). Indeed,
for both Examples 8.4 and 8.5, we used values of both p and ρ to calculate the
speed of sound. But keep in mind that p and ρ in the equation for speed of sound
always appear in the form p/ρ [see Equation (8.23), for example], and from the
perfect gas equation of state, p/ρ = RT . Hence, we emphasize again that the
speed of sound in a perfect gas is a function of temperature only. If we have a gas,
and we double the pressure of this gas while keeping the temperature constant, the
speed of sound remains the same. If we halve the density, keeping the temperature
constant, the speed of sound remains the same. Only in the case of an equilibrium
chemically reacting gas and/or a gas where intermolecular forces are important
(a gas that is not a perfect gas, as discussed in Section 7.2.1), does the speed
of sound become a function of both temperature and pressure (see, for example,
References 21 and 52).

EXAMPLE 8.6

(a) Consider a long tube with a length of 300 m. The tube is filled with air at a temperature
of 320 K. A sound wave is generated at one end of the tube. How long will it take for the
wave to reach the other end?

(b) If the tube is filled with helium at a temperature of 320 K, and a sound wave is generated
at one end of the tube, how long will it take the sound wave to reach the other end? For a
monatomic gas such as helium, γ = 1.67. Also, for helium R = 2078.5 J/(Kg · K).

■ Solution
(a) a =

√
γ RT =

√
(1.4)(287)(320) = 358.6 m/s

Letting l = length of the tube and t = time for the sound wave to traverse the length l,

t = l

a
= 300

358.6
= 0.837 s

(b) a =
√

γ RT =
√

(1.67)(2078.5)(320) = 1054 m/s

t = l

a
= 300

1054
= 0.285 s

Note: The speed of sound in helium is much faster than in air at the same temperature for
two reasons: (1) γ is larger for helium and, more important, (2) helium has a molecular
weight M = 4, which is much lighter than that for air with M = 28. Because R = �/M
where � is the universal gas constant, the same value for all gases, then R for helium is
much larger than for air.

8.4 SPECIAL FORMS OF THE ENERGY EQUATION
In this section, we elaborate upon the energy equation for adiabatic flow, as
originally given by Equation (7.44). In Section 7.5, we obtained for a steady,
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adiabatic, inviscid flow the result that

h1 + V 2
1

2
= h2 + V 2

2

2
(8.28)

where V1 and V2 are velocities at any two points along a three-dimensional stream-
line. For the sake of consistency in our current discussion of one-dimensional flow,
let us use u1 and u2 in Equation (8.28):

h1 + u2
1

2
= h2 + u2

2

2
(8.29)

However, keep in mind that all the subsequent results in this section hold in
general along a streamline and are by no means limited to just one-dimensional
flows.

Specializing Equation (8.29) to a calorically perfect gas, where h = cpT , we
have

cpT1 + u2
1

2
= cpT2 + u2

2

2
(8.30)

From Equation (7.9), Equation (8.30) becomes

γ RT1

γ − 1
+ u2

1

2
= γ RT2

γ − 1
+ u2

2

2
(8.31)

Since a = √
γ RT , Equation (8.31) can be written as

a2
1

γ − 1
+ u2

1

2
= a2

2

γ − 1
+ u2

2

2
(8.32)

If we consider point 2 in Equation (8.32) to be a stagnation point, where the
stagnation speed of sound is denoted by a0, then, with u2 = 0, Equation (8.32)
yields (dropping the subscript 1)

a2

γ − 1
+ u2

2
= a2

0

γ − 1
(8.33)

In Equation (8.33), a and u are the speed of sound and flow velocity, respectively,
at any given point in the flow, and a0 is the stagnation (or total) speed of sound
associated with that same point. Equivalently, if we have any two points along a
streamline, Equation (8.33) states that

a2
1

γ − 1
+ u2

1

2
= a2

2

γ − 1
+ u2

2

2
= a2

0

γ − 1
= const (8.34)



578 PART 3 Inviscid, Compressible Flow

Recalling the definition of a∗ given at the end of Section 7.5, let point 2 in
Equation (8.32) represent sonic flow, where u = a∗. Then

a2

γ − 1
+ u2

2
= a∗2

γ − 1
+ a∗2

2

or
a2

γ − 1
+ u2

2
= γ + 1

2(γ − 1)
a∗2 (8.35)

In Equation (8.35), a and u are the speed of sound and flow velocity, respectively,
at any given point in the flow, and a∗ is a characteristic value associated with
that same point. Equivalently, if we have any two points along a streamline,
Equation (8.35) states that

a2
1

γ − 1
+ u2

1

2
= a2

2

γ − 1
+ u2

2

2
= γ + 1

2(γ − 1)
a∗2 = const (8.36)

Comparing the right-hand sides of Equations (8.34) and (8.36), the two proper-
ties a0 and a∗ associated with the flow are related by

γ + 1

2(γ − 1)
a∗2 = a2

0

γ − 1
= const (8.37)

Clearly, these defined quantities, a0 and a∗, are both constants along a given
streamline in a steady, adiabatic, inviscid flow. If all the streamlines emanate from
the same uniform freestream conditions, then a0 and a∗ are constants throughout
the entire flow field.

Recall the definition of total temperature T0, as discussed in Section 7.5. In
Equation (8.30), let u2 = 0; hence T2 = T0. Dropping the subscript 1, we have

cpT + u2

2
= cpT0 (8.38)

Equation (8.38) provides a formula from which the defined total temperature T0

can be calculated from the given actual conditions of T and u at any given point
in a general flow field. Equivalently, if we have any two points along a streamline
in a steady, adiabatic, inviscid flow, Equation (8.38) states that

cpT1 + u2
1

2
= cpT2 + u2

2

2
= cpT0 = const (8.39)

If all the streamlines emanate from the same uniform freestream, then Equa-
tion (8.39) holds throughout the entire flow, not just along a streamline.
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For a calorically perfect gas, the ratio of total temperature to static temperature
T0/T is a function of Mach number only, as follows. From Equations (8.38) and
(7.9), we have

T0

T
= 1 + u2

2cpT
= 1 + u2

2γ RT/(γ − 1)
= 1 + u2

2a2/(γ − 1)

= 1 + γ − 1

2

(
u

a

)2

Hence,
T0

T
= 1 + γ − 1

2
M2 (8.40)

Equation (8.40) is very important; it states that only M (and, of course, the value
of γ ) dictates the ratio of total temperature to static temperature.

Recall the definition of total pressure p0 and total density ρ0, as discussed in
Section 7.5. These definitions involve an isentropic compression of the flow to
zero velocity. From Equation (7.32), we have

p0

p
=

(
ρ0

ρ

)γ

=
(

T0

T

)γ /(γ−1)

(8.41)

Combining Equations (8.40) and (8.41), we obtain

p0

p
=

(
1 + γ − 1

2
M2

)γ /(γ−1)

ρ0

ρ
=

(
1 + γ − 1

2
M2

)1/(γ−1)

(8.42)

(8.43)

Similar to the case of T0/T , we see from Equations (8.42) and (8.43) that the
total-to-static ratios p0/p and ρ0/ρ are determined by M and γ only. Hence, for
a given gas (i.e., given γ ), the ratios T0/T , p0/p, and ρ0/ρ depend only on Mach
number.

Equations (8.40), (8.42), and (8.43) are very important; they should be branded
on your mind. They provide formulas from which the defined quantities T0, p0,
and ρ0 can be calculated from the actual conditions of M , T , p, and ρ at a given
point in a general flow field (assuming a calorically perfect gas). They are so
important that values of T0/T , p0/p, and ρ0/ρ obtained from Equations (8.40),
(8.42), and (8.43), respectively, are tabulated as functions of M in Appendix A
for γ = 1.4 (which corresponds to air at standard conditions).

Consider a point in a general flow where the velocity is exactly sonic (i.e.,
where M = 1). Denote the static temperature, pressure, and density at this sonic
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condition as T ∗, p∗, and ρ∗, respectively. Inserting M = 1 into Equations (8.40),
(8.42), and (8.43), we obtain

T ∗

T0
= 2

γ + 1

p∗

p0
=

(
2

γ + 1

)γ /(γ−1)

ρ∗

ρ0
=

(
2

γ + 1

)1/(γ−1)

(8.44)

(8.45)

(8.46)

For γ = 1.4, these ratios are

T ∗

T0
= 0.833

p∗

p0
= 0.528

ρ∗

ρ0
= 0.634

which are useful numbers to keep in mind for subsequent discussions.
We have one final item of business in this section. In Chapter 1, we defined

the Mach number as M = V/a (or, following the one-dimensional notation in
this chapter, M = u/a). In turn, this allowed us to define several regimes of flow,
among them being

M < 1 (subsonic flow)
M = 1 (sonic flow)
M > 1 (supersonic flow)

In the definition of M , a is the local speed of sound, a = √
γ RT . In the theory of

supersonic flow, it is sometimes convenient to introduce a “characteristic” Mach
number M∗ defined as

M∗ ≡ u

a∗

where a∗ is the value of the speed of sound at sonic conditions, not the actual
local value. This is the same a∗ introduced at the end of Section 7.5 and used in
Equation (8.35). The value of a∗ is given by a∗ = √

γ RT ∗. Let us now obtain a
relation between the actual Mach number M and this defined characteristic Mach
number M∗. Dividing Equation (8.35) by u2, we have

(a/u)2

γ − 1
+ 1

2
= γ + 1

2(γ − 1)

(
a∗

u

)2

(1/M)2

γ − 1
= γ + 1

2(γ − 1)

(
1

M∗

)2

− 1

2

M2 = 2

(γ + 1)/M∗2 − (γ − 1)
(8.47)
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Equation (8.47) gives M as a function of M∗. Solving Equation (8.47) for M∗2,
we have

M∗2 = (γ + 1)M2

2 + (γ − 1)M2
(8.48)

which gives M∗ as a function of M . As can be shown by inserting numbers into
Equation (8.48) (try some yourself),

M∗ = 1 if M = 1
M∗ < 1 if M < 1
M∗ > 1 if M > 1

M∗ →
√

γ + 1

γ − 1
if M → ∞

Therefore, M∗ acts qualitatively in the same fashion as M except that M∗

approaches a finite value when the actual Mach number approaches infinity.
In summary, a number of equations have been derived in this section, all of

which stem in one fashion or another from the basic energy equation for steady,
inviscid, adiabatic flow. Make certain that you understand these equations and be-
come very familiar with them before progressing further. These equations are piv-
otal in the analysis of shock waves and in the study of compressible flow in general.

EXAMPLE 8.7

Repeat Example 7.3 using the equations from the present section.

■ Solution
In Example 8.2, the local Mach number was calculated to be M = 2.79. From Equa-
tion (8.40),

T0

T
= 1 + γ − 1

2
M2 = 1 + 0.4

2
(2.79)2 = 2.557

From Example 7.3, T = 320 K. Thus,

T0 = 2.557T = (2.557)(320) = 818 K

From Equation (8.42),

p0

p
=

[
1 + γ − 1

2
(M)2

] γ
γ−1

= (2.557)
1.4
0.4 = 26.7

From Example 7.3, p = 1 atm. Thus,

p0 = 26.7p = 26.7(1) = 26.7 atm

These answers agree with the results obtained in Example 7.3. The technique used here
for calculating T0 and p0 from the Mach number is, philosophically, more fundamental
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than that used in Example 7.3. As we proceed with our discussions, you will find that
Mach number is the major governing parameter for compressible flow.

Note: In this example, we used analytical equations to obtain the answers. For our
subsequent examples we will use the tabulations in Appendix A, which are obtained from
the analytical equations. These tabulations are a convenience that saves us from working
through the equations each time.

EXAMPLE 8.8

Consider a point in an airflow where the local Mach number, static pressure, and static
temperature are 3.5, 0.3 atm, and 180 K, respectively. Calculate the local values of p0, T0,
T ∗, a∗, and M∗ at this point.

■ Solution
From Appendix A, for M = 3.5, p0/p = 76.27 and T0/T = 3.45. Hence,

p0 =
(

p0

p

)
p = 76.27(0.3 atm) = 22.9 atm

T0 = T0

T
T = 3.45(180) = 621 K

For M = 1, T0/T ∗ = 1.2. Hence,

T ∗ = T0

1.2
= 621

1.2
= 517.5 K

a∗ =
√

γ RT ∗ =
√

1.4(287)(517.5) = 456 m/s

a =
√

γ RT =
√

1.4(287)(180) = 268.9 m/s

V = Ma = 3.5(268.9) = 941 m/s

M∗ = V

a∗ = 941

456
= 2.06

The above result for M∗ can also be obtained directly from Equation (8.48):

M∗2 = (γ + 1)M2

2 + (γ − 1)M2 = 2.4(3.5)2

2 + 0.4(3.5)2 = 4.26

Hence, M∗ = √
4.26 = 2.06, as obtained above.

EXAMPLE 8.9

In Example 3.1, we illustrated for an incompressible flow, the calculation of the velocity at a
point on an airfoil when we were given the pressure at that point and the freestream velocity
and pressure. (It would be useful to review Example 3.1 before going further.) The solution
involved the use of Bernoulli’s equation. Let us now examine the compressible flow analog
of Example 3.1. Consider an airfoil in a freestream where M∞ = 0.6 and p∞ = 1 atm, as
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M
� 

= 0.6

p
� 

= 1 atm

1

p1 
= 0.7545 atm

M1 
= ?

Figure 8.5 Figure for Example 8.2.

sketched in Figure 8.5. At point 1 on the airfoil the pressure is p1 = 0.7545 atm. Calculate
the local Mach number at point 1. Assume isentropic flow over the airfoil.

■ Solution
We cannot use Bernoulli’s equation because the freestream Mach number is high enough
that the flow should be treated as compressible. The free stream total pressure for M∞ =
0.6 is, from Appendix A

p0,∞ = p0,∞
p∞

p∞ = (1.276)(1) = 1.276 atm

Recall that for an isentropic flow, the total pressure is constant throughout the flow. Hence,

p0,1 = p0,∞ = 1.276 atm

or
p0,1

p1
= 1.276

0.7545
= 1.691

From Appendix A, for a ratio of total to static pressure equal to 1.69, we have

M1 = 0.9

This is the local Mach number at point 1 on the airfoil in Figure 8.5.

EXAMPLE 8.10

Note that flow velocity did not enter the calculations in Example 8.9. For compressible
flow, Mach number is a more fundamental variable than velocity; we will see this time-
and-time again in the subsequent sections and chapters dealing with compressible flow.
However, we can certainly calculate velocities for compressible flow problems, but in such
cases we usually need to know something about the temperature level of the flow. For the
conditions that prevail in Example 8.9, calculate the velocity at point 1 on the airfoil when
the free stream temperature is 59 ◦F.

■ Solution
We will need to deal with consistent units. Since 0 ◦F is the same as 460 ◦R,

T∞ = 460 + 59 = 519 ◦R

The flow is isentropic, hence, from Equation (7.32)

p1

p∞
=

(
T1

T∞

)γ /(γ−1)
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or T1 = T∞
(

p1

p∞

)(γ−1)/γ

= 519

(
0.7545

1

)(1.4−1)/1.4

= 478.9 ◦R

From Equation (8.25), the speed of sound at point 1 is

a1 =
√

γ RT1 =
√

(1.4)(1716)(478.9) = 1072.6 ft/s

Hence, V1 = M1a1 = (0.9)(1072.6) = 965.4 ft/s

8.5 WHEN IS A FLOW COMPRESSIBLE?
As a corollary to Section 8.4, we are now in a position to examine the question,
When does a flow have to be considered compressible, that is, when do we have to
use analyses based on Chapters 7 to 14 rather than the incompressible techniques
discussed in Chapters 3 to 6? There is no specific answer to this question; for
subsonic flows, it is a matter of the degree of accuracy desired whether we treat ρ

as a constant or as a variable, whereas for supersonic flow the qualitative aspects
of the flow are so different that the density must be treated as variable. We have
stated several times in the preceding chapters the rule of thumb that a flow can
be reasonably assumed to be incompressible when M < 0.3, whereas it should
be considered compressible when M > 0.3. There is nothing magic about the
value 0.3, but it is a convenient dividing line. We are now in a position to add
substance to this rule of thumb.

Consider a fluid element initially at rest, say, an element of the air around
you. The density of this gas at rest is ρ0. Let us now accelerate this fluid element
isentropically to some velocity V and Mach number M , say, by expanding the
air through a nozzle. As the velocity of the fluid element increases, the other
flow properties will change according to the basic governing equations derived
in Chapter 7 and in this chapter. In particular, the density ρ of the fluid element
will change according to Equation (8.43):

ρ0

ρ
=

(
1 + γ − 1

2
M2

)1/(γ−1)

(8.43)

For γ = 1.4, this variation is illustrated in Figure 8.6, where ρ/ρ0 is plotted as
a function of M from zero to sonic flow. Note that at low subsonic Mach num-
bers, the variation of ρ/ρ0 is relatively flat. Indeed, for M < 0.32, the value
of ρ deviates from ρ0 by less than 5 percent, and for all practical purposes the
flow can be treated as incompressible. However, for M > 0.32, the variation
in ρ is larger than 5 percent, and its change becomes even more pronounced as
M increases. As a result, many aerodynamicists have adopted the rule of thumb
that the density variation should be accounted for at Mach numbers above 0.3;
that is, the flow should be treated as compressible. Of course, keep in mind that
all flows, even at the lowest Mach numbers, are, strictly speaking, compress-
ible. Incompressible flow is really a myth. However, as shown in Figure 8.6, the
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Figure 8.6 Isentropic variation of density with Mach number.

assumption of incompressible flow is very reasonable at low Mach numbers. For
this reason, the analyses in Chapters 3 to 6 and the vast bulk of existing literature
for incompressible flow are quite practical for many aerodynamic applications.

To obtain additional insight into the significance of Figure 8.6, let us ask how
the ratio ρ/ρ0 affects the change in pressure associated with a given change in ve-
locity. The differential relation between pressure and velocity for a compressible
flow is given by Euler’s equation, Equation (3.12) repeated below:

dp = −ρV dV (3.12)

This can be written as
dp

p
= −ρ

p
V 2 dV

V

This equation gives the fractional change in pressure for a given fractional change
in velocity for a compressible flow with local density ρ. If we now assume that the
density is constant, say, equal to ρ0 as denoted in Figure 8.6, then Equation (3.12)
yields (

dp

p

)
0

= −ρ0

p
V 2 dV

V

where the subscript zero implies the assumption of constant density. Dividing the
last two equations, and assuming the same dV/V and p, we have

dp/p

(dp/p)0
= ρ

ρ0
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Hence, the degree by which ρ/ρ0 deviates from unity as shown in Figure 8.6 is
related to the same degree by which the fractional pressure change for a given
dV/V is predicted. For example, if ρ/ρ0 = 0.95, which occurs at about M = 0.3
in Figure 8.5, then the fractional change in pressure for a compressible flow with
local density ρ as compared to that for an incompressible flow with density ρ0 will
be about 5 percent different. Keep in mind that the above comparison is for the
local fractional change in pressure, the actual integrated pressure change is less
sensitive. For example, consider the flow of air through a nozzle starting in the
reservoir at nearly zero velocity and standard sea level values of p0 = 2116 lb/ft2

and T0 = 510 ◦R, and expanding to a velocity of 350 ft/s at the nozzle exit. The
pressure at the nozzle exit will be calculated assuming first incompressible flow
and then compressible flow.

Incompressible flow: From Bernoulli’s equation,

p = p0 − 1
2ρV 2 = 2116 − 1

2 (0.002377)(350)2 = 1970 lb/ft2

Compressible flow: From the energy equation, Equation (8.30), with cp =
6006[(ft) (lb)/slug◦R] for air,

T = T0 − V 2

2cp
= 519 − (350)2

2(6006)
= 508.8 ◦R

From Equation (7.32),

p

p0
=

(
T

T0

)γ /(γ−1)

=
(

508.8

519

)3.5

= 0.9329

p = 0.9329p0 = 0.9329(2116) = 1974 lb/ft2

Note that the two results are almost the same, with the compressible value of pres-
sure only 0.2 percent higher than the incompressible value. Clearly, the assump-
tion of incompressible flow (hence, the use of Bernoulli’s equation) is certainly
justified in this case. Also, note that the Mach number at the exit is 0.317 (work this
out for yourself). Hence, we have shown that for a flow wherein the Mach number
ranges from zero to about 0.3, Bernoulli’s equation yields a reasonably accurate
value for the pressure—another justification for the statement that flows wherein
M < 0.3 are essentially incompressible flows. On the other hand, if this flow were
to continue to expand to a velocity of 900 ft/s, a repeat of the above calculation
yields the following results for the static pressure at the end of the expansion:

Incompressible (Bernoulli’s equation): p = 1153 lb/ft2

Compressible: p = 1300 lb/ft2

Here, the difference between the two sets of results is considerable—a 13 percent
difference. In this case, the Mach number at the end of the expansion is 0.86.
Clearly, for such values of Mach number, the flow must be treated as compressible.
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In summary, although it may be somewhat conservative, this author sug-
gests on the strength of all the above information, including Figure 8.6, that
flows wherein the local Mach number exceeds 0.3 should be treated as compress-
ible. Moreover, when M < 0.3, the assumption of incompressible flow is quite
justified.

8.6 CALCULATION OF NORMAL SHOCK-WAVE
PROPERTIES

Consider again the road map given in Figure 8.2. We have finished our three
side trips (Sections 8.3 to 8.5) and are now ready to get back on the main road
toward the calculation of changes of flow properties across a normal shock wave.
Return again to Section 8.2, and recall the basic normal shock equations given by
Equations (8.2), (8.6), and (8.10):

Continuity: ρ1u1 = ρ2u2 (8.2)

Momentum: p1 + ρ1u2
1 = p2 + ρ2u2

2 (8.6)

Energy: h1 + u2
1

2
= h2 + u2

2

2
(8.10)

In addition, for a calorically perfect gas, we have

h2 = cpT2 (8.49)

p2 = ρ2 RT2 (8.50)

Return again to Figure 8.3, and recall the basic normal shock-wave problem: given
the conditions in region 1 ahead of the shock, calculate the conditions in region
2 behind the shock. Examining the five equations given above, we see that they
involve five unknowns, namely, ρ2, u2, p2, h2, and T2. Hence, Equations (8.2),
(8.6), (8.10), (8.49), and (8.50) are sufficient for determining the properties behind
a normal shock wave in a calorically perfect gas. Let us proceed.

First, dividing Equation (8.6) by (8.2), we obtain

p1

ρ1u1
+ u1 = p2

ρ2u2
+ u2

p1

ρ1u1
− p2

ρ2u2
= u2 − u1 (8.51)

Recalling from Equation (8.23) that a = √
γ p/ρ, Equation (8.51) becomes

a2
1

γ u1
− a2

2

γ u2
= u2 − u1 (8.52)

Equation (8.52) is a combination of the continuity and momentum equations.
The energy equation, Equation (8.10), can be used in one of its alternate forms,
namely, Equation (8.35), rearranged below, and applied first in region 1 and then
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in region 2:

a2
1 = γ + 1

2
a∗2 − γ − 1

2
u2

1 (8.53)

and a2
2 = γ + 1

2
a∗2 − γ − 1

2
u2

2 (8.54)

In Equations (8.53) and (8.54), a∗ is the same constant value because the flow
across the shock wave is adiabatic (see Sections 7.5 and 8.5). Substituting Equa-
tions (8.53) and (8.54) into Equation (8.52), we have

γ + 1

2

a∗2

γ u1
− γ − 1

2γ
u1 − γ + 1

2

a∗2

γ u2
+ γ − 1

2γ
u2 = u2 − u1

or
γ + 1

2γ u1u2
(u2 − u1)a

∗2 + γ − 1

2γ
(u2 − u1) = u2 − u1

Dividing by u2 − u1, we obtain

γ + 1

2γ u1u2
a∗2 + γ − 1

2γ
= 1

Solving for a∗, we obtain

a∗2 = u1u2 (8.55)

Equation (8.55) is called the Prandtl relation and is a useful intermediate relation
for normal shock waves. For example, from Equation (8.55),

1 = u1

a∗
u2

a∗ (8.56)

Recall the definition of characteristic Mach number, M∗ = u/a∗, given in Sec-
tion 8.4. Hence, Equation (8.56) becomes

1 = M∗
1 M∗

2

or M∗
2 = 1

M∗
1

(8.57)

Substituting Equation (8.48) into (8.57), we have

(γ + 1)M2
2

2 + (γ − 1)M2
2

=
[

(γ + 1)M2
1

2 + (γ − 1)M2
1

]−1

(8.58)

Solving Equation (8.58) for M2
2 , we obtain

M2
2 = 1 + [(γ − 1)/2]M2

1

γ M2
1 − (γ − 1)/2

(8.59)

Equation (8.59) is our first major result for a normal shock wave. Examine Equa-
tion (8.59) closely; it states that the Mach number behind the wave M2 is a
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function only of the Mach number ahead of the wave M1. Moreover, if M1 = 1,
then M2 = 1. This is the case of an infinitely weak normal shock wave, defined
as a Mach wave. Furthermore, if M1 > 1, then M2 < 1; that is, the Mach num-
ber behind the normal shock wave is subsonic. As M1 increases above 1, the
normal shock wave becomes stronger, and M2 becomes progressively less than
1. However, in the limit as M1 → ∞, M2 approaches a finite minimum value,
M2 → √

(γ − 1)/2γ , which for air is 0.378.
Let us now obtain the ratios of the thermodynamic properties ρ2/ρ1, p2/p1,

and T2/T1 across a normal shock wave. Rearranging Equation (8.2) and using
Equation (8.55), we have

ρ2

ρ1
= u1

u2
= u2

1

u2u1
= u2

a∗2
= M∗2

1 (8.60)

Substituting Equation (8.48) into (8.60), we obtain

ρ2

ρ1
= u1

u2
= (γ + 1)M2

1

2 + (γ − 1)M2
1

(8.61)

To obtain the pressure ratio, return to the momentum equation, Equation (8.6),
combined with the continuity equation, Equation (8.2):

p2 − p1 = ρ1u2
1 − ρ2u2

2 = ρ1u1(u1 − u2) = ρ1u2
1

(
1 − u2

u1

)
(8.62)

Dividing Equation (8.62) by p1, and recalling that a2
1 = γ p1/ρ1, we obtain

p2 − p1

p1
= γρ1u2

1

γ p1

(
1 − u2

u1

)
= γ u2

1

a2
1

(
1 − u2

u1

)
= γ M2

1

(
1 − u2

u1

)
(8.63)

For u2/u1 in Equation (8.63), substitute Equation (8.61):

p2 − p1

p1
= γ M2

1

[
1 − 2 + (γ − 1)M2

1

(γ + 1)M2
1

]
(8.64)

Equation (8.64) simplifies to

p2

p1
= 1 + 2γ

γ + 1
(M2

1 − 1) (8.65)

To obtain the temperature ratio, recall the equation of state p = ρRT . Hence,

T2

T1
=

(
p2

p1

) (
ρ1

ρ2

)
(8.66)

Substituting Equations (8.61) and (8.65) into (8.66), and recalling that h = cpT ,
we obtain

T2

T1
= h2

h1
=

[
1 + 2γ

γ + 1
(M2

1 − 1)

]
2 + (γ − 1)M2

1

(γ + 1)M2
1

(8.67)
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Equations (8.61), (8.65), and (8.67) are important. Examine them closely.
Note that ρ2/ρ1, p2/p1, and T2/T1 are functions of the upstream Mach number
M1 only. Therefore, in conjunction with Equation (8.59) for M2, we see that the
upstream Mach number M1 is the determining parameter for changes across a
normal shock wave in a calorically perfect gas. This is a dramatic example of the
power of the Mach number as a governing parameter in compressible flows. In
the above equations, if M1 = 1, then p2/p1 = ρ2/ρ1 = T2/T1 = 1; that is, we
have the case of a normal shock wave of vanishing strength—a Mach wave. As
M1 increases above 1, p2/p1, ρ2/ρ1, and T2/T1 progressively increase above 1.
In the limiting case of M1 → ∞ in Equations (8.59), (8.61), (8.65), and (8.67),
we find, for γ = 1.4,

lim
M1→∞

M2 =
√

γ − 1

2γ
= 0.378 (as discussed previously)

lim
M1→∞

ρ2

ρ1
= γ + 1

γ − 1
= 6

lim
M1→∞

p2

p1
= ∞ lim

M1→∞
T2

T1
= ∞

Note that, as the upstream Mach number increases toward infinity, the pressure
and temperature increase without bound, whereas the density approaches a rather
moderate finite limit.

We have stated earlier that shock waves occur in supersonic flows; a stationary
normal shock such as shown in Figure 8.3 does not occur in subsonic flow. That
is, in Equations (8.59), (8.61), (8.65), and (8.67), the upstream Mach number
is supersonic M1 ≥ 1. However, on a mathematical basis, these equations also
allow solutions for M1 ≤ 1. These equations embody the continuity, momentum,
and energy equations, which in principle do not care whether the value of M1

is subsonic or supersonic. Here is an ambiguity which can only be resolved by
appealing to the second law of thermodynamics (see Section 7.2). Recall that the
second law of thermodynamics determines the direction which a given process
can take. Let us apply the second law to the flow across a normal shock wave,
and examine what it tells us about allowable values of M1.

First, consider the entropy change across the normal shock wave. From Equa-
tion (7.25),

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1
(7.25)

with Equations (8.65) and (8.67), we have

s2 − s1 = cp ln
{[

1 + 2γ

γ + 1
(M2

1 − 1)

]
2 + (γ − 1)M2

1

(γ + 1)M2
1

}

− R ln
[

1 + 2γ

γ + 1
(M2

1 − 1)

]
(8.68)
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From Equation (8.68), we see that the entropy change s2 − s1 across the shock is
a function of M1 only. The second law dictates that

s2 − s1 ≥ 0

In Equation (8.68), if M1 = 1, s2 = s1, and if M1 > 1, then s2 − s1 > 0, both
of which obey the second law. However, if M1 < 1, then Equation (8.68) gives
s2 − s1 < 0, which is not allowed by the second law. Consequently, in nature,
only cases involving M1 ≥ 1 are valid; that is, normal shock waves can occur
only in supersonic flow.

Why does the entropy increase across the shock wave? The second law tells
us that it must, but what mechanism does nature use to accomplish this increase?
To answer these questions, recall that a shock wave is a very thin region (on the
order of 10−5 cm) across which some large changes occur almost discontinuously.
Therefore, within the shock wave itself, large gradients in velocity and temperature
occur; that is, the mechanisms of friction and thermal conduction are strong.
These are dissipative, irreversible mechanisms that always increase the entropy.
Therefore, the precise entropy increase predicted by Equation (8.68) for a given
supersonic M1 is appropriately provided by nature in the form of friction and
thermal conduction within the interior of the shock wave itself.

In Section 7.5, we defined the total temperature T0 and total pressure p0.
What happens to these total conditions across a shock wave? To help answer this
question, consider Figure 8.7, which illustrates the definition of total conditions
ahead of and behind the shock. In region 1 ahead of the shock, a fluid element has
the actual conditions of M1, p1, T1, and s1. Now imagine that we bring this fluid
element to rest isentropically, creating the “imaginary” state 1a ahead of the shock.
In state 1a, the fluid element at rest would have a pressure and temperature p0,1

and T0,1, respectively, that is, the total pressure and total temperature, respectively,

Figure 8.7 Total conditions ahead of and behind a normal shock wave.
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in region 1. The entropy in state 1a would still be s1 because the fluid element
is brought to rest isentropically; s1a = s1. Now consider region 2 behind the
shock. Again consider a fluid element with the actual conditions of M2, p2, T2,
and s2, as sketched in Figure 8.7. And again let us imagine that we bring this fluid
element to rest isentropically, creating the “imaginary” state 2a behind the shock.
In state 2a, the fluid element at rest would have pressure and temperature p0,2 and
T0,2, respectively, that is, the total pressure and total temperature, respectively, in
region 2. The entropy in state 2a would still be s2 because the fluid element is
brought to rest isentropically; s2a = s2. The questions are now asked: How does
T0,2 compare with T0,1, and how does p0,2 compare with p0,1?

To answer the first of these questions, consider Equation (8.30):

cpT1 + u2
1

2
= cpT2 + u2

2

2
(8.30)

From Equation (8.38), the total temperature is given by

cpT0 = cpT + u2

2
(8.38)

Combining Equations (8.30) and (8.38), we have

cpT0,1 = cpT0,2

or T0,1 = T0,2 (8.69)

Equation (8.69) states that total temperature is constant across a stationary nor-
mal shock wave. This should come as no surprise; the flow across a shock wave is
adiabatic, and in Section 7.5 we demonstrated that in a steady, adiabatic, inviscid
flow of a calorically perfect gas, the total temperature is constant.

To examine the variation of total pressure across a normal shock wave, write
Equation (7.25) between the imaginary states 1a and 2a:

s2a − s1a = cp ln
T2a

T1a
− R ln

p2a

p1a
(8.70)

However, from the above discussion, as well as the sketch in Figure 8.7, we have
s2a = s2, s1a = s1, T2a = T0,2, T1a = T0,1, p2a = p0,2, and p1a = p0,1. Thus,
Equation (8.70) becomes

s2 − s1 = cp ln
T0,2

T0,1
− R ln

p0,2

p0,1
(8.71)

We have already shown that T0,2 = T0,1; hence, Equation (8.71) yields

s2 − s1 = −R ln
p0,2

p0,1
(8.72)

or
p0,2

p0,1
= e−(s2−s1)/R (8.73)
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Figure 8.8 The variation of properties across a normal shock
wave as a function of upstream Mach number: γ = 1.4.

From Equation (8.68), we know that s2 − s1 > 0 for a normal shock wave. Hence,
Equation (8.73) states that p0,2 < p0,1. The total pressure decreases across a shock
wave. Moreover, since s2 − s1 is a function of M1 only [from Equation (8.68)],
then Equation (8.73) clearly states that the total pressure ratio p0,2/p0,1 across a
normal shock wave is a function of M1 only.

In summary, we have now verified the qualitative changes across a normal
shock wave as sketched in Figure 7.4b and as originally discussed in Section 7.6.
Moreover, we have obtained closed-form analytic expressions for these changes
in the case of a calorically perfect gas. We have seen that p2/p1, ρ2/ρ1, T2/T1,
M2, and p0,2/p0,1 are functions of the upstream Mach number M1 only. To help
you obtain a stronger physical feeling of normal shock-wave properties, these
variables are plotted in Figure 8.8 as a function of M1. Note that (as stated earlier)
these curves show how, as M1 becomes very large, T2/T1 and p2/p1 also become
very large, whereas ρ2/ρ1 and M2 approach finite limits. Examine Figure 8.8
carefully, and become comfortable with the trends shown.

The results given by Equations (8.59), (8.61), (8.65), (8.67), and (8.73) are so
important that they are tabulated as a function of M1 in Appendix B for γ = 1.4.

EXAMPLE 8.11

Consider a normal shock wave in air where the upstream flow properties are u1 = 680 m/s,
T1 = 288 K, and p1 = 1 atm. Calculate the velocity, temperature, and pressure down-
stream of the shock.
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■ Solution

a1 =
√

γ RT1 =
√

1.4(287)(288) = 340 m/s

M1 = u1

a1
= 680

340
= 2

From Appendix B, since p2/p1 = 4.5, T2/T1 = 1.687, M2 = 0.5774, then

p2 = p2

p1
p1 = 4.5(1 atm) = 4.5 atm

T2 = T2

T1
T1 = 1.687(288) = 486 K

a2 =
√

γ RT2 =
√

1.4(287)(486) = 442 m/s

u2 = M2a2 = 0.5774(442) = 255 m/s

EXAMPLE 8.12

Consider a normal shock wave in a supersonic airstream where the pressure upstream of
the shock is 1 atm. Calculate the loss of total pressure across the shock wave when the
upstream Mach number is (a) M1 = 2, and (b) M1 = 4. Compare these two results and
comment on their implication.

■ Solution
(a) The upstream total pressure is obtained from

p0,1 =
(

p0,1

p1

)
p1

where from Appendix A for M1 = 2, p0,1/p1 = 7.824. Hence,

p0,1 = (7.824)(1 atm) = 7.824 atm

The total pressure behind the normal shock is obtained from

p0,2 =
(

p0,2

p0,1

)
p0,1

where from Appendix B, for M1 = 2, p0,2/p0,1 = 0.7209. Hence,

p0,2 = (0.7209)(7.824) = 5.64 atm

The loss of total pressure is

p0,1 − p0,2 = 7.824 − 5.64 = 2.184 atm

(b) For M1 = 4, from Appendix A,

p0,1 =
(

p0,1

p1

)
p1 = (151.8)(1 atm) = 151.8 atm
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The total pressure behind the normal shock is obtained from Appendix B, for M1 = 4, as

p0,2 =
(

p0,2

p0,1

)
p0,1 = (0.1388)(151.8) = 21.07 atm

The loss of total pressure is

p0,1 − p0,2 = 151.8 − 21.07 = 130.7 atm

Note: In any flow, total pressure is a precious commodity. Any loss of total pressure reduces
the flow’s ability to do useful work. Losses of total pressure reduce the performance of any
flow device, and cost money. We will see this time-and-time-again in subsequent chapters.
In this example, we see that for a normal shock at Mach 2, the loss of total pressure was
2.184 atm, whereas simply by doubling the Mach number to 4, the loss of total pressure
was a whopping 130.7 atm. The moral to this story is that, if you are going to suffer a
normal shock wave in a flow, everything else being equal, you want the normal shock to
occur at the lowest possible upstream Mach number.

EXAMPLE 8.13

A ramjet engine is an air-breathing propulsion device with essentially no rotating machin-
ery (no rotating compressor blades, turbine, etc.). The basic generic parts of a conventional
ramjet are sketched in Figure 8.9. The flow, moving from left to right, enters the inlet,
where it is compressed and slowed down. The compressed air then enters the combustor
at very low subsonic speed, where it is mixed and burned with a fuel. The hot gas then
expands through a nozzle. The net result is the production of thrust toward the left in
Figure 8.9. In this figure the ramjet is shown in a supersonic freestream with a detached
shock wave ahead of the inlet. The portion of the shock just to the left of point 1 is a normal
shock. (A detached normal shock wave in front of the inlet of a ramjet in a supersonic flow
is not the ideal operating condition; rather, it is desirable that the flow pass through one or
more oblique shock waves before entering the inlet. Oblique shock waves are discussed

M
� 

> 1

p
�

T
�

1 2
Inlet Combustor Nozzle

Flow

Figure 8.9 Schematic of a conventional subsonic-combustion ramjet engine.
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in Chapter 9.) After passing through the shock wave, the flow from point 1 to point 2,
located at the entrance to the combustor, is isentropic. The ramjet is flying at Mach 2 at a
standard altitude of 10 km, where the air pressure and temperature are 2.65 × 104 N/m2

and 223.3 K, respectively. Calculate the air temperature and pressure at point 2 when the
Mach number at that point is 0.2.

■ Solution
The total pressure and total temperature of the freestream at M∞ = 2 can be obtained
from Appendix A.

p0,∞ =
(

p0,∞
p∞

)
p∞ = (7.824)(2.65 × 104) = 2.07 × 105 N/m2

T0,∞ =
(

T0,∞
T∞

)
T∞ = (1.8)(223.3) = 401.9 K

At point 1 behind the normal shock, the total pressure is, from Appendix B, for M∞ = 2

p0,1 =
(

p0,1

p0,∞

)
p0,∞ = (0.7209)(2.07 × 105) = 1.49 × 105 N/m2

The total temperature is constant across the shock, hence

T0,1 = T0,∞ = 401.9 K

The flow is isentropic between points 1 and 2, hence p0 and T0 are constant between
these points. Therefore, p0,2 = 1.49 × 105 N/m2 and T0,2 = 401.9 K. At point 2, where
M2 = 0.2, the ratios of the total-to-static pressure and total-to-static temperature, from
Appendix A, are p0,2/p2 = 1.028 and T0,2/T2 = 1.008. Hence,

p2 =
(

p2

p0,2

)
(p02) = 1.49 × 105

1.028
= 1.45 × 105 N/m2

T2 =
(

T2

T0,2

)
(T02) = 401.9

1.008
= 399 K

Recall that 1 atm = 1.02 × 105 N/m2. Hence, p2 in atmospheres is

p2 = 1.45 × 105

1.02 × 105 = 1.42 atm

Note: Air pressures and temperatures on the order of 1.42 atm and 399 K entering the
combustor are very tolerable conditions for low-speed subsonic combustion. In Exam-
ple 8.11, we will draw a comparison between this result and the conditions that would
exist at a much higher freestream Mach number.

EXAMPLE 8.14

Repeat Example 8.13, except for a freestream Mach number M∞ = 10. Assume that the
ramjet has been redesigned so that the Mach number at point 2 remains equal to 0.2.
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■ Solution
From Appendix A, for M = 10, we have

p0,∞ =
(

p0,∞
p∞

)
p∞ = (0.4244 × 105)(2.65 × 104) = 1.125 × 109 N/m2

T0,∞ =
(

T0,∞
T∞

)
T∞ = (21)(223.3) = 4690 K

At point 1, from Appendix B for M∞ = 10, we have

p0,1 =
(

p0,1

p0,∞

)
(p0,∞) = (0.3045 × 10−2)(1.125 × 109) = 3.43 × 106 N/m2

and T0,1 = T0,∞ = 4690 K

At point 2, where M2 = 0.2, we have from Example 8.8, p0,2/p2 = 1.028 and T0,2/T2 =
1.008. Also at point 2, since the flow is isentropic between points 1 and 2,

p0,2 = p0,1 = 3.43 × 106 N/m2

T0,2 = T0,1 = 4690 K

Hence,

p2 =
(

p2

p0,2

)
(p0,2) = 3.43 × 106

1.028
= 3.34 × 106 N/m2

T2 =
(

T2

T0,2

)
(T0,2) = 4690

1.008
= 4653 K

In atmospheres,

p2 = 3.34 × 106

1.02 × 105 = 32.7 atm

Compared to the rather benign conditions at point 2 existing for the case treated in
Example 8.13, in the present example the air entering the combustor is at a pressure and
temperature of 32.7 atm and 4653 K—both extremely severe conditions. The temperature
is so hot that the fuel injected into the combustor will decompose rather than burn, with
little or no thrust being produced. Moreover, the pressure is so high that the structural
design of the combustor would have to be extremely heavy, assuming in the first place that
some special heat-resistant material could be found that could handle the high temperature.
In short, a conventional ramjet, where the flow is slowed down to a low subsonic Mach
number before entering the combustor, will not work at high, hypersonic Mach numbers.
The solution to this problem is not to slow the flow inside the engine to low subsonic
speeds, but rather to slow it only to a lower but still supersonic speed. In this manner,
the temperature and pressure increase inside the engine will be smaller and can be made
tolerable. In such a ramjet, the entire flowpath through the engine remains at supersonic
speed, including inside the combustor. This necessitates the injection and mixing of the
fuel in a supersonic stream—a challenging technical problem. This type of ramjet, where
the flow is supersonic throughout, is called a supersonic combustion ramjet—SCRAMjet
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for short. SCRAMjets are a current area of intense research and advanced development. In
November 2005, for the first time in history, a SCRAMjet engine successfully powered a
hypersonic flight vehicle, the experimental X-43 shown in Figure 9.31, achieving a Mach
number of almost 10. SCRAMjet engines are the only viable airbreathing power plants
for hypersonic cruise vehicles. Aspects of SCRAMjet engine design will be discussed in
Chapter 9.

EXAMPLE 8.15

The pressure ratio across a normal shock wave in air is 4.5. What are the Mach numbers
in front of and behind the wave? What are the density and temperature ratios across the
wave?

■ Solution
From Appendix B, for p2/p1 = 4.5,

M1 = 2 and M2 = 0.5774

Also, from the same table,

ρ2

ρ1
= 2.667 and

T2

T1
= 1.687

Note: For a normal shock, the specification of the pressure ratio across the wave uniquely
determines the Mach number in front of the wave, the Mach number behind the wave, and
the ratio of all other thermodynamic properties across the wave.

EXAMPLE 8.16

The temperature ratio across a normal shock wave in air is 5.8. What are the Mach numbers
in front of and behind the wave? What are the density and pressure ratios across the wave?

■ Solution
From Appendix B, for T2/T1 = 5.8,

M1 = 5 and M2 = 0.4152

Also, from the table,

ρ2

ρ1
= 5 and

p2

p1
= 29

Note: For a normal shock wave, the specification of the temperature ratio uniquely deter-
mines the Mach number in front of the wave, the Mach number behind the wave, and the
ratio of all other thermodynamic properties across the wave.
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EXAMPLE 8.17

The Mach number behind a normal shock wave is 0.4752. What is the Mach number in
front of the wave? What are the density, pressure, and temperature ratios across the shock?

■ Solution
From Appendix B, for M2 = 0.4752,

M1 = 3
ρ2

ρ1
= 3.857

p2

p1
= 10.33

T2

T1
= 2.679

Note: For a normal shock wave, the specification of the Mach number behind the shock
uniquely determines the Mach number in front of the wave and the ratios of all thermo-
dynamic properties across the shock.

EXAMPLE 8.18

The velocity and temperature of the flow ahead of a normal shock wave are 1215 m/s and
300 K, respectively. Calculate the velocity of the flow behind the shock.

■ Solution

a1 =
√

γ RT1 =
√

(1.4)(287)(300) = 347.2 m/s

M1 = u1

a1
= 1215

347.2
= 3.5

From Appendix B, for M1 = 3.5, M2 = 0.4512 and T2/T1 = 3.315,

T2 =
(

T2

T1

)
T1 = (3.315)(300) = 994.5 K

a2 =
√

γ RT2 =
√

(1.4)(287)(994.5) = 632.1 m/s

u2 = M2 a2 = (0.4512)(632.1) = 285.2 m/s

Note: Unlike the previous three examples where only one dimensionless quantity (M1 or
M2, or p2/p1, etc.) uniquely specified the shock wave, in this example two quantities
are needed to specify the shock wave. This is because we were given actual dimensional
quantities such as velocity in meters per second and temperature in kelvins. Just the velocity
by itself will not define a specific normal shock, nor will the temperature by itself. We
needed both quantities to define the specific shock. Of course, to solve this example, the
first thing we did was to calculate the Mach number from the given u1 and T1. Emphasis is
again made that Mach number, not velocity, is the powerful single quantity that specifies
a particular normal shock.
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EXAMPLE 8.19

The velocity and temperature behind a normal shock wave are 329 m/s and 1500 K,
respectively. Calculate the velocity in front of the shock wave.

■ Solution

a2 =
√

γ RT2 =
√

(1.4)(287)(1500) = 776.3 m/s

M2 = u2

a2
= 329

776.3
= 0.4238

Examining Appendix B, we see there is no precise entry for M2 = 0.4238; rather, this
number lies between 0.4236 at M1 = 4.5 and 0.4245 at M1 = 4.45. By interpolation,

M1 = 4.45 + (0.4245 − 0.4238)

(0.4245 − 0.4236)
(4.5 − 4.45)

M1 = 4.45 + 0.0389 = 4.4898

From Appendix B we note that T2/T1 = 4.875 at M2 = 0.4236 and T2/T1 = 4.788 at
M2 = 0.4245. Interpolating to find T2/T1 at M2 = 0.4238, we find

T2

T1
= 4.788 + 0.4245 − 0.4238

0.4245 − 0.4236
(4.875 − 4.788)

T2

T1
= 4.788 + 0.068 = 4.856

Thus,

T1 = T2

T2/T1
= 1500

4.856
= 308.9

a1 =
√

γ RT1 =
√

(1.4)(287)(308.9) = 352.3 m/s

u1 = M1 a1 = (4.489)(352.3) = 1,581.5 m/s

Note: Once again we see that a single velocity does not specify a normal shock wave.
However, a velocity in combination with temperature does specify the normal shock. In
contrast to Example 8.18, where u1 and T1 ahead of the shock specified the shock, we see
that u2 and T2 behind the shock also are sufficient to specify the shock.

EXAMPLE 8.20

Repeat Example 8.19, but use the “nearest entry” in tables rather than interpolating between
entries. Using the nearest entry is a less accurate calculation than interpolation, but it is
simpler and quicker. Compare this less accurate result with the more accurate result from
Example 8.19.
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■ Solution
From Example 8.19, M2 = 0.4238. The nearest entry in Appendix B is M2 = 0.4236,
which corresponds to M1 = 4.5 and T2/T1 = 4.875. Using the nearest entry, we have

T1 = T2

T2/T1
= 1500

4.875
= 307.7 K

a1 =
√

γ RT1 =
√

(1.4)(287)(307.7) = 351.6 m/s

u1 = M1 a1 = 4.5(351.6) = 1582 m/s

Comparing this result with that from Example 8.19, we have:

u1 = 1581 m/s (interpolation)

u1 = 1582 m/s (nearest entry)

We conclude, at least in this case, that using the nearest entry caused only a 0.06 percent
error, not enough to worry about in the context of a worked example.

EXAMPLE 8.21

Consider a normal shock with an upstream Mach number of 3.53. Obtain the downstream
Mach number by:

(a) Using the nearest entry in the tables.

(b) Interpolating the tabulated values.

(c) Exact analytical calculations.

Compare the accuracy of the results.

■ Solution
(a) The nearest entry in Appendix B is for M1 = 3.55. For this entry in the tables,

M2 = 0.4492

(b) M1 = 3.53 lies between the entries for M1 = 3.5, where M2 = 0.4512, and M1 =
3.55, where M2 = 0.4492. Interpolating to obtain M2 corresponding to M1 = 3.53, we
have

M2 = 0.4492 + (3.55 − 3.53)

(3.55 − 3.5)
(0.4512 − 0.4492)

M2 = 0.4492 + 0.0008 = 0.45

(c) From Equation (8.59),

M2
2 = 1 + [γ − 1)/2]M2

1

γ M2
1 − (γ − 1)/2

= 1 + 0.2(3.53)2

(1.4)(3.53)2 − 0.2
= 0.2025
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Thus,

M2 = (0.2025)1/2 = 0.45

Compare the results:

(a) M2 = 0.4492 (nearest entry)

(b) M2 = 0.45 (interpolation)

(c) M2 = 0.45 (exact)

Conclusion: For all practical purposes, all three approaches yield almost identical
results.

8.6.1 Comment on the Use of Tables to Solve Compressible Flow
Problems

Appendices A, B, and C provide tables for the convenient calculation of certain
problems in compressible flow. Many of the previous worked examples in this
chapter illustrate the usefulness of these tables. Even when you are dealing with
conditions that do not correspond exactly to a direct entry in the tables, and in prac-
tice this is usually the case, simple linear interpolation between lines in the table
gave quite accurate numbers for answers, as the results of Examples 8.19, 8.20,
and 8.21 demonstrated. This accuracy is verified by calculations made with exact
analytical formulas as demonstrated in Example 8.21. Various compressible flow
tables have been in existence since the 1940s, and their purpose was, as it is now, to
provide a quick and convenient tool for the solution of various compressible flow
problems. They are particularly convenient when we adopt the method of using the
nearest entry in the tables, rather than take the time to interpolate between entries.
Examples 8.20 and 8.21 demonstrate that little accuracy is lost by using tables
that contain many more closely spaced entries than presented in Appendices A,
B, and C in this book (limited in length because of space constraints). A classic
example is the compressible flow tables contained in NACA TR-1135 (Refer-
ence 115), a “bible” on the desk of most aerodynamicists working in high-speed
flow.

The modern alternative to these tables is, of course, the digital computer into
which the analytical equations, such as Equations (8.40), (8.42), (8.43), (8.59),
(8.61), and (8.65), can easily be programmed, and the numbers in Appendices A,
B, and C can be reproduced on your hand calculator. This is particularly straight-
forward if you have an explicit calculation, such as calculating M2 behind a normal
shock explicitly from a known value of M1 ahead of the shock using Equation
(8.59). But return to Equation (8.59) for a moment. What if you are given M2, and
you want to find M1? This is a not-so-convenient implicit calculation in Equa-
tion (8.59), whereas, using the tables, you can immediately go to Appendix B,
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scan down the column for M2, find the given value of M2, and then find the
corresponding value of M1 by reading directly across the page.

For our purposes, for the remainder of our discussions on compressible flow
in this book, we will frequently use the tables, and we will for simplicity adopt
the “nearest entry” method.

8.7 MEASUREMENT OF VELOCITY
IN A COMPRESSIBLE FLOW

The use of a Pitot tube for measuring the velocity of a low-speed, incompressible
flow was discussed in Section 3.4. Before progressing further, return to Sec-
tion 3.4, and review the principal aspects of a Pitot tube, as well as the formulas
used to obtain the flow velocity from the Pitot pressure, assuming incompressible
flow.

For low-speed, incompressible flow, we saw in Section 3.4 that the velocity
can be obtained from a knowledge of both the total pressure and the static pressure
at a point. The total pressure is measured by a Pitot tube, and the static pressure
is obtained from a static pressure orifice or by some independent means. The
important aspect of Section 3.4 is that the pressure sensed by a Pitot tube, along
with the static pressure, is all that is necessary to extract the flow velocity for
an incompressible flow. In the present section, we see that the same is true for a
compressible flow, both subsonic and supersonic, if we consider the Mach number
rather than the velocity. In both subsonic and supersonic compressible flows, a
knowledge of the Pitot pressure and the static pressure is sufficient to calculate
Mach number, although the formulas are different for each Mach-number regime.
Let us examine this matter further.

8.7.1 Subsonic Compressible Flow

Consider a Pitot tube in a subsonic, compressible flow, as sketched in Figure 8.10a.
As usual, the mouth of the Pitot tube (point b) is a stagnation region. Hence, a fluid
element moving along streamline ab is brought to rest isentropically at point b.
In turn, the pressure sensed at point b is the total pressure of the freestream, p0,1.
This is the Pitot pressure read at the end of the tube. If, in addition, we know the
freestream static pressure p1, then the Mach number in region 1 can be obtained
from Equation (8.42),

p0,1

p1
=

(
1 + γ − 1

2
M2

1

)γ /(γ−1)

(8.42)

or solving for M2
1 ,

M2
1 = 2

γ − 1

[(
p0,1

p1

)(γ−1)/γ

− 1

]
(8.74)
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Subsonic flow

Supersonic flow

Pitot pressure is
the freestream
total pressure p0,1

a

c d e

b

Pitot pressure is
the total pressure
behind a normal shock p0,2

(b)

(a)

Normal
shock wave

p1

M1 � 1

1

1

2

p1

M1 � 1

Figure 8.10 A Pitot tube in (a) subsonic flow and
(b) supersonic flow.

Clearly, from Equation (8.74), the Pitot pressure p0,1 and the static pressure p1

allow the direct calculation of Mach number.
The flow velocity can be obtained from Equation (8.74) by recalling that

M1 = u1/a1. Hence,

u2
1 = 2a2

1

γ − 1

[(
p0,1

p1

)(γ−1)/γ

− 1

]
(8.75)

From Equation (8.75), we see that, unlike incompressible flow, a knowledge of
p0,1 and p1 is not sufficient to obtain u1; we also need the freestream speed of
sound, a1.

8.7.2 Supersonic Flow

Consider a Pitot tube in a supersonic freestream, as sketched in Figure 8.10b.
As usual, the mouth of the Pitot tube (point e) is a stagnation region. Hence, a
fluid element moving along streamline cde is brought to rest at point e. However,
because the freestream is supersonic and the Pitot tube presents an obstruction to
the flow, there is a strong bow shock wave in front of the tube, much like the pic-
ture shown at the left of Figure 8.1 for supersonic flow over a blunt body. Hence,
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streamline cde crosses the normal portion of the bow shock. A fluid element mov-
ing along streamline cde will first be decelerated nonisentropically to a subsonic
velocity at point d just behind the shock. Then it is isentropically compressed to
zero velocity at point e. As a result, the pressure at point e is not the total pressure
of the freestream but rather the total pressure behind a normal shock wave, p0,2.
This is the Pitot pressure read at the end of the tube. Keep in mind that because
of the entropy increase across the shock, there is a loss in total pressure across
the shock, p0,2 < p0,1. However, knowing p0,2 and the freestream static pressure
p1 is still sufficient to calculate the freestream Mach number M1, as follows:

p0,2

p1
= p0,2

p2

p2

p1
(8.76)

Here, p0,2/p2 is the ratio of total pressure to static pressure in region 2 immedi-
ately behind the normal shock, and p2/p1 is the static pressure ratio across the
shock. From Equation (8.42),

p0,2

p2
=

(
1 + γ − 1

2
M2

2

)γ /(γ−1)

(8.77)

where, from Equation (8.59),

M2
2 = 1 + [(γ − 1)/2]M2

1

γ M2
1 − (γ − 1)/2

(8.78)

Also, from Equation (8.65),

p2

p1
= 1 + 2γ

γ + 1
(M2

1 − 1) (8.79)

Substituting Equation (8.78) into (8.77), and substituting the result as well as
Equation (8.79) into Equation (8.76), we obtain, after some algebraic simplifica-
tion (see Problem 8.14),

p0,2

p1
=

(
(γ + 1)2 M2

1

4γ M2
1 − 2(γ − 1)

)γ /(γ−1) 1 − γ + 2γ M2
1

γ + 1
(8.80)

Equation (8.80) is called the Rayleigh Pitot tube formula. It relates the Pitot pres-
sure p0,2 and the freestream static pressure p1 to the freestream Mach number M1.
Equation (8.80) gives M1 as an implicit function of p0,2/p1 and allows the cal-
culation of M1 from a known p0,2/p1. For convenience in making calculations,
the ratio p0,2/p1 is tabulated versus M1 in Appendix B.

EXAMPLE 8.22

A Pitot tube is inserted into an airflow where the static pressure is 1 atm. Calculate the flow
Mach number when the Pitot tube measures (a) 1.276 atm, (b) 2.714 atm, (c) 12.06 atm.
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■ Solution
First, we must assess whether the flow is subsonic or supersonic. At Mach 1, the Pitot
tube would measure p0 = p/0.528 = 1.893p. Hence, when p0 < 1.893 atm, the flow is
subsonic, and when p0 > 1.893 atm, the flow is supersonic.

(a) Pitot tube measurement = 1.276 atm. The flow is subsonic. Hence, the Pitot tube
is directly sensing the total pressure of the flow. From Appendix A, for p0/p = 1.276,

M = 0.6

(b) Pitot tube measurement = 2.714 atm. The flow is supersonic. Hence, the Pitot
tube is sensing the total pressure behind a normal shock wave. From Appendix B, for
p0,2/p1 = 2.714,

M1 = 1.3

(c) Pitot tube measurement = 12.06 atm. The flow is supersonic. From Appendix B,
for p0,2/p1 = 12.06,

M1 = 3.0

EXAMPLE 8.23

Consider a hypersonic missile flying at Mach 8 at an altitude of 20,000 ft, where the
pressure is 973.3 lb/ft2. The nose of the missile is blunt and is shaped like that shown at
the left of Figure 8.1. Calculate the pressure at the stagnation point on the nose.

■ Solution
Examining the blunt body shown in Figure 8.1, the streamline that impinges at the stagna-
tion point has traversed the normal portion of the bow shock wave. By definition, V = 0
at the stagnation point. Since the flow is isentropic between the shock and the body, the
pressure at the stagnation point on the body is the total pressure behind a normal shock
with an upstream Mach number of 8. Let us denote the pressure at the stagnation point
by ps . Since p0,2 is the total pressure behind the normal shock, then ps = p0,2. From
Appendix B, for Mach 8, p0,2/p1 = 82.87. Hence,

ps = p0,2 =
(

p0,2

p1

)
(p1) = 82.87(973.3) = 8.07 × 104 lb/ft2

Since 1 atm = 2116 lb/ft2,

ps = 8.07 × 104

2116
= 38.1 atm

Note that the pressure at the nose of the missile is quite high—38.1 atm. This is typical
of hypersonic flight at low altitude.
Check on the calculation This problem can also be solved by first calculating the up-
stream total pressure from Appendix A, and then using the total pressure ratio across the
normal shock from Appendix B. From Appendix A for Mach 8, p0,1/p1 = 0.9763×104.
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Hence,

p0,1 =
(

p0,1

p1

)
p1 = (0.9763 × 104)973.3 = 9.502 × 106

From Appendix B for Mach 8, p0,2/p0,1 = 8.8488 × 10−2. Hence,

ps = p0,2 =
(

p0,2

p0,1

)
p0,1 = (0.8488 × 10−2)(9.502 × 106) = 8.07 × 104 lb/ft2

This is the same result as obtained earlier.

EXAMPLE 8.24

Consider the Lockheed SR-71 Blackbird shown in Figure 8.11 flying at a standard altitude
of 25 km. The pressure measured by a Pitot tube on this airplane is 3.88 × 104 N/m2.
Calculate the velocity of the airplane.

SR-71

YF-12A

Figure 8.11 The Lockheed SR-71/YF-12A Blackbird.
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■ Solution
From Appendix D, at an altitude of 25 km, p = 2.5273 × 103 N/m2 and T = 216.66 K.
Hence,

p0,1

p1
= 3.88 × 104

2.5273 × 103 = 15.35

From Appendix B, for p0,1/p1 = 15.35, M1 = 3.4:

a1 =
√

γ RT =
√

(1.4)(287)(216.66) = 295 m/s.

Thus, the velocity of the airplane is

V1 = M1a1 = (3.4)(295) = 1003 m/s

8.8 SUMMARY
Return to the road map given in Figure 8.2, and make certain that you are com-
fortable with the areas we have covered in this chapter. A brief summary of the
more important relations follows.

The speed of sound in a gas is given by

a =
√(

∂p

∂ρ

)
s

(8.18)

For a calorically perfect gas,

a =
√

γ p

ρ
(8.23)

or a = √
γ RT (8.25)

The speed of sound depends only on the gas temperature.

For a steady, adiabatic, inviscid flow, the energy equation can be expressed as

h1 + u2
1

2
= h2 + u2

2

2
(8.29)

cpT1 + u2
1

2
= cpT2 + u2

2

2
(8.30)

(continued)
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a2
1

γ − 1
+ u2

1

2
= a2

2

γ − 1
+ u2

2

2
(8.32)

a2

γ − 1
+ u2

2
= a2

0

γ − 1
(8.33)

a2

γ − 1
+ u2

2
= γ + 1

2(γ − 1)
a∗2 (8.35)

Total conditions in a flow are related to static conditions via

cpT + u2

2
= cpT0 (8.38)

T0

T
= 1 + γ − 1

2
M2 (8.40)

p0

p
=

(
1 + γ − 1

2
M2

)γ /(γ−1)

(8.42)

ρ0

ρ
=

(
1 + γ − 1

2
M2

)1/(γ−1)

(8.43)

Note that the ratios of total to static properties are a function of local Mach
number only. These functions are tabulated in Appendix A.

The basic normal shock equations are

Continuity: ρ1u1 = ρ2u2

Momentum: p1 + ρ1u2
1 = p2 + ρ2u2

2

Energy: h1 + u2
1

2
= h2 + u2

2

2

(8.2)

(8.6)

(8.10)

These equations lead to relations for changes across a normal shock as a
function of upstream Mach number M1 only:

M2
2 = 1 + [(γ − 1)/2]M2

1

γ M2
1 − (γ − 1)/2

(8.59)

(continued)
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ρ2

ρ1
= u1

u2
= (γ + 1)M2

1

2 + (γ − 1)M2
1

(8.61)

p2

p1
= 1 + 2γ

γ + 1
(M2

1 − 1) (8.65)

T2

T1
= h2

h1
=

[
1 + 2γ

γ + 1
(M2

1 − 1)

]
2 + (γ − 1)M2

1

(γ + 1)M2
1

(8.67)

s2 − s1 = cp ln
{[

1 + 2γ

γ + 1
(M2

1 − 1)

]
2 + (γ − 1)M2

1

(γ + 1)M2
1

}

− R ln
[

1 + 2γ

γ + 1
(M2

1 − 1)

]
(8.68)

p0,2

p0,1
= e−(s2−s1)/R (8.73)

The normal shock properties are tabulated versus M1 in Appendix B.

For a calorically perfect gas, the total temperature is constant across a normal
shock wave:

T0,2 = T0,1

However, there is a loss in total pressure across the wave:

p0,2 < p0,1

For subsonic and supersonic compressible flow, the freestream Mach number
is determined by the ratio of Pitot pressure to freestream static pressure. How-
ever, the equations are different:

Subsonic flow: M2
1 = 2

γ − 1

[(
p0,1

p1

)(γ−1)/γ

− 1

]

Supersonic flow:
p0,2

p1
=

[
(γ + 1)2 M2

1

4γ M2
1 − 2(γ − 1)

]γ /(γ−1) 1 − γ + 2γ M2
1

γ + 1

(8.74)

(8.80)
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8.9 PROBLEMS
8.1 Consider air at a temperature of 230 K. Calculate the speed of sound.
8.2 The temperature in the reservoir of a supersonic wind tunnel is 519 ◦R. In

the test section, the flow velocity is 1385 ft/s. Calculate the test-section
Mach number. Assume the tunnel flow is adiabatic.

8.3 At a given point in a flow, T = 300 K, p = 1.2 atm, and V = 250 m/s. At
this point, calculate the corresponding values of p0, T0, p∗, T ∗, and M∗.

8.4 At a given point in a flow, T = 700 ◦R, p = 1.6 atm, and V = 2983 ft/s.
At this point, calculate the corresponding values of p0, T0, p∗, T ∗, and M∗.

8.5 Consider the isentropic flow through a supersonic nozzle. If the
test-section conditions are given by p = 1 atm, T = 230 K, and M = 2,
calculate the reservoir pressure and temperature.

8.6 Consider the isentropic flow over an airfoil. The freestream conditions
correspond to a standard altitude of 10,000 ft and M∞ = 0.82. At a given
point on the airfoil, M = 1.0. Calculate p and T at this point. (Note: You
will have to use the standard atmosphere table in Appendix E for this
problem.)

8.7 The flow just upstream of a normal shock wave is given by p1 = 1 atm,
T1 = 288 K, and M1 = 2.6. Calculate the following properties just
downstream of the shock: p2, T2, ρ2, M2, p0,2, T0,2, and the change in
entropy across the shock.

8.8 The pressure upstream of a normal shock wave is 1 atm. The pressure
and temperature downstream of the wave are 10.33 atm and 1390 ◦R,
respectively. Calculate the Mach number and temperature upstream of the
wave and the total temperature and total pressure downstream of the wave.

8.9 The entropy increase across a normal shock wave is 199.5 J/(kg · K). What
is the upstream Mach number?

8.10 The flow just upstream of a normal shock wave is given by
p1 = 1800 lb/ft2, T1 = 480 ◦R, and M1 = 3.1. Calculate the velocity and
M∗ behind the shock.

8.11 Consider a flow with a pressure and temperature of 1 atm and 288 K. A
Pitot tube is inserted into this flow and measures a pressure of 1.555 atm.
What is the velocity of the flow?

8.12 Consider a flow with a pressure and temperature of 2116 lb/ft2 and
519 ◦R, respectively. A Pitot tube is inserted into this flow and measures a
pressure of 7712.8 lb/ft2. What is the velocity of this flow?

8.13 Repeat Problems 8.11 and 8.12 using (incorrectly) Bernoulli’s equation
for incompressible flow. Calculate the percent error induced by using
Bernoulli’s equation.

8.14 Derive the Rayleigh Pitot tube formula, Equation (8.80).
8.15 On March 16, 1990, an Air Force SR-71 set a new continental speed

record, averaging a velocity of 2112 mi/h at an altitude of 80,000 ft.
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Calculate the temperature (in degrees Fahrenheit) at a stagnation point on
the vehicle.

8.16 In the test section of a supersonic wind tunnel, a Pitot tube in the flow
reads a pressure of 1.13 atm. A static pressure measurement (from a
pressure tap on the sidewall of the test section) yields 0.1 atm. Calculate
the Mach number of the flow in the test section.

8.17 When the Apollo command module returned to earth from the moon, it
entered the earth’s atmosphere at a Mach number of 36. Using the results
from the present chapter for a calorically perfect gas with the ratio of
specific heats equal to 1.4, predict the gas temperature at the stagnation
point of the Apollo at Mach 36 at an altitude where the freestream
temperature is 300 K. Comment on the validity of your answer.

8.18 The stagnation temperature on the Apollo vehicle at Mach 36 as it entered
the atmosphere was 11,000 K, a much different value than predicted in
Problem 8.17 for the case of a calorically perfect gas with a ratio of
specific heats equal to 1.4. The difference is due to chemical reactions that
occur in air at these high temperatures—dissociation and ionization. The
analyses in this book assuming a calorically perfect gas with constant
specific heats are not valid for such chemically reacting flows. However,
as an engineering approximation, the calorically perfect gas results are
sometimes applied with a lower value of the ratio of specific heats, a
so-called “effective gamma,” in order to try to simulate the effects of high
temperature chemically reacting flows. For the condition stated in this
problem, calculate the value of the effective gamma necessary to yield a
temperature of 11,000 K at the stagnation point. Assume the freestream
temperature is 300 K.

8.19 Prove that the total pressure is constant throughout an isentropic flow.



C H A P T E R 9
Oblique Shock and
Expansion Waves

In the case of air (and the same is true for all gases) the shock wave is extremely
thin so that calculations based on one-dimensional flow are still applicable for
determining the changes in velocity and density on passing through it, even
when the rest of the flow system is not limited to one dimension, provided that
only the velocity component normal to the wave is considered.

G. I. Taylor and J. W. Maccoll, 1934

PREVIEW BOX

Take a look at Figure 9.1. What you see is the
computed wave pattern—both shock and expansion
waves—generated by a generic supersonic transport
configuration flying at Mach 1.7 at an altitude of
15 km. All these waves are oblique to the flow, in
contrast to the normal shock waves discussed in Chap-
ter 8. The present chapter is all about oblique shock
and expansion waves.

The material in this chapter is vital to a funda-
mental understanding of supersonic flow. Moreover,
it is vital to you if you are interested in designing
an economically feasible and environmentally accept-
able supersonic transport. The shock waves in Fig-
ure 9.1 create the major source of drag (wave drag) on
the airplane, and the waves, when they propagate to
the ground, cause the much discussed “sonic boom.”
The material in this chapter is also vital to you if
you are interested in designing SCRAMjet engines

for hypersonic airplanes. The performance of such
engines depends in part on the nature of the oblique
wave patterns both upstream of and inside the en-
gine. The material in this chapter is vital to you if
you are interested in designing supersonic and hyper-
sonic wind tunnels, where the oblique wave patterns
created by models in the tunnel and in the diffuser
downstream of the models affect the performance
of the tunnel. In fact, the material in this chapter is
vital to a whole host of applications in supersonic
flow.

By now you get the message—the material in
this chapter is simply vital to your study of super-
sonic flows. It is the bread and butter of such flows.
So lay out the bread, spread it with butter, and consume
this chapter. And on top of everything else, learning
about oblique shock and expansion waves is exciting.
I predict that you are going to enjoy this.

613
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0.2

�0.2

Figure 9.1 Wave pattern on a supersonic transport
configuration (without nacelles) at Mach 1.7.
(Source: Computational fluid dynamic calculations by
Y. Makino, et al., “Nonaxisymmetrical Fuselage Shape
Modification for Drag Reduction of Low-Sonic-Boom
Airplane,” AIAA Journal, vol. 41, no. 8, August 2003,
p. 1415).

9.1 INTRODUCTION
In Chapter 8, we discussed normal shock waves, that is, shock waves that make an
angle of 90◦ with the upstream flow. The behavior of normal shock waves is im-
portant; moreover, the study of normal shock waves provides a relatively straight-
forward introduction to shock-wave phenomena. However, examining Figure 7.5
and the photographs shown in Figure 7.6, we see that, in general, a shock wave
will make an oblique angle with respect to the upstream flow. These are called
oblique shock waves and are the subject of part of this chapter. A normal shock
wave is simply a special case of the general family of oblique shocks, namely,
the case where the wave angle is 90◦.

In addition to oblique shock waves, where the pressure increases discon-
tinuously across the wave, supersonic flows are also characterized by oblique
expansion waves, where the pressure decreases continuously across the wave.
Let us examine these two types of waves further. Consider a supersonic flow over
a wall with a corner at point A, as sketched in Figure 9.2. In Figure 9.2a, the
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Figure 9.2 Supersonic flow over a corner.

wall is turned upward at the corner through the deflection angle θ ; that is, the
corner is concave. The flow at the wall must be tangent to the wall; hence, the
streamline at the wall is also deflected upward through the angle θ . The bulk of
the gas is above the wall, and in Figure 9.2a, the streamlines are turned upward,
into the main bulk of the flow. Whenever a supersonic flow is “turned into it-
self” as shown in Figure 9.2a, an oblique shock wave will occur. The originally
horizontal streamlines ahead of the wave are uniformly deflected in crossing the
wave, such that the streamlines behind the wave are parallel to each other and
inclined upward at the deflection angle θ . Across the wave, the Mach number
discontinuously decreases, and the pressure, density, and temperature discontin-
uously increase. In contrast, Figure 9.2b shows the case where the wall is turned
downward at the corner through the deflection angle θ ; that is, the corner is con-
vex. Again, the flow at the wall must be tangent to the wall; hence, the streamline
at the wall is deflected downward through the angle θ . The bulk of the gas is
above the wall, and in Figure 9.2b, the streamlines are turned downward, away
from the main bulk of the flow. Whenever a supersonic flow is “turned away
from itself” as shown in Figure 9.2b, an expansion wave will occur. This expan-
sion wave is in the shape of a fan centered at the corner. The fan continuously
opens in the direction away from the corner, as shown in Figure 9.2b. The origi-
nally horizontal streamlines ahead of the expansion wave are deflected smoothly
and continuously through the expansion fan such that the streamlines behind the
wave are parallel to each other and inclined downward at the deflection angle θ .
Across the expansion wave, the Mach number increases, and the pressure, tem-
perature, and density decrease. Hence, an expansion wave is the direct antithesis
of a shock wave.

Oblique shock and expansion waves are prevalent in two- and three-
dimensional supersonic flows. These waves are inherently two-dimensional in
nature, in contrast to the one-dimensional normal shock waves discussed in Chap-
ter 8. That is, in Figure 9.2a and b, the flow-field properties are a function of x
and y. The purpose of the present chapter is to determine and study the properties
of these oblique waves.
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(a)

(b)

Disturbances cannot work
their way upstream. Instead,
they coalesce, forming a
standing wave.

Flow moving
faster than the
speed of sound

Flow moving
slower than the
speed of sound

Disturbance due to body
is propagated upstream
via molecular collisions
at approximately the
speed of sound

Disturbance due to body
is propagated upstream
via molecular collisions
at approximately the
speed of sound

M� < 1

M� > 1

Figure 9.3 Propagation of disturbances. (a) Subsonic flow.
(b) Supersonic flow.

What is the physical mechanism that creates waves in a supersonic flow?
To address this question, recall our picture of the propagation of a sound wave
via molecular collisions, as portrayed in Section 8.3. If a slight disturbance takes
place at some point in a gas, information is transmitted to other points in the gas
by sound waves which propagate in all directions away from the source of the
disturbance. Now consider a body in a flow, as sketched in Figure 9.3. The gas
molecules which impact the body surface experience a change in momentum. In
turn, this change is transmitted to neighboring molecules by random molecular
collisions. In this fashion, information about the presence of the body attempts
to be transmitted to the surrounding flow via molecular collisions; that is, the
information is propagated upstream at approximately the local speed of sound. If
the upstream flow is subsonic, as shown in Figure 9.3a, the disturbances have no
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Figure 9.4 Another way of visualizing the propagation of
disturbances in (a) subsonic and (b) supersonic flow.

problem working their way far upstream, thus giving the incoming flow plenty of
time to move out of the way of the body. On the other hand, if the upstream flow
is supersonic, as shown in Figure 9.3b, the disturbances cannot work their way
upstream; rather, at some finite distance from the body, the disturbance waves
pile up and coalesce, forming a standing wave in front of the body. Hence, the
physical generation of waves in a supersonic flow—both shock and expansion
waves—is due to the propagation of information via molecular collisions and due
to the fact that such propagation cannot work its way into certain regions of the
supersonic flow.

Why are most waves oblique rather than normal to the upstream flow? To
answer this question, consider a small source of disturbance moving through a
stagnant gas. For lack of anything better, let us call this disturbance source a
“beeper,” which periodically emits sound. First, consider the beeper moving at
subsonic speed through the gas, as shown in Figure 9.4a. The speed of the beeper
is V , where V < a. At time t = 0, the beeper is located at point A; at this point,
it emits a sound wave that propagates in all directions at the speed of sound, a.
At a later time t this sound wave has propagated a distance at from point A and
is represented by the circle of radius at shown in Figure 9.4a. During the same
time, the beeper has moved a distance V t and is now at point B in Figure 9.4a.
Moreover, during its transit from A to B, the beeper has emitted several other
sound waves, which at time t are represented by the smaller circles in Figure 9.4a.
Note that the beeper always stays inside the family of circular sound waves and
that the waves continuously move ahead of the beeper. This is because the beeper
is traveling at a subsonic speed V < a. In contrast, consider the beeper moving at
a supersonic speed V > a through the gas, as shown in Figure 9.4b. At time t = 0,
the beeper is located at point A, where it emits a sound wave. At a later time t ,
this sound wave has propagated a distance at from point A and is represented by
the circle of radius at shown in Figure 9.4b. During the same time, the beeper
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Figure 9.5 Relation between the oblique
shock-wave angle and the Mach angle.

has moved a distance V t to point B. Moreover, during its transit from A to B, the
beeper has emitted several other sound waves, which at time t are represented by
the smaller circles in Figure 9.4b. However, in contrast to the subsonic case, the
beeper is now constantly outside the family of circular sound waves; that is, it is
moving ahead of the wave fronts because V > a. Moreover, something new is
happening; these wave fronts form a disturbance envelope given by the straight
line BC, which is tangent to the family of circles. This line of disturbances is
defined as a Mach wave. In addition, the angle ABC that the Mach wave makes
with respect to the direction of motion of the beeper is defined as the Mach angle μ.
From the geometry of Figure 9.4b, we readily find that

sin μ = at

V t
= a

V
= 1

M

Thus, the Mach angle is simply determined by the local Mach number as

μ = sin−1 1

M
(9.1)

Examining Figure 9.4b, the Mach wave, that is, the envelope of disturbances in the
supersonic flow, is clearly oblique to the direction of motion. If the disturbances
are stronger than a simple sound wave, then the wave front becomes stronger than
a Mach wave, creating an oblique shock wave at an angle β to the freestream,
where β > μ. This comparison is shown in Figure 9.5. However, the physical
mechanism creating the oblique shock is essentially the same as that described
above for the Mach wave. Indeed, a Mach wave is a limiting case for oblique
shock (i.e., it is an infinitely weak oblique shock).

This finishes our discussion of the physical source of oblique waves in a
supersonic flow. Let us now proceed to develop the equations that allow us to
calculate the change in properties across these oblique waves, first for oblique
shock waves, and then for expansion waves. In the process, we follow the road
map given in Figure 9.6.
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Source of oblique waves

Shock-expansion theory—
application to supersonic airfoils

Prandtl-Meyer
expansion waves

Oblique shock
relations

Supersonic flow over
wedges and cones

Shock interactions
and reflections

Detached shock waves

Figure 9.6 Road map for Chapter 9.

EXAMPLE 9.1

A supersonic airplane is flying at Mach 2 at an altitude of 16 km. Assume the shock
wave pattern from the airplane (see Figure 9.1) quickly coalesces into a Mach wave
that intersects the ground behind the airplane, causing a “sonic boom” to be heard by a
bystander on the ground. At the instant the sonic boom is heard, how far ahead of the
bystander is the airplane?

■ Solution
Examine Figure 9.7, which shows the airplane at an altitude of 16 km with a Mach wave
trailing behind it. The Mach wave intersects the ground at a ground distance d from the
airplane. From Equation (9.1),

μ = sin−1
(

1

M

)
= sin−1

(
1

2

)
= 30◦

From Figure 9.7,

tan μ = 16 km

d

or, d = 16 km

tan μ
= 16

0.577
= 27.7 km
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d

16 km

�

�

Figure 9.7 Mach wave from a supersonic vehicle, and its impingement on the
ground.

9.2 OBLIQUE SHOCK RELATIONS
Consider the oblique shock wave sketched in Figure 9.8. The angle between the
shock wave and the upstream flow direction is defined as the wave angle, denoted
by β. The upstream flow (region 1) is horizontal, with a velocity V1 and Mach
number M1. The downstream flow (region 2) is inclined upward through the de-
flection angle θ and has velocity V2 and Mach number M2. The upstream velocity
V1 is split into components tangential and normal to the shock wave, w1 and u1,
respectively, with the associated tangential and normal Mach numbers Mt,1 and
Mn,1, respectively. Similarly, the downstream velocity is split into tangential and
normal components w2 and u2, respectively, with the associated Mach numbers
Mt,2 and Mn,2.

Consider the control volume shown by the dashed lines in the upper part of
Figure 9.8. Sides a and d are parallel to the shock wave. Segments b and c follow
the upper streamline, and segments e and f follow the lower streamline. Let
us apply the integral form of the conservation equations to this control volume,
keeping in mind that we are dealing with a steady, inviscid, adiabatic flow with
no body forces. For these assumptions, the continuity equation, Equation (2.48),
becomes

.......................................................................
.........

∫∫
S

ρV · dS = 0

This surface integral evaluated over faces a and d yields −ρ1u1 A1 + ρ2u2 A2,
where A1 = A2 = area of faces a and d. The faces b, c, e, and f are parallel to
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Figure 9.8 Oblique shock geometry.

the velocity, and hence contribute nothing to the surface integral (i.e., V · dS = 0
for these faces). Thus, the continuity equation for an oblique shock wave is

−ρ1u1 A1 + ρ2u2 A2 = 0

or ρ1u1 = ρ2u2 (9.2)

Keep in mind that u1 and u2 in Equation (9.2) are normal to the shock wave.
The integral form of the momentum equation, Equation (2.64), is a vector

equation. Hence, it can be resolved into two components, tangential and normal
to the shock wave. First, consider the tangential component, keeping in mind the
type of flow we are considering:

.......................................................................
.........

∫∫
S

(ρV · dS)w = − .......................................................................
.........

∫∫
S

(p dS)tangential (9.3)

In Equation (9.3), w is the component of velocity tangential to the wave. Since
dS is perpendicular to the control surface, then (p d S)tangential over faces a and d
is zero. Also, since the vectors p dS on faces b and f are equal and opposite, the
pressure integral in Equation (9.3) involves two tangential forces that cancel each
other over faces b and f . The same is true for faces c and e. Hence, Equation (9.3)
becomes

−(ρ1u1 A1)w1 + (ρ2u2 A2)w2 = 0 (9.4)

Dividing Equation (9.4) by Equation (9.2), we have

w1 = w2 (9.5)

Equation (9.5) is an important result; it states that the tangential component of
the flow velocity is constant across an oblique shock.
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The normal component of the integral momentum equation is, from Equa-
tion (2.64),

.......................................................................
.........

∫∫
S

(ρV · dS)u = − .......................................................................
.........

∫∫
S

(p d S)normal (9.6)

Here, the pressure integral evaluated over faces a and d yields the net sum
−p1 A1 + p2 A2. Once again, the equal and opposite pressure forces on b and
f cancel, as do those on c and e. Hence, Equation (9.6) becomes, for the control
volume shown in Figure 9.8,

−(ρ1u1 A1)u1 + (ρ2u2 A2)u2 = −(−p1 A1 + p2 A2)

Since A1 = A2, this becomes

p1 + ρ1u2
1 = p2 + ρ2u2

2 (9.7)

Again, note that the only velocities appearing in Equation (9.7) are the components
normal to the shock.

Finally, consider the integral form of the energy equation, Equation (2.95).
For our present case, this can be written as

.......................................................................
.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS = − .......................................................................

.........

∫∫
S

pV · dS (9.8)

Again noting that the flow is tangent to faces b, c, f , and e, and hence V · dS = 0
on these faces, Equation (9.8) becomes, for the control volume in Figure 9.6,

−ρ1

(
e1 + V 2

1

2

)
u1 A1 + ρ2

(
e2 + V 2

2

2

)
u2 A2 = −(−p1u1 A1 + p2u2 A2) (9.9)

Collecting terms in Equation (9.9), we have

−ρ1u1

(
e1 + p1

ρ1
+ V 2

1

2

)
+ ρ2u2

(
e2 + p2

ρ2
+ V 2

2

2

)
= 0

or ρ1u1

(
h1 + V 2

1

2

)
= ρ2u2

(
h2 + V 2

2

2

)
(9.10)

Dividing Equation (9.10) by (9.2), we have

h1 + V 2
1

2
= h2 + V 2

2

2
(9.11)

Since h + V 2/2 = h0, we have again the familiar result that the total enthalpy
is constant across the shock wave. Moreover, for a calorically perfect gas, h0 =
cpT0; hence, the total temperature is constant across the shock wave. Carrying
Equation (9.11) a bit further, note from Figure 9.8 that V 2 = u2 +w2. Also, from
Equation (9.5), we know that w1 = w2. Hence,

V 2
1 − V 2

2 = (
u2

1 + w2
1

) − (
u2

2 + w2
2

) = u2
1 − u2

2
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Thus, Equation (9.11) becomes

h1 + u2
1

2
= h2 + u2

2

2
(9.12)

Let us now gather our results. Look carefully at Equations (9.2), (9.7), and
(9.12). They are the continuity, normal momentum, and energy equations, respec-
tively, for an oblique shock wave. Note that they involve the normal components
only of velocity u1 and u2; the tangential component w does not appear in these
equations. Hence, we deduce that changes across an oblique shock wave are
governed only by the component of velocity normal to the wave.

Again, look hard at Equations (9.2), (9.7), and (9.12). They are precisely the
governing equations for a normal shock wave, as given by Equations (8.2), (8.6),
and (8.10). Hence, precisely the same algebra as applied to the normal shock
equations in Section 8.6, when applied to Equations (9.2), (9.7), and (9.12), will
lead to identical expressions for changes across an oblique shock in terms of the
normal component of the upstream Mach number Mn,1. Note that

Mn,1 = M1 sin β (9.13)

Hence, for an oblique shock wave, with Mn,1 given by Equation (9.13), we have,
from Equations (8.59), (8.61), and (8.65),

M2
n,2 = 1 + [(γ − 1)/2]M2

n,1

γ M2
n,1 − (γ − 1)/2

(9.14)

ρ2

ρ1
= (γ + 1)M2

n,1

2 + (γ − 1)M2
n,1

(9.15)

p2

p1
= 1 + 2γ

γ + 1
(M2

n,1 − 1) (9.16)

The temperature ratio T2/T1 follows from the equation of state:

T2

T1
= p2

p1

ρ1

ρ2
(9.17)

Note that Mn,2 is the normal Mach number behind the shock wave. The down-
stream Mach number itself, M2, can be found from Mn,2 and the geometry of
Figure 9.8 as

M2 = Mn,2

sin(β − θ)
(9.18)

Examine Equations (9.14) to (9.17). They state that oblique shock-wave prop-
erties in a calorically perfect gas depend only on the normal component of the
upstream Mach number Mn,1. However, note from Equation (9.13) that Mn,1

depends on both M1 and β. Recall from Section 8.6 that changes across a nor-
mal shock wave depend on one parameter only—the upstream Mach number M1.
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In contrast, we now see that changes across an oblique shock wave depend on two
parameters—say, M1 and β. However, this distinction is slightly moot because in
reality a normal shock wave is a special case of oblique shocks where β = π/2.

Equation (9.18) introduces the deflection angle θ into our oblique shock
analysis; we need θ to be able to calculate M2. However, θ is not an independent,
third parameter; rather, θ is a function of M1 and β, as derived below. From the
geometry of Figure 9.8,

tan β = u1

w1
(9.19)

and tan(β − θ) = u2

w2
(9.20)

Dividing Equation (9.20) by (9.19), recalling that w1 = w2, and invoking the
continuity equation, Equation (9.2), we obtain

tan(β − θ)

tan β
= u2

u1
= ρ1

ρ2
(9.21)

Combining Equation (9.21) with Equations (9.13) and (9.15), we obtain

tan(β − θ)

tan β
= 2 + (γ − 1)M2

1 sin2 β

(γ + 1)M2
1 sin2 β

(9.22)

which gives θ as an implicit function of M1 and β. After some trigonometric
substitutions and rearrangement, Equation (9.22) can be cast explicitly for θ as

tan θ = 2 cot β
M2

1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

(9.23)

Equation (9.23) is an important equation. It is called the θ -β-M relation, and it
specifies θ as a unique function of M1 and β. This relation is vital to the analysis
of oblique shock waves, and results from it are plotted in Figure 9.9 for γ = 1.4.
Examine this figure closely. It is a plot of wave angle versus deflection angle, with
the Mach number as a parameter. The results given in Figure 9.9 are plotted in
some detail—this is a chart which you will need to use for solving oblique shock
problems.

Figure 9.9 illustrates a wealth of physical phenomena associated with oblique
shock waves. For example:

1. For any given upstream Mach number M1, there is a maximum deflection
angle θmax. If the physical geometry is such that θ > θmax, then no solution
exists for a straight oblique shock wave. Instead, nature establishes a
curved shock wave, detached from the corner or the nose of a body. This
is illustrated in Figure 9.10. Here, the left side of the figure illustrates flow
over a wedge and a concave corner where the deflection angle is less than
θmax for the given upstream Mach number. Therefore, we see a straight
oblique shock wave attached to the nose of the wedge and to the corner. The
right side of Figure 9.10 gives the case where the deflection angle is greater
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(a)

Figure 9.9 Oblique shock properties: γ = 1.4. The θ -β-M diagram. (Source: NACA Report
1135, Ames Research Staff, “Equations, Tables and Charts for Compressible Flow,” 1953).
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(b)

Figure 9.9 (continued) (Source: NACA Report 1135, Ames Research Staff, “Equations, Tables
and Charts for Compressible Flow,” 1953).
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Figure 9.11 The weak and strong
shock cases.

than θmax; hence, there is no allowable straight oblique shock solution from
the theory developed earlier in this section. Instead, we have a curved shock
wave detached from the nose of the wedge or from the corner. Return to
Figure 9.9, and note that the value of θmax increases with increasing M1.

Hence, at higher Mach numbers, the straight oblique shock solution can
exist at higher deflection angles. However, there is a limit; as M1

approaches infinity, θmax approaches 45.5◦ (for γ = 1.4).
2. For any given θ less than θmax, there are two straight oblique shock

solutions for a given upstream Mach number. For example, if M1 = 2.0 and
θ = 15◦, then from Figure 9.9, β can equal either 45.3 or 79.8◦. The smaller
value of β is called the weak shock solution, and the larger value of β is
the strong shock solution. These two cases are illustrated in Figure 9.11.
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The classifications “weak” and “strong” derive from the fact that for a given
M1, the larger the wave angle, the larger the normal component of upstream
Mach number Mn,1, and from Equation (9.16) the larger the pressure ratio
p2/p1. Thus, in Figure 9.11, the higher-angle shock wave will compress the
gas more than the lower-angle shock wave, hence the terms “strong” and
“weak” solutions. In nature, the weak shock solution usually prevails.
Whenever you see straight, attached oblique shock waves, such as sketched
at the left of Figure 9.10, they are almost always the weak shock solution. It
is safe to make this assumption, unless you have specific information to the
contrary. Note in Figure 9.9 that the locus of points connecting all the
values of θmax (the curve that sweeps approximately horizontally across the
middle of Figure 9.9) divides the weak and strong shock solutions. Above
this curve, the strong shock solution prevails (as further indicated by the
θ -β-M curves being dashed); below this curve, the weak shock solution
prevails (where the θ -β-M curves are shown as solid lines). Note that
slightly below this curve is another curve which also sweeps approximately
horizontally across Figure 9.9. This curve is the dividing line above which
M2 < 1 and below which M2 > 1. For the strong shock solution, the
downstream Mach number is always subsonic M2 < 1. For the weak shock
solution very near θmax, the downstream Mach number is also subsonic, but
barely so. For the vast majority of cases involving the weak shock solution,
the downstream Mach number is supersonic M2 > 1. Since the weak shock
solution is almost always the case encountered in nature, we can readily
state that the Mach number downstream of a straight, attached oblique
shock is almost always supersonic.

3. If θ = 0, then β equals either 90◦ or μ. The case of β = 90◦ corresponds to
a normal shock wave (i.e., the normal shocks discussed in Chapter 8 belong
to the family of strong shock solutions). The case of β = μ corresponds to
the Mach wave illustrated in Figure 9.4b. In both cases, the flow streamlines
experience no deflection across the wave.

4. (In all of the following discussions, we consider the weak shock solution
exclusively, unless otherwise noted.) Consider an experiment where we
have supersonic flow over a wedge of given semiangle θ , as sketched in
Figure 9.12. Now assume that we increase the freestream Mach number M1.
As M1 increases, we observe that β decreases. For example, consider
θ = 20◦ and M1 = 2.0, as shown on the left of Figure 9.12. From
Figure 9.9, we find that β = 53.3◦. Now assume M1 is increased to 5,
keeping θ constant at 20◦, as sketched on the right of Figure 9.12. Here, we
find that β = 29.9◦. Interestingly enough, although this shock is at a lower
wave angle, it is a stronger shock than the one on the left. This is because
Mn,1 is larger for the case on the right. Although β is smaller, which
decreases Mn,1, the upstream Mach number M1 is larger, which increases
Mn,1 by an amount which more than compensates for the decreased β. For
example, note the values of Mn,1 and p2/p1 given in Figure 9.12. Clearly,
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M1 = 2.0 � = 20
� = 53.3

Mn1 = 1.60
p2/p1 = 2.82

M1 = 5.0 � = 20

Mn1 = 2.49
p2/p1 = 7.07

� = 29.9

Figure 9.12 Effects of increasing the upstream Mach number.

M = 2.0 � = 20
� = 53

Mn1 = 1.6
p2/p1 = 2.8

M1 = 2.0 � = 10

Mn1 = 1.26
p2/p1 = 1.69

� = 39.2

Figure 9.13 Effect of increasing the deflection angle.

the Mach 5 case on the right yields the stronger shock wave. Hence, in
general for attached shocks with a fixed deflection angle, as the upstream
Mach number M1 increases, the wave angle β decreases, and the shock
wave becomes stronger. Going in the other direction, as M1 decreases, the
wave angle increases, and the shock becomes weaker. Finally, if M1 is
decreased enough, the shock wave will become detached. For the case of
θ = 20◦ shown in Figure 9.12, the shock will be detached for M1 < 1.84.

5. Consider another experiment. Here, let us keep M1 fixed and increase the
deflection angle. For example, consider the supersonic flow over a wedge
shown in Figure 9.13. Assume that we have M1 = 2.0 and θ = 10◦, as
sketched at the left of Figure 9.13. The wave angle will be 39.2◦ (from
Figure 9.9). Now assume that the wedge is hinged so that we can increase
its deflection angle, keeping M1 constant. In such a case, the wave angle
will increase, as shown on the right of Figure 9.13. Also, Mn,1 will increase,
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and hence the shock will become stronger. Therefore, in general for
attached shocks with a fixed upstream Mach number, as the deflection angle
increases, the wave angle β increases, and the shock becomes stronger.
However, once θ exceeds θmax, the shock wave will become detached. For
the case of M1 = 2.0 in Figure 9.13, this will occur when θ > 23◦.

The physical properties of oblique shocks just discussed are very important.
Before proceeding further, make certain to go over this discussion several times
until you feel perfectly comfortable with these physical variations.

EXAMPLE 9.2

Consider a supersonic flow with M = 2, p = 1 atm, and T = 288 K. This flow is
deflected at a compression corner through 20◦. Calculate M , p, T , p0, and T0 behind the
resulting oblique shock wave.

■ Solution
From Figure 9.9, for M1 = 2 and θ = 20◦, β = 53.4◦. Hence, Mn,1 = M1 sin β =
2 sin 53.4◦ = 1.606. From Appendix B, for Mn,1 = 1.60 (rounded to the nearest table
entry),

Mn,2 = 0.6684
p2

p1
= 2.82

T2

T1
= 1.388

p0,2

p0,1
= 0.8952

Hence, M2 = Mn,2

sin(β − θ)
= 0.6684

sin(53.4 − 20)
= 1.21

p2 = p2

p1
p1 = 2.82(1 atm) = 2.82 atm

T2 = T2

T1
T1 = 1.388(288) = 399.7 K

For M1 = 2, from Appendix A, p0,1/p1 = 7.824 and T0,1/T1 = 1.8; thus,

p0,2 = p0,2

p0,1

p0,1

p1
p1 = 0.8952(7.824)(1 atm) = 7.00 atm

The total temperature is constant across the shock. Hence,

T0,2 = T0,1 = T0,1

T1
T1 = 1.8(288) = 518.4 K

Note: For oblique shocks, the entry for p0,2/p1 in Appendix B cannot be used to
obtain p0,2; this entry in Appendix B is for normal shocks only and is obtained
directly from Equation (8.80). In turn, Equation (8.80) is derived using (8.77),
where M2 is the actual flow Mach number, not the normal component. Only in the
case of a normal shock is this also the Mach number normal to the wave. Hence,
Equation (8.80) holds only for normal shocks; it cannot be used for oblique shocks
with M1 replaced by Mn,1. For example, an incorrect calculation would be to use
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p0,2/p1 = 3.805 for Mn,1 = 1.60. This gives p0,2 = 3.805 atm, a totally incorrect
result compared with the correct value of 7.00 atm obtained above.

EXAMPLE 9.3

Consider an oblique shock wave with a wave angle of 30◦. The upstream flow Mach
number is 2.4. Calculate the deflection angle of the flow, the pressure and temperature
ratios across the shock wave, and the Mach number behind the wave.

■ Solution
From Figure 9.9, for M1 = 2.4 and β = 30◦, we have θ = 6.5◦ . Also,

Mn,1 = M1 sin β = 2.4 sin 30◦ = 1.2

From Appendix B,
p2

p1
= 1.513

T2

T1
= 1.128

Mn,2 = 0.8422

Thus, M2 = Mn,2

sin(β − θ)
= 0.8422

sin(30 − 6.5)
= 2.11

Note: Two aspects are illustrated by this example:

1. This is a fairly weak shock wave—only a 51 percent increase in pressure
across the wave. Indeed, examining Figure 9.9, we find that this case is close
to that of a Mach wave, where μ = sin−1(1/M) = sin−1( 1

2.4 ) = 24.6◦. The
shock-wave angle of 30◦ is not much larger than μ; the deflection angle of
6.5◦ is also small—consistent with the relative weakness of the shock wave.

2. Only two properties need to be specified in order to define uniquely a given
oblique shock wave. In this example, M1 and β were those two properties.
In Example 9.2, the specified M1 and θ were the two properties. Once any
two properties about the oblique shock are specified, the shock is uniquely
defined. This is analogous to the case of a normal shock wave studied in
Chapter 8. There, we proved that all the changes across a normal shock
wave were uniquely defined by specifying only one property, such as M1.
However, implicit in all of Chapter 8 was an additional property, namely,
the wave angle of a normal shock wave is 90◦. Of course, a normal shock is
simply one example of the whole spectrum of oblique shocks, namely, a
shock with β = 90◦. An examination of Figure 9.9 shows that the normal
shock belongs to the family of strong shock solutions, as discussed
earlier.
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EXAMPLE 9.4

Consider an oblique shock wave with β = 35◦ and a pressure ratio p2/p1 = 3. Calculate
the upstream Mach number.

■ Solution
From Appendix B, for p2/p1 = 3, Mn,1 = 1.64 (nearest entry). Since

Mn,1 = M1 sin β

then M1 = Mn,1

sin β
= 1.66

sin 35◦ = 2.86

Note: Once again, the oblique shock is uniquely defined by two properties, in this case β

and p2/p1.

EXAMPLE 9.5

Consider a Mach 3 flow. It is desired to slow this flow to a subsonic speed. Consider two
separate ways of achieving this: (1) the Mach 3 flow is slowed by passing directly through
a normal shock wave; (2) the Mach 3 flow first passes through an oblique shock with
a 40◦ wave angle, and then subsequently through a normal shock. These two cases are
sketched in Figure 9.14. Calculate the ratio of the final total pressure values for the two
cases, that is, the total pressure behind the normal shock for case 2 divided by the total
pressure behind the normal shock for case 1. Comment on the significance of the result.

Figure 9.14 Illustration for Example 9.4.
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■ Solution
For case 1, at M = 3, we have, from Appendix B,(

p02

p01

)
case 1

= 0.3283

For case 2, we have Mn,1 = M1 sin β = 3 sin 40◦ = 1.93. From Appendix B,

p02

p01

= 0.7535 and Mn,2 = 0.588

From Figure 9.9, for M1 = 3 and β = 40◦, we have the deflection angle θ = 22◦. Hence,

M2 = Mn,2

sin(β − θ)
= 0.588

sin(40 − 22)
= 1.90

From Appendix B, for a normal shock with an upstream Mach number of 1.9, we have
p03/p02 = 0.7674. Thus, for case 2,(

p03

p01

)
case 2

=
(

p02

p01

)(
p03

p02

)
= (0.7535)(0.7674) = 0.578

Hence,

(
p03

p01

)
case 2

/(
p02

p01

)
case 1

= 0.578

0.3283
= 1.76

The result of Example 9.5 shows that the final total pressure is 76 percent
higher for the case of the multiple shock system (case 2) in comparison to the
single normal shock (case 1). In principle, the total pressure is an indicator of how
much useful work can be done by the gas; this is described later in Section 10.4.
Everything else being equal, the higher the total pressure, the more useful is
the flow. Indeed, losses of total pressure are an index of the efficiency of a fluid
flow—the lower the total pressure loss, the more efficient is the flow process.
In this example, case 2 is more efficient in slowing the flow to subsonic speeds
than case 1 because the loss in total pressure across the multiple shock system
of case 2 is actually less than that for case 1 with a single, strong, normal shock
wave. The physical reason for this is straightforward. The loss in total pressure
across a normal shock wave becomes particularly severe as the upstream Mach
number increases; a glance at the p0,2/p0,1 column in Appendix B attests to this.
If the Mach number of a flow can be reduced before passing through a normal
shock, the loss in total pressure is much less because the normal shock is weaker.
This is the function of the oblique shock in case 2, namely, to reduce the Mach
number of the flow before passing through the normal shock. Although there is
a total pressure loss across the oblique shock also, it is much less than across a
normal shock at the same upstream Mach number. The net effect of the oblique
shock reducing the flow Mach number before passing through the normal shock
more than makes up for the total pressure loss across the oblique shock, with the
beneficial result that the multiple shock system in case 2 produces a smaller loss
in total pressure than a single normal shock at the same freestream Mach number.
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Figure 9.15 Illustration of (a) normal shock inlet and
(b) oblique shock inlet.

A practical application of these results is in the design of supersonic inlets
for jet engines. A normal shock inlet is sketched in Figure 9.15a. Here, a normal
shock forms ahead of the inlet, with an attendant large loss in total pressure.
In contrast, an oblique shock inlet is sketched in Figure 9.15b. Here, a central
cone creates an oblique shock wave, and the flow subsequently passes through a
relatively weak normal shock at the lip of the inlet. For the same flight conditions
(Mach number and altitude), the total pressure loss for the oblique shock inlet
is less than for a normal shock inlet. Hence, everything else being equal, the
resulting engine thrust will be higher for the oblique shock inlet. This, of course,
is why most modern supersonic aircraft have oblique shock inlets.

9.3 SUPERSONIC FLOW OVER
WEDGES AND CONES

For the supersonic flow over wedges, as shown in Figures 9.12 and 9.13, the
oblique shock theory developed in Section 9.2 is an exact solution of the flow
field; no simplifying assumptions have been made. Supersonic flow over a wedge
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Figure 9.16 Relation between wedge and cone flow; illustration of the
three-dimensional relieving effect.

is characterized by an attached, straight oblique shock wave from the nose, a
uniform flow downstream of the shock with streamlines parallel to the wedge
surface, and a surface pressure equal to the static pressure behind the oblique
shock p2. These properties are summarized in Figure 9.16a. Note that the wedge
is a two-dimensional profile; in Figure 9.16a, it is a section of a body that stretches
to plus or minus infinity in the direction perpendicular to the page. Hence, wedge
flow is, by definition, two-dimensional flow, and our two-dimensional oblique
shock theory fits this case nicely.

In contrast, consider the supersonic flow over a cone, as sketched in Fig-
ure 9.16b. There is a straight oblique shock which emanates from the tip, just as
in the case of a wedge, but the similarity stops there. Recall from Chapter 6 that
flow over a three-dimensional body experiences a “three-dimensional relieving
effect.” That is, in comparing the wedge and cone in Figure 9.16, both with the
same 20◦ angle, the flow over the cone has an extra dimension in which to move,
and hence it more easily adjusts to the presence of the conical body in compar-
ison to the two-dimensional wedge. One consequence of this three-dimensional
relieving effect is that the shock wave on the cone is weaker than on the wedge;
that is, it has a smaller wave angle, as compared in Figure 9.16. Specifically, the
wave angles for the wedge and cone are 53.3 and 37◦, respectively, for the same
body angle of 20◦ and the same upstream Mach number of 2.0. In the case of
the wedge (Figure 9.16a), the streamlines are deflected by exactly 20◦ through
the shock wave, and hence downstream of the shock the flow is exactly parallel
to the wedge surface. In contrast, because of the weaker shock on the cone, the
streamlines are deflected by only 8◦ through the shock, as shown in Figure 9.16b.
Therefore, between the shock wave and the cone surface, the streamlines must
gradually curve upward in order to accommodate the 20◦ cone. Also, as a con-
sequence of the three-dimensional relieving effect, the pressure on the surface
of the cone, pc, is less than the wedge surface pressure p2, and the cone surface
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Mach number Mc is greater than that on the wedge surface M2. In short, the main
differences between the supersonic flow over a cone and wedge, both with the
same body angle, are that (1) the shock wave on the cone is weaker, (2) the cone
surface pressure is less, and (3) the streamlines above the cone surface are curved
rather than straight.

The analysis of the supersonic flow over a cone is more sophisticated than
the oblique shock theory given in this chapter. The calculation of the supersonic
flow over a cone is discussed in Section 13.6. For details concerning supersonic
conical flow analysis, see Chapter 10 of Reference 21. However, it is important
for you to recognize that conical flows are inherently different from wedge flows
and to recognize in what manner they differ. This has been the purpose of the
present section.

EXAMPLE 9.6

Consider a wedge with a 15◦ half angle in a Mach 5 flow, as sketched in Figure 9.17.
Calculate the drag coefficient for this wedge. (Assume that the pressure over the base is
equal to freestream static pressure, as shown in Figure 9.17.)

Figure 9.17 Illustration for Example 9.6.
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■ Solution
Consider the drag on a unit span of the wedge D′. Hence,

cd = D′

q1S
= D′

q1c(1)
= D′

q1c

From Figure 9.17,

D′ = 2p2l sin θ − 2p1l sin θ = (2l sin θ)(p2 − p1)

However, l = c

cos θ

Thus, D′ = (2c tan θ)(p2 − p1)

and cd = (2 tan θ)

(
p2 − p1

q1

)
Note that

q1 ≡ 1

2
ρ1V 2

1 = 1

2
ρ1

γ p1

γ p1
V 2

1 = γ p1

2a2
1

V 2
1 = γ

2
p1 M2

1

Thus, cd = (2 tan θ)

(
p2 − p1

(γ /2)p1 M2
1

)
= 4 tan θ

γ M2
1

(
p2

p1
− 1

)
From Figure 9.9, for M1 = 5 and θ = 15◦, β = 24.2◦. Hence,

Mn,1 = M1 sin β = 5 sin(24.2◦) = 2.05

From Appendix B, for Mn,1 = 2.05, we have

p2

p1
= 4.736

Hence, cd = 4 tan θ

γ M2
1

(
p2

p1
− 1

)
= 4 tan 15◦

(1.4)(5)2 (4.736 − 1) = 0.114

(Note: The drag is finite for this case. In a supersonic or hypersonic inviscid flow
over a two-dimensional body, the drag is always finite. D’Alembert’s paradox
does not hold for freestream Mach numbers such that shock waves appear in the
flow. The fundamental reason for the generation of drag here is the presence of
shock waves. Shocks are always a dissipative, drag-producing mechanism. For
this reason, the drag in this case is called wave drag, and cd is the wave-drag
coefficient, more properly denoted as cd,w.)

9.3.1 A Comment on Supersonic Lift and Drag Coefficients

The result obtained in Example 9.6 is a stunning verification of the validity of the
dimensional analysis discussed in Section 1.7. There we proved that, for a body of
a given shape at a given angle of attack, the aerodynamic coefficients are simply
a function of Mach number and Reynolds number [see Equations (1.42), (1.43),
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and (1.44)]. Consider the 15◦ half-angle wedge at zero angle of attack shown in
Figure 9.17. This is a body of a given shape at a given angle of attack. Moreover,
in Example 9.6 we are given only the freestream Mach number, and are asked
to calculate the drag coefficient for the wedge. Since the flow is inviscid, the
Reynolds number does not play a role. At first glance, one might intuitively think
that we need to be given at least a freestream pressure and velocity to obtain the
drag coefficient. After all, the physical source of the drag is the pressure distri-
bution integrated all over the surface of the body, as emphasized in Section 1.5.
And the surface pressure distribution is shown schematically in Figure 9.17. Why
is it, then, that we are not given some information about the pressure level and
the freestream velocity?

The answer, clearly demonstrated by the dimensional analysis in Section 1.7,
is that the drag coefficient depends just on Mach number. In Example 9.6 the
freestream Mach number is given as Mach 5. The solution progresses by treating
the surface pressure distribution that is responsible for the drag, but the solution
ultimately requires only pressure ratios, not the actual value of the pressure it-
self. At the end of the calculation in Example 9.6, the drag coefficient is finally
obtained, and all we needed for the calculation was the freestream Mach number.
What a nice verification of the validity of the dimensional analysis discussed in
Section 1.7 and the concept of flow similarity given in Section 1.8! Moreover,
we have verified these concepts for a supersonic flow. Of course, the concepts
in Sections 1.7 and 1.8 are fundamental; they hold no matter what is the flow
regime—subsonic, supersonic, hypersonic, etc.

Finally, if we had been asked for the drag force in Example 9.6, additional
information would have been required, such as the size of the wedge, and the
pressure of the freestream. But one of the beauties of dealing with the aerodynamic
coefficients rather than the forces or moments themselves is that the coefficients
for an inviscid flow depend on Mach number, and Mach number only.

9.4 SHOCK INTERACTIONS AND REFLECTIONS
Return to the oblique shock wave illustrated in Figure 9.2a. In this picture, we
can imagine the shock wave extending unchanged above the corner to infinity.
However, in real life this does not happen. In reality, the oblique shock in Fig-
ure 9.2a will impinge somewhere on another solid surface and/or will intersect
other waves, either shock or expansion waves. Such wave intersections and inter-
actions are important in the practical design and analysis of supersonic airplanes,
missiles, wind tunnels, rocket engines, etc. A perfect historical example of this,
as well as the consequences that can be caused by not paying suitable attention
to wave interactions, is a ramjet flight-test program conducted in the early 1960s.
During this period, a ramjet engine was mounted underneath the X-15 hypersonic
airplane for a series of flight tests at high Mach numbers, in the range from 4 to
7. (The X-15, shown in Figure 9.18, was an experimental, rocket-powered air-
plane designed to probe the lower end of hypersonic manned flight.) During the
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Figure 9.18 The X-15 hypersonic research vehicle. Designed and built during the late
1950s, it served as a test vehicle for the U.S. Air Force and NASA. (NASA).

first high-speed tests, the shock wave from the engine cowling impinged on the
bottom surface of the X-15, and because of locally high aerodynamic heating in
the impingement region, a hole was burned in the X-15 fuselage. Although this
problem was later fixed, it is a graphic example of what shock-wave interactions
can do to a practical configuration.

The purpose of this section is to present a mainly qualitative discussion of
shock-wave interactions. For more details, see Chapter 4 of Reference 21.

First, consider an oblique shock wave generated by a concave corner, as
shown in Figure 9.19. The deflection angle at the corner is θ , thus generating an
oblique shock at point A with a wave angle β1. Assume that a straight, horizontal
wall is present above the corner, as also shown in Figure 9.19. The shock wave
generated at point A, called the incident shock wave, impinges on the upper wall
at point B. Question: Does the shock wave simply disappear at point B? If not,
what happens to it? To answer this question, we appeal to our knowledge of
shock-wave properties. Examining Figure 9.19, we see that the flow in region 2
behind the incident shock is inclined upward at the deflection angle θ . However,
the flow must be tangent everywhere along the upper wall; if the flow in region 2
were to continue unchanged, it would run into the wall and have no place to go.
Hence, the flow in region 2 must eventually be bent downward through the angle θ

in order to maintain a flow tangent to the upper wall. Nature accomplishes this
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Figure 9.19 Regular reflection of a shock wave from a solid
boundary.

downward deflection via a second shock wave originating at the impingement
point B in Figure 9.19. This second shock is called the reflected shock wave.
The purpose of the reflected shock is to deflect the flow in region 2 so that
it is parallel to the upper wall in region 3, thus preserving the wall boundary
condition.

The strength of the reflected shock wave is weaker than the incident shock.
This is because M2 < M1, and M2 represents the upstream Mach number for
the reflected shock wave. Since the deflection angles are the same, whereas the
reflected shock sees a lower upstream Mach number, we know from Section 9.2
that the reflected wave must be weaker. For this reason, the angle the reflected
shock makes with the upper wall � is not equal to β1 (i.e., the wave reflection is
not specular). The properties of the reflected shock are uniquely defined by M2

and θ ; since M2 is in turn uniquely defined by M1 and θ , then the properties in
region 3 behind the reflected shock as well as the angle � are easily determined
from the given conditions of M1 and θ by using the results of Section 9.2 as
follows:

1. Calculate the properties in region 2 from the given M1 and θ . In particular,
this gives us M2.

2. Calculate the properties in region 3 from the value of M2 calculated above
and the known deflection angle θ .

An interesting situation can arise as follows. Assume that M1 is only slightly
above the minimum Mach number necessary for a straight, attached shock wave
at the given deflection angle θ . For this case, the oblique shock theory from
Section 9.2 allows a solution for a straight, attached incident shock. However,
we know that the Mach number decreases across a shock (i.e., M2 < M1).
This decrease may be enough such that M2 is not above the minimum Mach
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�

Figure 9.20 Mach reflection.

number for the required deflection θ through the reflected shock. In such a
case, our oblique shock theory does not allow a solution for a straight reflected
shock wave. The regular reflection as shown in Figure 9.19 is not possible. Na-
ture handles this situation by creating the wave pattern shown in Figure 9.20.
Here, the originally straight incident shock becomes curved as it nears the up-
per wall and becomes a normal shock wave at the upper wall. This allows the
streamline at the wall to continue parallel to the wall behind the shock inter-
section. In addition, a curved reflected shock branches from the normal shock
and propagates downstream. This wave pattern, shown in Figure 9.20, is called
a Mach reflection. The calculation of the wave pattern and general properties for
a Mach reflection requires numerical techniques such as those to be discussed in
Chapter 13.

Another type of shock interaction is shown in Figure 9.21. Here, a shock
wave is generated by the concave corner at point G and propagates upward. De-
note this wave as shock A. Shock A is a left-running wave, so-called because
if you stand on top of the wave and look downstream, you see the shock wave
running in front of you toward the left. Another shock wave is generated by
the concave corner at point H , and propagates downward. Denote this wave as
shock B. Shock B is a right-running wave, so-called because if you stand on
top of the wave and look downstream, you see the shock running in front of
you toward the right. The picture shown in Figure 9.21 is the intersection of
right- and left-running shock waves. The intersection occurs at point E . At the
intersection, wave A is refracted and continues as wave D. Similarly, wave B
is refracted and continues as wave C . The flow behind the refracted shock D is
denoted by region 4; the flow behind the refracted shock C is denoted by region 4′.
These two regions are divided by a slip line EF. Across the slip line, the pres-
sures are constant (i.e., p4 = p4′), and the direction (but not necessarily the
magnitude) of velocity is the same, namely, parallel to the slip line. All other
properties in regions 4 and 4′ are different, most notably the entropy (s4 �= s4′).
The conditions which must hold across the slip line, along with the known M1,
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Figure 9.22 Intersection of two left-running shock waves.

θ1, and θ2, uniquely determine the shock-wave interaction shown in Figure 9.21.
(See Chapter 4 of Reference 21 for details concerning the calculation of this
interaction.)

Figure 9.22 illustrates the intersection of two left-running shocks generated at
corners A and B. The intersection occurs at point C , at which the two shocks merge
and propagate as the stronger shock CD, usually along with a weak reflected wave
CE. This reflected wave is necessary to adjust the flow so that the velocities in
regions 4 and 5 are in the same direction. Again, a slip line CF trails downstream
of the intersection point.
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The above cases are by no means all the possible wave interactions in a
supersonic flow. However, they represent some of the more common situations
encountered frequently in practice.

EXAMPLE 9.7

Consider an oblique shock wave generated by a compression corner with a 10◦ deflec-
tion angle. The Mach number of the flow ahead of the corner is 3.6; the flow pressure
and temperature are standard sea level conditions. The oblique shock wave subsequently
impinges on a straight wall opposite the compression corner. The geometry for this flow
is given in Figure 9.19. Calculate the angle of the reflected shock wave � relative to the
straight wall. Also, obtain the pressure, temperature, and Mach number behind the reflected
wave.

■ Solution
From the θ -β-M diagram, Figure 9.9, for M1 = 3.6 and θ = 10◦, β1 = 24◦. Hence,

Mn,1 = M1 sin β1 = 3.6 sin 24◦ = 1.464

From Appendix B,

Mn,2 = 0.7157
p2

p1
= 2.32

T2

T1
= 1.294

Also, M2 = Mn,2

sin(β − θ)
= 0.7157

sin(24 − 10)
= 2.96

These are the conditions behind the incident shock wave. They constitute the upstream
flow properties for the reflected shock wave. We know that the flow must be deflected
again by θ = 10◦ in passing through the reflected shock. Thus, from the θ -β-M diagram,
for M2 = 2.96 and θ = 10◦, we have the wave angle for the reflected shock, β2 = 27.3◦.
Note that β2 is not the angle the reflected shock makes with respect to the upper wall;
rather, by definition of the wave angle, β2 is the angle between the reflected shock and the
direction of the flow in region 2. The shock angle relative to the wall is, from the geometry
shown in Figure 9.19,

� = β2 − θ = 27.3 − 10 = 17.3◦

Also, the normal component of the upstream Mach number relative to the reflected shock
is M2 sin β2 = (2.96) sin 27.3◦ = 1.358. From Appendix B,

p3

p2
= 1.991

T3

T2
= 1.229 Mn,3 = 0.7572

Hence, M3 = Mn,3

sin(β2 − θ)
= 0.7572

sin(27.3 − 10)
= 2.55
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For standard sea level conditions, p1 = 2116 lb/ft3 and T1 = 519◦R. Thus,

p3 = p3

p2

p2

p1
p1 = (1.991)(2.32)(2116) = 9774 lb/ft3

T3 = T3

T2

T2

T1
T1 = (1.229)(1.294)(519) = 825◦R

Note that the reflected shock is weaker than the incident shock, as indicated by the smaller
pressure ratio for the reflected shock, p3/p2 = 1.991 as compared to p2/p1 = 2.32 for
the incident shock.

9.5 DETACHED SHOCK WAVE IN FRONT
OF A BLUNT BODY

The curved bow shock which stands in front of a blunt body in a supersonic
flow is sketched in Figure 8.1. We are now in a position to better understand the
properties of this bow shock, as follows.

The flow in Figure 8.1 is sketched in more detail in Figure 9.23. Here, the
shock wave stands a distance δ in front of the nose of the blunt body; δ is defined

Figure 9.23 Flow over a supersonic blunt body.
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Figure 9.24 θ -β-M diagram for the sketch shown
in Figure 9.23.

as the shock detachment distance. At point a, the shock wave is normal to the
upstream flow; hence, point a corresponds to a normal shock wave. Away from
point a, the shock wave gradually becomes curved and weaker, eventually evolv-
ing into a Mach wave at large distances from the body (illustrated by point e in
Figure 9.23).

A curved bow shock wave is one of the instances in nature when you can
observe all possible oblique shock solutions at once for a given freestream Mach
number M1. This takes place between points a and e. To see this more clearly,
consider the θ -β-M diagram sketched in Figure 9.24 in conjunction with Fig-
ure 9.23. In Figure 9.24, point a corresponds to the normal shock, and point e
corresponds to the Mach wave. Slightly above the centerline, at point b in Fig-
ure 9.23, the shock is oblique but pertains to the strong shock-wave solution in
Figure 9.24. The flow is deflected slightly upward behind the shock at point b.
As we move further along the shock, the wave angle becomes more oblique,
and the flow deflection increases until we encounter point c. Point c on the bow
shock corresponds to the maximum deflection angle shown in Figure 9.24. Above
point c, from c to e, all points on the shock correspond to the weak shock solution.
Slightly above point c, at point c′, the flow behind the shock becomes sonic. From
a to c′, the flow is subsonic behind the bow shock; from c′ to e, it is supersonic.
Hence, the flow field between the curved bow shock and the blunt body is a mixed
region of both subsonic and supersonic flow. The dividing line between the sub-
sonic and supersonic regions is called the sonic line, shown as the dashed line in
Figure 9.23.

The shape of the detached shock wave, its detachment distance δ, and the
complete flow field between the shock and the body depend on M1 and the size
and shape of the body. The solution of this flow field is not trivial. Indeed, the
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supersonic blunt-body problem was a major focus for supersonic aerodynamicists
during the 1950s and 1960s, spurred by the need to understand the high-speed
flow over blunt-nosed missiles and reentry bodies. Indeed, it was not until the late
1960s that truly sufficient numerical techniques became available for satisfactory
engineering solutions of supersonic blunt-body flows. These modern techniques
are discussed in Chapter 13.

EXAMPLE 9.8

Consider the detached curved bow shock wave in front of the two-dimensional parabolic
blunt body drawn in Figure 9.25. The freestream is at Mach 8. Consider the two streamlines
passing through the shock at points a and b shown in Figure 9.25. The wave angle at point
a is 90◦, and that at point b is 60◦. Calculate and compare the value of entropy (relative
to the freestream) for streamlines a and b in the flow behind the shock.

■ Solution
The oblique shock properties studied in this chapter are derived on the basis of a straight
oblique shock wave with a uniform flow field behind the shock wave, such as sketched in
Figure 9.2a. These solutions do not apply to the nonuniform flow field behind a curved
shock wave such as shown in Figure 9.25. Such blunt-body solutions are treated in Sec-
tion 13.5. The straight oblique shock solutions treated in the present chapter, however,
give the shock wave properties at any local point immediately behind the curved shock
in Figure 9.25 as long as we know the local wave angle at the point. Therefore, immedi-
ately behind the shock at point a, because the shock is a normal shock at that point, we
have

Mn,1 = 8

From Appendix B, for Mn,1 = 8, p2/p1 = 74.5 and T2/T1 = 13.39. From Equation
(7.25), the entropy increase across the shock is

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1

Since

cp = γ R

γ − 1
= (1.4)(287)

0.4
= 1004.5

J

Kg · K

Then

s2 − s1 = (1004.5) ln 13.39 − (287) ln 74.5

s2 − s1 = 1370
J

Kg · K

Downstream of the shock wave, the flow along any given streamline is both adiabatic (no
heat transfer) and reversible (no friction, etc.), hence the flow along a given streamline
behind the shock wave is isentropic. Therefore, along streamline a, the entropy is constant
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Figure 9.25 Two streamlines crossing a detached bow
shockwave in front of a blunt body at Mach 8.

and equal to its value at point a just behind the shock wave. Thus,

s2 − s1 = 1370
J

Kg · K
along streamline a

Immediately behind the curved bow shock at point b, where β = 60◦, we have

Mn,1 = M1 sin β = 8 sin 60◦

= 8(0.866) = 6.928

From Appendix B, using the nearest entry of Mn,1 = 6.9, we have p2/p1 = 55.38 and
T2/T1 = 10.2. Thus, at point b,

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1

= (1004.5) ln 10.2 − (287) ln 55.38

= 1180
J

Kg · K
along streamline b

The entropy along streamline b is smaller than that along streamline a because streamline
b passes through a weaker part of the bow shock wave.
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9.5.1 Comment on the Flow Field Behind a Curved Shock Wave:
Entropy Gradients and Vorticity

As illustrated by Example 9.8, the entropy is different along different streamlines
behind a curved shock wave. For the case treated in Example 9.8, streamline a
passes through the normal shock at point a and then flows downstream, wetting
the surface of the body, as shown in Figure 9.25. This is the maximum entropy
streamline. All other streamlines have smaller values of entropy; streamline b has
a smaller entropy than streamline a because it passes through a weaker part of the
curved shock wave at point b. Therefore, if you visualize a line that cuts through
the flow field from point 1 to point 2 in Figure 9.25, the entropy decreases along
this line from the body to the shock. That is, there exists an entropy gradient, ∇s,
in the flow. For blunt-nosed hypersonic bodies the entropy gradient can be quite
large, and is the source of the “entropy layer” that interacts with the boundary
layer on hypersonic bodies (see, for example, Reference 52).

The presence of entropy gradients in the flow behind a curved shock wave
has another consequence—the production of vorticity in the flow. The physical
connection between entropy gradients and vorticity is quantified by Crocco’s
theorem, a combination of the momentum equation and the combined first and
second laws of thermodynamics:

T ∇s = ∇ho − V × (∇ × V) Crocco’s theorem

In this equation, ∇s is the entropy gradient, ∇ho is the gradient in the total
enthalpy, and ∇ ×V is the vorticity. For a derivation of Crocco’s theorem, see, for
example, Section 6.6 of Reference 21. For our discussion, we present Crocco’s
theorem simply to emphasize an important feature of the flow behind the curved
shock shown in Figure 9.25. The flow is adiabatic, hence ∇ho is zero everywhere
in the flow. However, ∇s is finite, and therefore from Crocco’s theorem ∇ × V
must be finite.

Conclusion: The flow field behind a curved shock wave is rotational. As a
result, a velocity potential with all its analytical advantages discussed earlier in
this book cannot be defined for the blunt-body flow field. Consequently, the flow
field behind a curved shock is computed by means of numerical solutions of the
continuity, momentum, and energy equations. Such computational fluid dynamic
solutions are discussed in Section 13.5.

9.6 PRANDTL-MEYER EXPANSION WAVES
Oblique shock waves, as discussed in Sections 9.2 to 9.5, occur when a supersonic
flow is turned into itself (see again Figure 9.2a). In contrast, when a supersonic
flow is turned away from itself, an expansion wave is formed, as sketched in
Figure 9.2b. Examine this figure carefully, and review the surrounding discussion
in Section 9.1 before progressing further. The purpose of the present section is
to develop a theory which allows us to calculate the changes in flow properties
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Figure 9.26 Prandtl-Meyer expansion.

across such expansion waves. To this stage in our discussion of oblique waves,
we have completed the left-hand branch of the road map in Figure 9.6. In this
section, we cover the right-hand branch.

The expansion fan in Figure 9.2b is a continuous expansion region that can be
visualized as an infinite number of Mach waves, each making the Mach angle μ

[see Equation (9.1)] with the local flow direction. As sketched in Figure 9.26, the
expansion fan is bounded upstream by a Mach wave which makes the angle μ1

with respect to the upstream flow, where μ1 = arcsin(1/M1). The expansion fan
is bounded downstream by another Mach wave which makes the angle μ2 with
respect to the downstream flow, where μ2 = arcsin(1/M2). Since the expansion
through the wave takes place across a continuous succession of Mach waves, and
since ds = 0 for each Mach wave, the expansion is isentropic. This is in direct
contrast to flow across an oblique shock, which always experiences an entropy
increase. The fact that the flow through an expansion wave is isentropic is a greatly
simplifying aspect, as we will soon appreciate.

An expansion wave emanating from a sharp convex corner as sketched in
Figures 9.2b and 9.26 is called a centered expansion wave. Ludwig Prandtl and
his student Theodor Meyer first worked out a theory for centered expansion waves
in 1907–1908, and hence such waves are commonly denoted as Prandtl-Meyer
expansion waves.

The problem of an expansion wave is as follows: Referring to Figure 9.26,
given the upstream flow (region 1) and the deflection angle θ , calculate the down-
stream flow (region 2). Let us proceed.

Consider a very weak wave produced by an infinitesimally small flow deflec-
tion dθ as sketched in Figure 9.27. We consider the limit of this picture as dθ → 0;
hence, the wave is essentially a Mach wave at the angle μ to the upstream flow.
The velocity ahead of the wave is V . As the flow is deflected downward through
the angle dθ , the velocity is increased by the infinitesimal amount dV , and hence
the flow velocity behind the wave is V + dV inclined at the angle dθ . Recall
from the treatment of the momentum equation in Section 9.2 that any change in
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Figure 9.27 Geometrical construction for the infinitesimal changes
across an infinitesimally weak wave (in the limit, a Mach wave).

velocity across a wave takes place normal to the wave; the tangential component
is unchanged across the wave. In Figure 9.27, the horizontal line segment AB
with length V is drawn behind the wave. Also, the line segment AC is drawn to
represent the new velocity V + dV behind the wave. Then line BC is normal to
the wave because it represents the line along which the change in velocity occurs.
Examining the geometry in Figure 9.27, from the law of sines applied to triangle
ABC, we see that

V + dV

V
= sin(π/2 + μ)

sin(π/2 − μ − dθ)
(9.24)

However, from trigonometric identities,

sin
(

π

2
+ μ

)
= sin

(
π

2
− μ

)
= cos μ (9.25)

sin
(

π

2
− μ − dθ

)
= cos(μ + dθ) = cos μ cos dθ − sin μ sin dθ (9.26)

Substituting Equations (9.25) and (9.26) into (9.24), we have

1 + dV

V
= cos μ

cos μ cos dθ − sin μ sin dθ
(9.27)

For small dθ , we can make the small-angle assumptions sin dθ ≈ dθ and
cos dθ ≈ 1. Then, Equation (9.27) becomes

1 + dV

V
= cos μ

cos μ − dθ sin μ
= 1

1 − dθ tan μ
(9.28)
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Figure 9.28 Right triangle
associated with the Mach angle.

Note that the function 1/(1 − x) can be expanded in a power series (for x < 1) as

1

1 − x
= 1 + x + x2 + x3 + · · ·

Hence, Equation (9.28) can be expanded as (ignoring terms of second order and
higher)

1 + dV

V
= 1 + dθ tan μ + · · · (9.29)

Thus, from Equation (9.29),

dθ = dV/V

tan μ
(9.30)

From Equation (9.1), we know that μ = arcsin(1/M). Hence, the right triangle
in Figure 9.28 demonstrates that

tan μ = 1√
M2 − 1

(9.31)

Substituting Equation (9.31) into (9.30), we obtain

dθ = √
M2 − 1

dV

V
(9.32)

Equation (9.32) relates the infinitesimal change in velocity dV to the infinites-
imal deflection dθ across a wave of vanishing strength. In the precise limit
of a Mach wave, of course dV and hence dθ are zero. In this sense, Equa-
tion (9.32) is an approximate equation for a finite dθ , but it becomes a true
equality as dθ → 0. Since the expansion fan illustrated in Figures 9.2b and
9.26 is a region of an infinite number of Mach waves, Equation (9.32) is a
differential equation which precisely describes the flow inside the expansion
wave.
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Return to Figure 9.26. Let us integrate Equation (9.32) from region 1, where
the deflection angle is zero and the Mach number is M1, to region 2, where the
deflection angle is θ and the Mach number is M2:∫ θ

0
dθ = θ =

∫ M2

M1

√
M2 − 1

dV

V
(9.33)

To carry out the integral on the right-hand side of Equation (9.33), dV/V must
be obtained in terms of M , as follows. From the definition of Mach number,
M = V/a, we have V = Ma, or

ln V = ln M + ln a (9.34)

Differentiating Equation (9.34), we obtain

dV

V
= d M

M
+ da

a
(9.35)

From Equations (8.25) and (8.40), we have(
a0

a

)2

= T0

T
= 1 + γ − 1

2
M2 (9.36)

Solving Equation (9.36) for a, we obtain

a = a0

(
1 + γ − 1

2
M2

)−1/2

(9.37)

Differentiating Equation (9.37), we obtain

da

a
= −

(
γ − 1

2

)
M

(
1 + γ − 1

2
M2

)−1

d M (9.38)

Substituting Equation (9.38) into (9.35), we have

dV

V
= 1

1 + [(γ − 1)/2]M2

d M

M
(9.39)

Equation (9.39) is a relation for dV/V strictly in terms of M—this is precisely
what is desired for the integral in Equation (9.33). Hence, substituting Equa-
tion (9.39) into (9.33), we have

θ =
∫ M2

M1

√
M2 − 1

1 + [(γ − 1)/2]M2

d M

M
(9.40)

In Equation (9.40), the integral

ν(M) ≡
∫ √

M2 − 1

1 + [(γ − 1)/2]M2

d M

M
(9.41)
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is called the Prandtl-Meyer function, denoted by ν. Carrying out the integration,
Equation (9.41) becomes

ν(M) =
√

γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1) − tan−1

√
M2 − 1 (9.42)

The constant of integration that would ordinarily appear in Equation (9.42) is
not important, because it drops out when Equation (9.42) is used for the defi-
nite integral in Equation (9.40). For convenience, it is chosen as zero, such that
ν(M) = 0 when M = 1. Finally, we can now write Equation (9.40), combined
with (9.41), as

θ = ν(M2) − ν(M1) (9.43)

where ν(M) is given by Equation (9.42) for a calorically perfect gas. The Prandtl-
Meyer function ν is very important; it is the key to the calculation of changes
across an expansion wave. Because of its importance, ν is tabulated as a function of
M in Appendix C. For convenience, values of μ are also tabulated in Appendix C.

How do the above results solve the problem stated in Figure 9.26; that is how
can we obtain the properties in region 2 from the known properties in region 1
and the known deflection angle θ? The answer is straightforward:

1. For the given M1, obtain ν(M1) from Appendix C.
2. Calculate ν(M2) from Equation (9.43), using the known θ and the value of

ν(M1) obtained in step 1.
3. Obtain M2 from Appendix C corresponding to the value of ν(M2) from

step 2.
4. The expansion wave is isentropic; hence, p0 and T0 are constant through the

wave. That is, T0,2 = T0,1 and p0,2 = p0,1. From Equation (8.40), we have

T2

T1
= T2/T0,2

T1/T0,1
= 1 + [(γ − 1)/2]M2

1

1 + [(γ − 1)/2]M2
2

(9.44)

From Equation (8.42), we have

p2

p1
= p2/p0

p1/p0
=

(
1 + [(γ − 1)/2]M2

1

1 + [(γ − 1)/2]M2
2

)γ /(γ−1)

(9.45)

Since we know both M1 and M2, as well as T1 and p1, Equations (9.44) and
(9.45) allow the calculation of T2 and p2 downstream of the expansion wave.

EXAMPLE 9.9

A supersonic flow with M1 = 1.5, p1 = 1 atm, and T1 = 288 K is expanded around a
sharp corner (see Figure 9.26) through a deflection angle of 15◦. Calculate M2, p2, T2,
p0,2, T0,2, and the angles that the forward and rearward Mach lines make with respect to
the upstream flow direction.
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■ Solution
From Appendix C, for M1 = 1.5, ν1 = 11.91◦. From Equation (9.43), ν2 = ν1 + θ =
11.91 + 15 = 26.91◦. Thus, M2 = 2.0 (rounding to the nearest entry in the table).

From Appendix A, for M1 = 1.5, p0,1/p1 = 3.671 and T0,1/T1 = 1.45, and for
M2 = 2.0, p0,2/p2 = 7.824 and T0,2/T2 = 1.8.

Since the flow is isentropic, T0,2 = T0,1 and p0,2 = p0,1. Thus,

p2 = p2

p0,2

p0,2

p0,1

p0,1

p1
p1 = 1

7.824
(1)(3.671)(1 atm) = 0.469 atm

T2 = T2

T0,2

T0,2

T0,1

T0,1

T1
T1 = 1

1.8
(1)(1.45)(288) = 232 K

p0,2 = p0,1 = p0,1

p1
p1 = 3.671(1 atm) = 3.671 atm

T0,2 = T0,1 = T0,1

T1
T1 = 1.45(288) = 417.6 K

Returning to Figure 9.26, we have

Angle of forward Mach line = μ1 = 41.81◦

Angle of rearward Mach line = μ2 − θ = 30 − 15 = 15◦

DESIGN BOX

In Example 8.14 we indicated the reasons why an
air-breathing power plant for high Mach number, hy-
personic vehicles would have to be a supersonic com-
bustion ramjet engine—a SCRAMjet. The design of
such an engine depends heavily on the properties of
oblique shock waves and expansion waves—the sub-
jects of this chapter. In this design box, we examine
some of the basic design features of SCRAMjet en-
gines. Looking ahead to the future of aerodynamics
in the twenty-first century, hypersonic flight is essen-
tially the last frontier of our quest to fly faster and
higher. Many of the hypersonic vehicles of the future

will be powered by SCRAMjet engines. So the mate-
rial in this design box is much like peering through a
window into the future.

Two experimental SCRAMjet powered vehicles
have successfully flown, the X-51 shown in Figure
9.29a and the X-43 shown in Figure 9.29b (Reference
67). These experimental airplanes are paving the way
to the future of hypersonic air-breathing airplanes.

The side view of a generic hypersonic vehicle
powered by a SCRAMjet is shown in Figure 9.30. Es-
sentially, the entire bottom surface of the vehicle is
an integrated portion of the air-breathing SCRAMjet
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(a) SCRAMjet-powered X-51 experimental vehicle.

(b) SCRAMjet-powered X-43 experimental air breathing 
      hypersonic vehicle.

Figure 9.29 Computer-generated images of possible
future SCRAMjet-powered hypersonic vehicles.
[(a) U.S. Air Force Photo; (b) NASA].

engine. The forebody shock wave (1) from the nose
of the vehicle is the initial part of the compression
process for the engine. Air flowing through this shock
wave is compressed, and then enters the SCRAMjet
engine module (2) where it is further compressed by
reflected shock waves inside the engine duct, mixed
with fuel, and then expanded out the back end of the
module. The back end of the vehicle is scooped out
(3) in order to further enhance the expansion of the
exhaust gas. At the design flight condition, the fore-
body shock wave impinges right at the leading edge
of the cowl (4), so that all the flow passing through

the shock will enter the engine, rather than some of
the air spilling around the external surface.

It is also possible to further compress the air be-
fore it enters the engine module by creating an isen-
tropic compression wave downstream of the shock.
This is shown in Figure 9.31, patterned after Refer-
ence 68. Here, the bottom surface of the vehicle is
contoured just right to form an isentropic compres-
sion wave that will focus at the leading edge of the
cowl, right where the forebody shock wave is imping-
ing as well. An isentropic compression wave is the
opposite of the isentropic expansion wave discussed
in Section 9.6, but the calculation of its properties is
governed by the same Prandtl-Meyer function given
in Equation (9.42), except in this case the local Mach
number decreases through the wave, and the pressure
increases. To create such an isentropic compression
wave in reality is quite difficult; the contour of the
body surface must be a specific shape for a specific up-
stream Mach number, and most efforts over the years
to produce isentropic compression waves in various
supersonic and hypersonic flow devices have usually
resulted in the wave prematurely coalescing into sev-
eral weak shock waves with associated entropy in-
creases and total pressure loss. SCRAMjet-powered
vehicles might incorporate such an isentropic com-
pression surface. Other physical phenomena that in-
fluence SCRAMjet engine performance and vehicle
aerodynamics are also noted in Figure 9.31. The lead-
ing edge must be blunted in order to reduce the aero-
dynamic heating at the nose (to be discussed in Chap-
ter 14). The viscous boundary layer over the surface of
the body creates drag and aerodynamic heating, and
when a shock wave impinges on the boundary layer,
flow separation and local reattachment may occur, cre-
ating local regions of high heat transfer (the shock
wave/boundary layer interaction problem). There is
always the important question as to where transition
from laminar to turbulent boundary layer flow occurs
along the body, because turbulent boundary layers re-
sult in increased aerodynamic heating and skin fric-
tion. Finally, when the forebody shock impinges on
the leading edge of the cowl, it will interact with the
local shock wave created at the blunt leading edge
of the cowl, resulting in a shock–shock interaction
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Figure 9.30 Sketch of a generic hypersonic vehicle powered by a SCRAMjet
engine.
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Figure 9.31 Sketch of some of the flow features on the forebody of a
SCRAMjet-powered hypersonic vehicle.
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Figure 9.32 Flow path through a SCRAMjet engine.

problem that may create a local region of intense heat-
ing at the cowl leading edge. All of these phenomena
influence the quality of the flow entering the SCRAM-
jet module, and they pose challenging problems for the
designers of future SCRAMjet engines.

A generic sketch indicating the flow path through
the SCRAMjet is shown in Figure 9.32. Here again
we see the forebody shock impinging at the lead-
ing edge of the cowl, and a contoured compression

surface to encourage an isentropic compression be-
hind the shock. The cross-sectional area of the stream-
tube flowing through the shock wave, as noted in
Figure 9.32, is greatly reduced behind the shock and
through the compression wave owing to the large in-
crease of air density through these compression pro-
cesses. Because of this, the flow path through the
combustor has a much smaller cross-sectional area.
In Figure 9.32, points 4 and 5 denote the entrance
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Figure 9.33 Two-sided view of a conceptual vehicle design.
(Source: Billig, Frederick S.: “Design and Development of Single-Stage-to-Orbit
Vehicles,” Johns Hopkins Applied Physics Laboratory Technical Digest, vol. 11,
nos. 3 and 4, July–December 1990, pp. 336–352).

Altitude p4 T4 V4

M∞ (ft) M4
A0

A4

p4

p∞
(lb/in2) (◦R) (ft/s)

7 80,077 3.143 10.85 47 19.03 1451 5,757
10 95,500 4.143 16.49 89.6 17.78 1958 8,744
15 114,250 5.502 25.23 185.9 15.94 2880 13,908
20 137,760 6.650 33.11 313.6 10.02 4074 19,648

and exit, respectively, of the combustor. Billig (Refer-
ence 69) has calculated typical flow conditions en-
tering the combustor (at point 4) as a function of
freestream Mach number M∞ and flight altitude.
Some of his results are tabulated above, where A0
is the cross-sectional area of the streamtube in the
freestream (see Figure 9.32), A4 is its cross-sectional
area at location 4, and M4, p4, T4, and V4 are the
local Mach number, pressure, temperature, and flow
velocity, respectively, at location 4.

Note from the tabulation that the local Mach
number entering the combustor for the given condi-
tions ranges from about 3 to above 6. The combus-
tion takes place in this high Mach number stream—

the very essence of a SCRAMjet engine. Also note
from Figure 9.32 that the cross-sectional area of the
combustor increases from point 4 to point 5 along its
length; this is to accommodate the local heat addi-
tion to the flow due to burning with the fuel, and still
keep the flow moving at supersonic speed. (In Refer-
ence 21, among others, it is shown that heat addition
to a supersonic flow slows the flow, whereas we will
prove in Chapter 10 that increasing the cross-sectional
area of a supersonic flow increases its speed. Hence,
the combustor area in a SCRAMjet must be increased
in the flow direction in order to keep the heat addition
process from slowing the flow too much.)

A two-sided (bottom and side) view of a con-
ceptual design for a SCRAMjet powered hypersonic
vehicle is given in Figure 9.33, patterned after the
design discussed by Billig (Reference 69). Note the
slender shape for aerodynamic efficiency (high lift-
to-drag ratio), the wedge and isentropic ramp to com-
press the flow before entering the engine modules,
and the translating cowl in order to properly position
the impinging shock wave on the cowl leading edge
as the freestream Mach number changes. We again
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X-43A VehicleLength: 12�4�

Width: 5�0�
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Weight: 3000 lb
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60.4�
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1
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Figure 9.34 The X-43A, Hyper-X, hypersonic research vehicle
(NASA).

make note that the whole undersurface of the vehi-
cle is an integral part of the SCRAMjet engine cycle.
For air-breathing hypersonic vehicles, the problem of
airframe/propulsion integration is paramount; it is a
major driving design feature of such aircraft.

America flew its first SCRAMjet-powered flight
vehicle, the X-43, also labeled the Hyper-X, in 2004.
A three-view of the X-43 is given in Figure 9.34.
This small unpiloted test vehicle was launched from
a modified Orbital Sciences Pegasus first stage rocket

booster, which in turn was launched from a B-52
bomber in flight. The primary purpose of the X-43
is to demonstrate the viability of a SCRAMjet en-
gine under actual flight conditions, as opposed to
research results in ground test facilities. In particular,
in two successful test flights it successively demon-
strated performance at M∞ = 7 and 10. The X-43
is a NASA project; it was the first free-flight of
an airframe integrated supersonic combustion ramjet
engine.

EXAMPLE 9.10

In the preceding discussion on SCRAMjet engines, an isentropic compression wave was
mentioned as one of the possible compression mechanisms. Consider the isentropic com-
pression surface sketched in Figure 9.35a. The Mach number and pressure upstream of the
wave are M1 = 10 and p1 = 1 atm, respectively. The flow is turned through a total angle
of 15◦. Calculate the Mach number and pressure in region 2 behind the compression wave.

■ Solution
From Appendix C, for M1 = 10, ν1 = 102.3◦. In region 2,

ν2 = ν1 − θ = 102.3 − 15 = 87.3◦

From Appendix C for ν2 = 87.3◦, we have (closest entry)

M2 = 6.4
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Figure 9.35 Figures for (a) Example 9.9 and (b) Example 9.10.

From Appendix A, for M1 = 10, p0,1/p1 = 0.4244 × 105 and for M2 = 6.4, p0,2/p2 =
0.2355 × 104. Since the flow is isentropic, p0,2 = p0,1, and hence

p2 =
(

p2

p0,2

)(
p0,2

p0,1

)(
p0,1

p1

)
p1 =

(
1

0.2355 × 104

)
(1)(0.4244 × 105)(1)

= 18.02 atm

EXAMPLE 9.11

Consider the flow over a compression corner with the same upstream conditions of
M1 = 10 and p1 = 1 atm as in Example 9.10, and the same turning angle of 15◦, except
in this case the corner is sharp and the compression takes place through an oblique shock
wave as sketched in Figure 9.35b. Calculate the downstream Mach number, static pressure,
and total pressure in region 2. Compare the results with those obtained in Example 9.10,
and comment on the significance of the comparison.

■ Solution
From Figure 9.9 for M1 = 10 and θ = 15◦, the wave angle is β = 20◦. The component
of the upstream Mach number perpendicular to the wave is

Mn,1 = M1 sin β = (10) sin 20◦ = 34.2

From Appendix B for Mn,1 = 3.42, we have (nearest entry), p2/p1 = 13.32, p0,2/p0,1 =
0.2322, and Mn,2 = 0.4552. Hence

M2 = Mn,2

sin(β − θ)
= 0.4552

sin(20 − 15)
= 5.22

p2 = (p2/p1)p1 = 13.32(1) = 13.32 atm
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The total pressure in region 1 can be obtained from Appendix A as follows. For M1 = 10,
p0,1/p1 = 0.4244 × 105. Hence, the total pressure in region 2 is

p0,2 =
(

p0,2

p0,1

)(
p0,1

p1

)
(p1) = (0.2322)(0.4244 × 105)(1) = 9.85 × 103 atm

As a check, we can calculate p0,2 as follows. (This check also alerts us to the error incurred
when we round to the nearest entry in the tables.) From Appendix A for M2 = 5.22,
p0,2/p2 = 0.6661 × 103 (nearest entry). Hence,

p0,2 =
(

p0.2

p2

)
(p2) = (0.6661 × 103)(13.32) = 8.87 × 103 atm

Note this answer is 10 percent lower than that obtained above, which is simply due to our
rounding to the nearest entry in the tables. The error incurred by taking the nearest entry
is exacerbated by the very high Mach numbers in this example. Much better accuracy can
be obtained by properly interpolating between table entries.

Comparing the results from this example and Example 9.10, we clearly see
that the isentropic compression is a more efficient compression process, yielding
a downstream Mach number and pressure that are both considerably higher than
in the case of the shock wave. The inefficiency of the shock wave is measured by
the loss of total pressure across the shock; total pressure drops by about 77 percent
across the shock. This emphasizes why designers of supersonic and hypersonic
inlets would love to have the compression process carried out via isentropic
compression waves. However, as noted in our discussion on SCRAMjets, it is very
difficult to achieve such a compression in real life; the contour of the compression
surface must be quite precise, and it is a point design for the given upstream
Mach number. At off-design Mach numbers, even the best-designed compression
contour will result in shocks.

9.7 SHOCK-EXPANSION THEORY: APPLICATIONS
TO SUPERSONIC AIRFOILS

Consider a flat plate of length c at an angle of attack α in a supersonic flow, as
sketched in Figure 9.36. On the top surface, the flow is turned away from itself;
hence, an expansion wave occurs at the leading edge, and the pressure on the top
surface p2 is less than the freestream pressure p2 < p1. At the trailing edge, the
flow must return to approximately (but not precisely) the freestream direction.
Here, the flow is turned back into itself, and consequently a shock wave occurs at
the trailing edge. On the bottom surface, the flow is turned into itself; an oblique
shock wave occurs at the leading edge, and the pressure on the bottom surface p3

is greater than the freestream pressure p3 > p1. At the trailing edge, the flow is
turned into approximately (but not precisely) the freestream direction by means of
an expansion wave. Examining Figure 9.36, note that the top and bottom surfaces
of the flat plate experience uniform pressure distribution of p2 and p3, respectively,
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Figure 9.36 Flat plate at an angle of attack in a supersonic
flow.

and that p3 > p2. This creates a net pressure imbalance that generates the resultant
aerodynamic force R, shown in Figure 9.36. Indeed, for a unit span, the resultant
force and its components, lift and drag, per unit span are

R′ = (p3 − p2)c (9.46)

L ′ = (p3 − p2)c cos α (9.47)

D′ = (p3 − p2)c sin α (9.48)

In Equations (9.47) and (9.48), p3 is calculated from oblique shock properties
(Section 9.2), and p2 is calculated from expansion-wave properties (Section 9.6).
Moreover, these are exact calculations; no approximations have been made. The
inviscid, supersonic flow over a flat plate at angle of attack is exactly given by
the combination of shock and expansion waves sketched in Figure 9.36.

The flat-plate case given above is the simplest example of a general technique
called shock-expansion theory. Whenever we have a body made up of straight-line
segments and the deflection angles are small enough so that no detached shock
waves occur, the flow over the body goes through a series of distinct oblique
shock and expansion waves, and the pressure distribution on the surface (hence
the lift and drag) can be obtained exactly from both the shock- and expansion-wave
theories discussed in this chapter.

As another example of the application of shock-expansion theory, consider
the diamond-shape airfoil in Figure 9.37. Assume the airfoil is at 0◦ angle of
attack. The supersonic flow over the airfoil is first compressed and deflected
through the angle ε by the oblique shock wave at the leading edge. At midchord,
the flow is expanded through an angle 2ε, creating an expansion wave. At the
trailing edge, the flow is turned back to the freestream direction through another
oblique shock. The pressure distributions on the front and back faces of the airfoil
are sketched in Figure 9.37; note that the pressures on faces a and c are uniform
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Figure 9.37 Diamond-wedge airfoil at zero angle of attack in a supersonic flow.

and equal to p2 and that the pressures on faces b and d are also uniform but equal
to p3, where p3 < p2. In the lift direction, perpendicular to the freestream, the
pressure distributions on the top and bottom faces exactly cancel (i.e., L ′ = 0).
In contrast, in the drag direction, parallel to the freestream, the pressure on the
front faces a and c is larger than on the back faces b and d, and this results in
a finite drag. To calculate this drag (per unit span), consider the geometry of the
diamond airfoil in Figure 9.37, where l is the length of each face and t is the
airfoil thickness. Then,

D′ = 2(p2l sin ε − p3l sin ε) = 2(p2 − p3)
t

2
Hence, D′ = (p2 − p3)t (9.49)

In Equation (9.49), p2 is calculated from oblique shock theory, and p3 is obtained
from expansion-wave theory. Moreover, these pressures are the exact values for
supersonic, inviscid flow over the diamond airfoil.

At this stage, it is worthwhile to recall our discussion in Section 1.5 con-
cerning the source of aerodynamic force on a body. In particular, examine Equa-
tions (1.1), (1.2), (1.7), and (1.8). These equations give the means to calculate L ′

and D′ from the pressure and shear stress distributions over the surface of a body
of general shape. The results of the present section, namely, Equations (9.47)
and (9.48) for a flat plate and Equation (9.49) for the diamond airfoil, are simply
specialized results from the more general formulas given in Section 1.5. However,
rather than formally going through the integration indicated in Equations (1.7)
and (1.8), we obtained our results for the simple bodies in Figures 9.36 and 9.37
in a more direct fashion.

The results of this section illustrate a very important aspect of inviscid, su-
personic flow. Note that Equation (9.48) for the flat plate and Equation (9.49)
for the diamond airfoil predict a finite drag for these two-dimensional profiles.
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This is in direct contrast to our results for two-dimensional bodies in a low-speed,
incompressible flow, as discussed in Chapters 3 and 4, where the drag was theo-
retically zero. That is, in supersonic flow, d’Alembert’s paradox does not occur.
In a supersonic, inviscid flow, the drag per unit span on a two-dimensional body
is finite. This new source of drag is called wave drag, and it represents a serious
consideration in the design of all supersonic airfoils. The existence of wave drag
is inherently related to the increase in entropy and consequently to the loss of
total pressure across the oblique shock waves created by the airfoil.

Finally, the results of this section represent a merger of both the left- and
right-hand branches of our road map shown in Figure 9.6. As such, it brings us
to a logical conclusion of our discussion of oblique waves in supersonic flows.

EXAMPLE 9.12

Calculate the lift and drag coefficiens for a flat plate at a 5◦ angle of attack in a Mach 3
flow.

■ Solution
Refer to Figure 9.36. First, calculate p2/p1 on the upper surface. From Equation (9.43),

ν2 = ν1 + θ

where θ = α. From Appendix C, for M1 = 3, ν1 = 49.76◦. Thus,

ν2 = 49.76◦ + 5◦ = 54.76◦

From Appendix C,

M2 = 3.27

From Appendix A, for M1 = 3, p01/p1 = 36.73; for M2 = 3.27, p02/p2 = 55.
Since p01 = p02 ,

p2

p1
= p01

p1

/
p02

p2
= 36.73

55
= 0.668

Next, calculate p3/p1 on the bottom surface. From the θ -β-M diagram (Figure 9.9), for
M1 = 3 and θ = 5◦, β = 23.1◦. Hence,

Mn,1 = M1 sin β = 3 sin 23.1◦ = 1.177

From Appendix B, for Mn,1 = 1.177, p3/p1 = 1.458 (nearest entry).
Returning to Equation (9.47), we have

L ′ = (p3 − p2)c cos α

The lift coefficient is obtained from

cl = L ′

q1S
= L ′

(γ /2)p1 M2
1 c

= 2

γ M2
1

(
p3

p1
− p2

p1

)
cos α

= 2

(1.4)(3)2 (1.458 − 0.668) cos 5◦ = 0.125
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From Equation (9.48),

D′ = (p3 − p2)c sin α

Hence, cd = D′

q1S
= 2

γ M2
1

(
p3

p1
− p2

p1

)
sin α

= 2

(1.4)(32)
(1.458 − 0.668) sin 5◦ = 0.011

A slightly simpler calculation for cd is to recognize from Equations (9.47) and (9.48), or
from the geometry of Figure 9.36, that

cd

cl
= tan α

Hence, cd = cl tan α = 0.125 tan 5◦ = 0.011

9.8 A COMMENT ON LIFT AND DRAG
COEFFICIENTS

Expanding on the comments made in Section 9.3.1, reflect again on the result
obtained in Example 9.6, where the drag coefficient was calculated for a 15◦ half-
angle wedge in a Mach 5 flow. Reflect also on the result obtained in Example 9.12,
where the lift and drag coefficients were calculated for a flat plate at a 5◦ angle of
attack in a Mach 3 flow. Note that to calculate these coefficients we did not need
to know the freestream pressure, density, or velocity. All we needed to know was:

1. The shape of the body
2. The angle of attack
3. The freestream Mach number

These examples are clear-cut illustrations of the results of dimensional analysis
discussed in Section 1.7, and are totally consistent with Equations (1.42) and
(1.43), which emphasize that lift and drag coefficients for a body of given shape
are functions of only Reynolds number, Mach number, and angle of attack. For
the examples in this chapter, we are dealing with an inviscid flow, so Re is not
relevant—only M∞ and α.

9.9 THE X-15 AND ITS WEDGE TAIL
Examine the photograph of the X-15 hypersonic research vehicle shown in Fig-
ure 9.18. The viewpoint in this photograph is looking down at the top of the
vehicle. Concentrate on the vertical tail at the rear of the airplane. The cross
section of the vertical tail is clearly seen—it is a wedge cross section in contrast
to the type of thin symmetric airfoil sections usually employed for vertical tails
on airplanes. The wedge shape is further emphasized by examining Figure 9.38,
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10�

Figure 9.38 Illustration of the wedge-shaped tail on the X-15.

which shows a drawing of the rear top portion of the X-15. The included angle
of the wedge cross section is 10◦.

The wedge tail is one of the unique design aspects of the X-15. It came
out of concern for stability problems at hypersonic speeds. The earlier X-1 and
X-2 supersonic research vehicles had encountered such problems at much lower
Mach numbers, and one of the major early concerns in the design of the X-15
was to find a solution that would provide stability up to Mach 7. The answer was
provided by C. H. McLellan, an NACA engineer at the NACA Langley Memorial
Laboratory. McLellan had carried out theoretical calculations of the influence of
airfoil shape on normal force at hypersonic speeds. He found that a 10◦ wedge
was more effective than a thin supersonic section. The X-15 designers were aware
of McLellan’s work, and designed the aircraft with a 10◦ wedge tail that provided
adequate directional stability for the hypersonic vehicle.

Why is a wedge tail more effective than one with a thin section? To help
answer this question, consider the following example.

EXAMPLE 9.13

Consider the flat plate shown in Figure 9.39a and the 10◦ included angle wedge shown in
Figure 9.39b, both at an angle of attack of 10◦ in a Mach 7 airstream. (a) Calculate the
lift coefficient of the flat plate. (b) Calculate the lift coefficient of the wedge.

■ Solution
(a) First, consider the expansion wave over the top of the plate. From Appendix C,

for M1 = 7, ν1 = 90.97◦. From Equation (9.43)

ν2 = ν1 + α = 90.97◦ + 10◦ = 100.97◦
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Interpolating to obtain M2 from Appendix C,

M2 = 9 + 100.97 − 99.32

102.3 − 99.32
(1) = 9.56

Going to the isentropic flow tables in Appendix A, and interpolating for po/p between
entries, we have po2/p2 = 0.33 × 105. Also from Appendix A, for M1 = 7, we have
po1/p1 = 0.14 × 104. Since po is constant across the expansion wave, then

p2

p1
= po1/p1

po2/p2
= 0.414 × 104

0.33 × 105 = 0.1255

Now consider the shock under the bottom of the plate in Figure 9.39a. From the θ -β-M
diagram in Figure 9.9, for M1 = 7 and α = 10◦, β = 16.5◦,

Mn,1 = M1 sin β = 7 sin 16.5◦ = 1.99

10� p2
M1= 7

p3

p3

p2

e
c

F'3

F'2

15�

10�

15�

5�
5�

5�

Note: Angles not to scale

M1= 7

WEDGE CASE

FLAT PLATE CASE

(a)

(b)

15�

Figure 9.39 Schematic of hypersonic flow over (a) a flat plate, and
(b) a wedge, both at a 10◦ angle of attack. Not to scale.
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From Appendix B, for Mn,1 = 1.99, interpolating, we have

p3

p1
= 4.407 + (0.093)(0.5) = 4.45

The lift coefficient for a supersonic or hypersonic flat plate was derived in Example
9.12 as

c� = 2

γ M2
1

(
p3

p1
− p2

p1

)
cos α

= 2

(1.4)(7)2 (4.45 − 0.1255) = 0.126

(b) First consider the expansion wave over the top of the wedge.

ν2 = ν1 + 5◦ = 90.97◦ + 5◦ = 95.97◦

From Appendix C, interpolating,

M2 = 8 + 95.97 − 96.62

99.32 − 95.62
(1) = 8.1

From Appendix A, interpolating,

po2

p2
= 0.9763 × 104 + (0.211 × 105 − 0.9763 × 104)(1) = 1.0897 × 104

The relation between the chord length c and the length of the face of the wedge � is

� = c

cos 5◦ = c

0.996
= 1.004c

The force per unit span, F ′
2, acting on the top surface of the wedge, is

F ′
2 = p2 � =

(
po1/p1

po2/p2

)
p1 �

For M1 = 7, from Appendix A, po1/p1 = 0.414 × 104. Thus,

F ′
2 =

(
0.414 × 104

1.0897 × 104

)
p1� = 0.38p1�

Considering the shock wave under the bottom of the wedge, we have, from the θ -β-M
diagram, for M1 = 7 and θ = 15◦, β = 23.5◦. Thus,

Mn,1 = M1 sin β = 7 sin 23.5◦ = 2.79

From Appendix B, interpolating,

p3

p1
= 8.656 + (8.98 − 8.656)(0.8) = 8.915

Thus, the force per unit span, F ′
3, acting on the bottom surface of the wedge, is

F ′
3 = p3 � =

(
p3

p1

)
p1 � = 8.915p1 �
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The lift per unit span is the combination of the components of F ′
2 and F ′

3 perpendicular to
the freestream. Examining Figure 9.39b, we see that

L ′ = F ′
3 cos 15◦ − F ′

2 cos 5◦ = 0.9659F ′
3 − 0.9962F ′

2

L ′ = (0.9659)(8.915)p1 � − (0.9962)(0.38)p1 �

L ′ = 8.232p1 �

However, � = 1.004c. Thus,

L ′ = 8.232p1(1.004c) = 8.265p1c

The lift coefficient is

c� = L ′

q1c
= L ′

(γ /2)p1 M2
1 c

= 2L ′

γ p1 M2
1 c

Since L ′ = 8.265p1c, we have

c� = 2(8.265)p1c

(1.4)p1(7)2c
= 0.241

From the results of Example 9.13, the lift coefficient for the wedge is double
that for the flat plate. For a vertical tail surface, the “lift is the side force that
creates the restoring yaw moment provided by the vertical tail when the airplane
experiences a disturbance or displacement in yaw.” Clearly, the wedge provides
a much stronger restoring moment than a very thin airfoil shape represented by
the flat plate in Figure 9.39a.

Physically, the wedge at angle of attack, when compared to a flat plate at the
same angle of attack, is taking advantage of the nonlinear nature of supersonic
shock waves. When the flat plate in Example 9.13a is pitched to a 10◦ angle of
attack, the deflection angle of the flow over the bottom surface is also 10◦. In
contrast, with the wedge in Example 9.13b, the deflection angle of the flow over
the bottom surface is already at 5◦ when the wedge is at zero angle of attack,
and then is increased to 15◦ when the wedge is pitched to an angle of attack of
10◦. This gives a shock wave angle for the wedge of 23.5◦, larger than the 16.5◦

wave angle for the flat plate. Examining Equations (9.13) and (9.16), we note that
the pressure ratio across an oblique shock varies essentially as the square of the
wave angle. This is why the pressure ratio on the bottom surface of the wedge
from Examples 9.13b is twice as large as that for the flat plate in Example 9.13a,
p3/p1 = 8.915 for the wedge as compared to p3/p1 = 4.45 for the flat plate. The
wedge, by already starting with a flow deflection angle at zero angle of attack,
gets “more bang for the buck” at angle of attack.

Finally, we note that the wedge tail on the X-15 is a beautiful example of
how theoretical aerodynamic research, done to extend the aerodynamic state of
the art, was taken off the library shelves later on to solve a show-stopping prob-
lem of major importance to the practical design of a pioneering airplane, the
X-15. McLellan’s research at the NACA helped to make the X-15 possible. (See
Reference 116.)
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9.10 VISCOUS FLOW: SHOCK-WAVE/
BOUNDARY-LAYER INTERACTION

Shock waves and boundary layers do not mix; bad things can happen when a
shock wave impinges on a boundary layer. Unfortunately, shock-wave/boundary-
layer interactions frequently occur in practical supersonic flows, and therefore
we pay attention to this interaction in the present section. The fluid dynamics of
a shock-wave/boundary-layer interaction is complex (and extremely interesting),
and a detailed presentation is beyond the scope of this book. Here we give a brief
qualitative discussion—just enough to acquaint you with the basic picture.

Consider a supersonic flow over a surface wherein an oblique shock wave
impinges on the surface, such as sketched in Figure 9.19. In this figure the
flow is assumed to be inviscid, and the incident shock impinges at point B on
the upper wall, giving rise to a reflected shock emanating from the same point.
There is a discontinuous pressure increase at point B, a combination of the pres-
sure increases across the incident and reflected shocks. Indeed, point B is a
singular point where there is an infinitely large adverse pressure gradient.

Imagine that suddenly we have a boundary layer along the wall in Figure 9.19.
At point B, the boundary layer would experience an infinitely large adverse pres-
sure gradient. In Section 4.12, we discussed what happens to a boundary layer
when it experiences a large adverse pressure gradient—it separates from the sur-
face. These are the basic elements of the shock-wave/boundary-layer interaction.
The incident shock wave imposes a strong adverse pressure gradient on the bound-
ary layer, which in turn separates from the surface, and the resulting flow field in
the vicinity of the shock wave impingement becomes one of a mutual interaction
between the boundary layer and the shock wave.

This mutual interaction is sketched qualitatively in Figure 9.40. Here, for
ease of presentation, we show a shock wave impinging on a lower wall rather
than on the upper wall as in Figure 9.19. In Figure 9.40, we see a boundary layer
growing along a flat plate. Because the external flow is supersonic, the boundary-
layer velocity profile is subsonic near the wall and supersonic near the outer
edge. At some downstream location an incident shock impinges on the boundary
layer. The large pressure rise across the shock wave acts as a severe adverse pres-
sure gradient imposed on the boundary layer, thus causing the boundary layer to
locally separate from the surface. Because the high pressure behind the shock
feeds upstream through the subsonic portion of the boundary layer, the separa-
tion takes place ahead of the theoretical inviscid flow impingement point of the
incident shock wave. In turn, the separated boundary layer deflects the external su-
personic flow into itself, thus inducing a second shock wave, identified here as the
induced separation shock wave. The separated boundary layer subsequently turns
back toward the plate, reattaching to the surface at some downstream location.
Here again the supersonic flow is deflected into itself, causing a third shock wave
called the reattachment shock. Between the separation and reattachment shocks,
where the boundary layer is turning back toward the surface, the supersonic flow is
turned away from itself, generating expansion waves shown in Figure 9.40. At the
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Figure 9.40 Schematic of the shock-wave/boundary-layer interaction.

point of reattachment, the boundary layer has become relatively thin, the pressure
is high, and consequently this becomes a region of high local aerodynamic heat-
ing. Further away from the plate, the separation and reattachment shocks merge
to form the conventional reflected shock wave that is expected from the inviscid
picture, as shown in Figure 9.19. The scale and severity of the interaction shown in
Figure 9.40 depends on whether the boundary layer is laminar or turbulent. Since
laminar boundary layers separate more readily than turbulent boundary layers
(see Section 4.12), the laminar interaction usually takes place more readily with
more severe attendant consequences than the turbulent interaction. However, the
general qualitative aspects of the interaction shown in Figure 9.40 are the same for
both cases.

The shock-wave/boundary-layer interaction has a major effect on the pres-
sure, shear stress, and heat-transfer distributions along the wall. Of particular
consequence is the high local heat-transfer rate at the reattachment point, which
at hypersonic speeds can peak to an order of magnitude larger than at neigh-
boring locations. An example of the effect on the wall pressure distribution
is shown in Figure 9.41a, patterned after the work of Baldwin and Lomax at
the NASA Ames Research Center (B. S. Baldwin, and H. Lomax, “Thin Layer
Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA
Paper No. 78-257, January 1978). Here, the pressure distribution along the wall
in the interaction region is plotted versus distance along the wall, x , where x0 is
the theoretical point of impingement for the incident shock in the inviscid flow
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Figure 9.41 Effects of shock-wave/boundary-layer interaction on (a) pressure distribution, and (b) shear stress for
Mach 3 turbulent flow over a flat plate.

case. The pressure distribution shows a steplike increase, with an intermediate
plateau; this distribution is typical of the shock-wave/boundary-layer interaction.
The external flow is at Mach 3 ahead of the incident shock, and the boundary layer
is turbulent. The solid curve is a computational fluid dynamic (CFD) calculation,
and the circles are experimental data. Notice that the pressure increase extends
a distance equal to about four times the boundary-layer thickness ahead of the
theoretical inviscid impingement point. The shear stress distribution is shown in
Figure 9.41b. In the pocket of separated flow, τw becomes small and reverses its
direction (negative values of τw) due to the low energy recirculating flow.

Because of the consequent creation of separated flow, increased loss of total
pressure, and high peak heat-transfer rates, shock-wave/boundary-layer interac-
tions usually should be avoided as much as possible in the design of supersonic
aircraft and flow devices. However, this is easier said than done. Shock-wave/
boundary-layer interactions are a fact of life in the practical world of supersonic
flow, and that is why we have discussed their basic nature in this section. On the
other hand, modern creative ideas have led to the beneficial use of the separated
flow from a shock-wave/boundary-layer interaction to actually enhance the off-
design performance of jet-engine exhaust nozzles and for certain types of flow
control. So the picture is not entirely black.

9.11 HISTORICAL NOTE: ERNST MACH—A
BIOGRAPHICAL SKETCH

The Mach number is named in honor of Ernst Mach, an Austrian physicist and
philosopher who was an illustrious and controversial figure in late nineteenth-
century physics. Mach conducted the first meaningful experiments in supersonic
flight, and his results triggered a similar interest in Ludwig Prandtl 20 years later.
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Who was Mach? What did he actually accomplish in supersonic aerodynamics?
Let us look at this man further.

Mach was born at Turas, Moravia, in Austria, on February 18, 1838. His father,
Johann, was a student of classical literature who settled with his family on a farm
in 1840. An extreme individualist, Johann raised his family in an atmosphere of
seclusion, working on various improved methods of farming, including silkworm
cultivation. Ernst’s mother, on the other hand, came from a family of lawyers and
doctors and brought with her a love of poetry and music. Ernst seemed to thrive in
this family atmosphere. Until the age of 14, his education came exclusively from
instruction by his father, who read extensively in the Greek and Latin classics.
In 1853, Mach entered public school, where he became interested in the world
of science. He went on to obtain a Ph.D. in physics in 1860 at the University of
Vienna, writing his dissertation on electrical discharge and induction. In 1864, he
became a full professor of mathematics at the University of Graz and was given
the title of Professor of Physics in 1866. Mach’s work during this period centered
on optics—a subject which was to interest him for the rest of his life. The year
1867 was important for Mach—during that year he married, and he also became
a professor of experimental physics at the University of Prague, a position he
held for the next 28 years. While at Prague, Mach published over 100 technical
papers—work that was to constitute the bulk of his technical contributions.

Mach’s contribution to supersonic aerodynamics involves a series of exper-
iments covering the period from 1873 to 1893. In collaboration with his son,
Ludwig, Mach studied the flow over supersonic projectiles, as well as the prop-
agation of sound waves and shock waves. His work included the flow fields
associated with meteorites, explosions, and gas jets. The main experimental data
were photographic results. Mach combined his interest in optics and supersonic
motion by designing several photographic techniques for making shock waves
in air visible. He was the first to use the schlieren system in aerodynamics; this
system senses density gradients and allows shock waves to appear on screens or
photographic negatives. He also devised an interferometric technique that senses
directly the change in density in a flow. A pattern of alternate dark and light bands
are set up on a screen by the superposition of light rays passing through regions of
different density. Shock waves are visible as a shift in this pattern along the shock.
Mach’s optical device still perpetuates today in the form of the Mach-Zehnder
interferometer, an instrument present in many aerodynamic laboratories. Mach’s
major contributions in supersonic aerodynamics are contained in a paper given
to the Academy of Sciences in Vienna in 1887. Here, for the first time in history,
Mach shows a photograph of a weak wave on a slender cone moving at supersonic
speed, and he demonstrates that the angle μ between this wave and the direction
of flight is given by sin μ = a/V . This angle was later denoted as the Mach angle
by Prandtl and his colleagues after their work on shock and expansion waves in
1907 and 1908. Also, Mach was the first person to point out the discontinuous and
marked changes in a flow field as the ratio V/a changes from below 1 to above 1.

It is interesting to note that the ratio V/a was not denoted as Mach num-
ber by Mach himself. Rather, the term “Mach number” was coined by the Swiss
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engineer Jacob Ackeret in his inaugural lecture in 1929 as Privatdozent at the
Eidgenossiche Technische Hochschule in Zurich. Hence, the term “Mach num-
ber” is of fairly recent usage, not being introduced into the English literature until
the mid-1930s.

In 1895, the University of Vienna established the Ernst Mach chair in the
philosophy of inductive sciences. Mach moved to Vienna to occupy this chair. In
1897 he suffered a stroke which paralyzed the right side of his body. Although he
eventually partially recovered, he officially retired in 1901. From that time until
his death on February 19, 1916 near Munich, Mach continued to be an active
thinker, lecturer, and writer.

In our time, Mach is most remembered for his early experiments on super-
sonic flow and, of course, through the Mach number itself. However, Mach’s
contemporaries, as well as Mach himself, viewed him more as a philosopher and
historian of science. Coming at the end of the nineteenth century, when most
physicists felt comfortable with newtonian mechanics, and many believed that
virtually all was known about physics, Mach’s outlook on science is summarized
by the following passage from his book Die Mechanik:

The most important result of our reflections is that precisely the apparently simplest
mechanical theorems are of a very complicated nature; that they are founded on
incomplete experiences, even on experiences that never can be fully completed; that
in view of the tolerable stability of our environment they are, in fact, practically
safeguarded to serve as the foundation of mathematical deduction; but that they by
no means themselves can be regarded as mathematically established truths, but only as
theorems that not only admit of constant control by experience but actually require it.

In other words, Mach was a staunch experimentalist who believed that the es-
tablished laws of nature were simply theories and that only observations that are
apparent to the senses are the fundamental truth. In particular, Mach could not
accept the elementary ideas of atomic theory or the basis of relativity, both of
which were beginning to surface during Mach’s later years and, of course, were
to form the basis of twentieth-century modern physics. As a result, Mach’s phi-
losophy did not earn him favor with most of the important physicists of his day.
Indeed, at the time of his death, Mach was planning to write a book pointing out
the flaws of Einstein’s theory of relativity.

Although Mach’s philosophy was controversial, he was respected for being
a thinker. In fact, in spite of Mach’s critical outlook on the theory of relativity,
Albert Einstein had the following to say in the year of Mach’s death: “I even
believe that those who consider themselves to be adversaries of Mach scarcely
know how much of Mach’s outlook they have, so to speak, adsorbed with their
mother’s milk.”

Hopefully, this section has given you a new dimension to think about when-
ever you encounter the term “Mach number.” Maybe you will pause now and then
to reflect on the man himself and to appreciate that the term “Mach number” is in
honor of a man who devoted his life to experimental physics, but who at the same
time was bold enough to view the physical world through the eyes of a self-styled
philosopher.
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9.12 SUMMARY
The road map given in Figure 9.6 illustrates the flow of our discussion on oblique
waves in supersonic flow. Review this road map, and make certain that you are
familiar with all the ideas and results that are represented in Figure 9.6.

Some of the more important results are summarized as follows:

An infinitesimal disturbance in a multidimensional supersonic flow creates a
Mach wave that makes an angle μ with respect to the upstream velocity. This
angle is defined as the Mach angle and is given by

μ = sin−1 1

M
(9.1)

Changes across an oblique shock wave are determined by the normal compo-
nent of velocity ahead of the wave. For a calorically perfect gas, the normal
component of the upstream Mach number is the determining factor. Changes
across an oblique shock can be determined from the normal shock relations
derived in Chapter 8 by using Mn,1 in these relations, where

Mn,1 = M1 sin β (9.13)

Changes across an oblique shock depend on two parameters, for example,
M1 and β, or M1 and θ . The relationship between M1, β, and θ is given in
Figure 9.9, which should be studied closely.

Oblique shock waves incident on a solid surface reflect from that surface
in such a fashion to maintain flow tangency on the surface. Oblique shocks
also intersect each other, with the results of the intersection depending on the
arrangement of the shocks.

The governing factor in the analysis of a centered expansion wave is the
Prandtl-Meyer function ν(M). The key equation which relates the downstream
Mach number M2, the upstream Mach number M1, and the deflection angle θ is

θ = ν(M2) − ν(M1) (9.43)

The pressure distribution over a supersonic airfoil made up of straight-line
segments can usually be calculated exactly from a combination of oblique and
expansion waves—that is, from exact shock-expansion theory.
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9.13 INTEGRATED WORK CHALLENGE:
RELATION BETWEEN SUPERSONIC WAVE
DRAG AND ENTROPY INCREASE—IS
THERE A RELATION?

Concept: Supersonic wave drag on a body is caused by the high pressures that oc-
cur behind shock waves acting on the surface of the body. The simplest illustration
of this is shown in Figure 9.17 where the high static pressure behind an oblique
shock wave is exerted on the front faces of a wedge, creating a pressure drag; this
pressure drag is called wave drag because the high pressure on the surface is due
to the presence of shock waves. Indeed, the net aerodynamic force on any body in
a flow is the net integral of the pressure and shear stress distributions acting over
the surface, as explained in Section 1.5. In a supersonic flow, the airflow adjacent
to the surface of the body is processed through systems of shock and expansion
waves, and the resulting surface pressure is a product of the flow through these
waves. The net integral of the resulting surface pressure distribution in the drag
direction yields a drag force that is labeled wave drag.

This straightforward concept relates surface pressure distributions to a force
on a body; it is the most fundamental source of wave drag. However, is there
another way of looking at how nature generates wave drag? Is there an alternative
explanation? We recall our discussion in Section 3.22 about the relation between
drag and the loss of total pressure in the flow. In Chapter 8 we saw a relation
between loss of total pressure in flow and a corresponding entropy increase in
the flow, as expressed by Equation (8.73). This leads to the question: Is there
a relation between the generation of wave drag on a supersonic body and the
increase in entropy of the flow over the body?

Challenge: Investigate this question.

Solution: Return to the discussion in Section 2.6 dealing with the application of
the momentum equation to the drag of a two-dimensional body and to the con-
trol volume sketched in Figure 2.20a. Let us imagine a supersonic flow through
the control volume and an aerodynamic body inside the control volume generat-
ing a system of shock and expansion waves. These waves will propagate above
and below the body in the general downstream direction, as sketched in Fig-
ure 9.42. If the upper and lower boundaries of the control volume are drawn
far enough away from the body, the waves will exit only through the down-
stream boundary, as seen in Figure 9.42. The static pressure is constant over the
upstream and upper and lower boundaries. Assume that the downstream bound-
ary is taken far enough downstream of the body such that the mutual interac-
tion of the shock and expansion waves yield an approximately constant pressure
over that boundary (not precisely the case, but reasonable enough for our dis-
cussion here). Recall that the fluid dynamic derivation in Section 2.6 was for
a general flow. Therefore, Equations (2.78) and (2.79) apply for both incom-
pressible and compressible flows, and the drag on the body in Figure 9.42 is
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Figure 9.42 Control volume around a body in
supersonic flow, with the shock wave exiting the
downstream boundary.

given by

D′ =
∫ a
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1dy −
∫ b
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2dy (C9.1)

From Equation (8.42)
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Since
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, Equation (9.2) becomes
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Also,

a2 = γ RT

Thus,
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and

ρu2 = 2γρRT

γ − 1

[(
p0

p

) γ−1
γ

− 1

]
(C9.3)

Since p = ρRT , Equation (C9.3) becomes

ρu2 = 2γ p
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− 1

]
(C9.4)

Return to Equation (C9.1) and Figure 9.42. The left and right sides of the control
volume are of equal length, i.e., ia = hb. Thus in Equation (C9.1), we will drop
the limits on the integrals. Combining Equations (9.1) and (C9.4), we have
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(C9.5)

From Equation (8.72), the relation between change in total pressure and change
in entropy between two points in the flow
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Also,
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and
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Inserting Equations (C9.7) and (C9.8) into (C9.5), we have
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Equation (C9.9) is rather long, but concentrate just on what it tells us about the ef-
fect of increase of entropy, �s, on the drag. Note that when entropy increases, i.e.,
�s is positive, the magnitude of the first term on the right side of Equation (C9.9)
increases and the magnitude of the second term decreases, both of which serve to
increase the drag, D′! Also note that for an isentropic flow, �s = 0, p02 = p01 .
And we already have from Equation (9.42) that p1 = p2; in this case, Equa-
tion (9.9) yields D′ = 0, i.e., for an isentropic flow, there is no wave drag, as we
already know from physical considerations.

In summary, Equation (9.9) demonstrates the connection between wave drag
and an increase of entropy in the flow. The two go hand in hand; in a supersonic
flow over a body the wave drag on the body is related to the entropy increase in
the flow.

9.14 INTEGRATED WORK CHALLENGE: THE
SONIC BOOM

Concept: In popular culture, the sonic boom is understood to be a loud “boom”
that one hears when an airplane flying overhead breaks the speed of sound. In
reality, however, one hears a “sonic boom” whenever an airplane, or any flight
vehicle, flies overhead at speeds faster than sound, no matter where the vehicle
actually first started flying at supersonic speeds; indeed, that could have occurred
a thousand miles away. So, just what is the sonic boom?

Challenge: Examine the sonic boom generated from a body in supersonic flight.
What is it? How is it created? How can its strength be reduced?

Solution: Return to Figure 9.37 illustrating the wave pattern from a diamond-
wedge airfoil at supersonic speeds. Imagine this body flying overheard. The wave
pattern from the bottom of the airfoil propagates toward the ground, and when
it sweeps past you standing on the ground, your eardrums pick up the pressure
changes across the waves, creating a booming sound. What you hear is the “sonic
boom.” The body is dragging this wave pattern with it as it flies through the
atmosphere, and hence the “sonic boom” is sweeping over the ground at the same
speed as the body is flying through the air.

Examining Figure 9.37 in more detail, note that two shock waves are pro-
duced, one at the nose of the body, and one at the tail of the body. These two
shocks propagate downward with the expansion wave contained between them,
as illustrated in Figure 9.43. Also shown in Figure 9.43 is the change in pressure,
�p through the wave pattern. At large distances below the body, the variation
in �p shows a jump increase across the bow wave, an almost linear decrease
between the bow and tail waves, and another jump increase across the tail wave.
The variation of �p through the wave pattern resembles the capital letter N,
and for this reason the sonic boom pressure wave is called an “N-wave.” Note
that when this N-wave sweeps past you on the ground, you hear two booms
separated in time by �t = λ/V∞, where λ is the distance along the ground
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Figure 9.43 Classic N-wave sonic boom
generation.

between the bow and tail waves, and V∞ is the flight velocity of the supersonic
body. In this case, what you hear as the “sonic boom” is in reality two booms
very closely spaced in time, the so-called classic double-boom signature. For
example, the Concorde supersonic transport cruised at a Mach number of 2 at
50,000 ft, where the standard atmospheric temperature is 390◦R. The speed of
sound at this temperature is a = √

γ RT = √
(1.4)(1716)(390) = 968 ft/s,

hence V∞ = (968)(2) = 1936 ft/s. Assume the distance across the N-wave at
ground level is 200 ft. Then the time interval between the two booms would be
�t = λ/V∞ = 200/1936 = 0.103 s. This is equivalent to the response time
sensed by the human ear, and therefore two distinct booms will be heard, the
double-boom. However, if �t is shorter, the average ear cannot distinguish be-
tween the two pulses shown in Figure 9.43, and the sonic boom will be heard as
only one boom.

The most critical aspect of the sonic boom is the environmental impact caused
by the magnitude of �p felt on the ground. In the early days of supersonic
flight, the sonic booms generated by airplanes sometimes exceeded an increase in
pressure greater than �p = 2 lb/ft2, greatly affecting human health and causing
structural damage (broken windows, cracked walls, etc.). At the time of the design
of the Concorde SST during the 1960s, a maximum value of �p = 2 lb/ft2 was
considered acceptable. This was an error in judgment because soon after the
Concorde went into service with British Airways and Air France, nations all over
the world (including the United States) began to ban supersonic flight of the
Concorde over land, severely hurting the economic value of the airplane. At the
time of writing, such bans on overland supersonic flight are still in effect.

This situation is a critical inhibitor to the design and operation of a second-
generation SST, thus promoting extensive research on how to mitigate the strength
of the sonic boom. In this situation, aerospace engineers are really fighting Mother
Nature; shock waves are a natural consequence of supersonic flight, and it appears
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Figure 9.44 Planform of a generic low-boom fuselage, wing, and tail
supersonic airplane.

that the most direct way of mitigating the strength of the sonic boom is to mitigate
the strength of the shock waves causing the sonic boom. As aerospace engineers,
we know how to approach this problem. From the wave theory discussed in the
present chapter, clearly, sharp-nosed slender bodies will generate weaker shock
waves than blunter-nosed thicker bodies. Also, expansion waves generated over
portions of the body can interact with, and weaken, shock waves. So aerodynamic
shaping of the supersonic vehicle is a first line of attack on the sonic boom
problem. This leads to the generic low-boom fuselage, wings, tails arrangement
sketched in Figure 9.44, with a long, slender fuselage; pointed nose; sharp leading-
edge wings and tails; and a necking-down of the fuselage in the region of the
wings in order to create favorable expansion waves following a type of supersonic
“area rule.” The purpose of this shaping is to reduce the magnitude of �p to an
environmentally acceptable level.

There is another, companion approach to mitigating the sonic boom. Re-
ferring again to Figure 9.43, an aspect of the severity of the sonic boom is the
sharpness at which �p takes place, i.e., the suddenness over which the rise in
pressure takes place, which may be as short as 100 microseconds. It is this sud-
denness in combination with the magnitude of �p that can be unacceptable. In
his excellent book Shock Waves and Man, University of Toronto Institute for
Aerospace Studies, 1974, author Irvine Glass notes that a change in pressure of
2 lb/ft2 can readily be sensed by running up or down three flights of stairs, but
because the rise time is so gentle our ears are not affected. So another approach to
making the sonic boom more acceptable is to smooth out the sharp peak in �p,
and once again this can be achieved by shaping the flight vehicle. Indeed, NASA
and the Defense Advanced Research Projects Agency (DARPA) have carried out
such experiments using a specially modified Northrop F-5E fighter. The shape of
the nose of the airplane was modified to have a flat top and a curved bottom, as
generically sketched in Figure 9.45. The expansion wave from the curved bottom
surface interacts with the bow shock wave in a fashion that smooths the sharp
increase in �p, as sketched in Figure 9.46, based on experimental measurements
of the sonic boom shape generated by the modified F-5E. Note that the peak in
�p from the bow shock has been reduced from 1.2 lb/ft2 to 0.8 lb/ft2 and the
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Figure 9.45 Schematic of a supersonic vehicle with a nose
shape to produce a shaped sonic boom.

0.12

0.6

�0.6

�1.2

0

Baseline F-5E

�
p,

 lb
�f

t2

0

Time, milliseconds

100

Modified F-5E

Figure 9.46 Comparison of a classic sonic boom
signature (generated by a baseline F-5E aircraft)
with a shaped boom signature (generated by a
modified F-5E with a curved-bottom nose).

shape has been smoothed over a time interval of 20 milliseconds, creating what
some researchers call a “thump” rather than a boom.

The mitigation of the sonic boom remains one of the most critical aspects
of future commercial supersonic flight, and at the time of writing no definitive
solution has yet been obtained. In the meantime, wind tunnel experiments and
flight tests continue on configurations intended to point the way to a solution.
Also, computational fluid dynamic codes are being developed for calculating
both the near field and far field structures of the sonic boom. The solution to
the sonic boom problem is still a work in progress—stay tuned. Finally, for an
extensive survey of the state of the art, see Sonic Boom: Six Decades of Research,
by D. J. Maglieri, P. J. Bobbitt, K. J. Plotkin, K. P. Shepherd, P. G. Coen, and
D. M. Richwine, NASA SP 2014-622.

9.15 PROBLEMS
9.1 A slender missile is flying at Mach 1.5 at low altitude. Assume the wave

generated by the nose of the missile is a Mach wave. This wave intersects
the ground 559 ft behind the nose. At what altitude is the missile
flying?
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9.2 Consider an oblique shock wave with a wave angle of 30◦ in a Mach 4
flow. The upstream pressure and temperature are 2.65 × 104 N/m2 and
223.3 K, respectively (corresponding to a standard altitude of 10,000 m).
Calculate the pressure, temperature, Mach number, total pressure, and total
temperature behind the wave and the entropy increase across the wave.

9.3 Equation (8.80) does not hold for an oblique shock wave, and hence the
column in Appendix B labeled p0,2/p1 cannot be used, in conjunction
with the normal component of the upstream Mach number, to obtain the
total pressure behind an oblique shock wave. On the other hand, the
column labeled p0,2/p0,1 can be used for an oblique shock wave, using
Mn,1. Explain why all this is so.

9.4 Consider an oblique shock wave with a wave angle of 36.87◦. The
upstream flow is given by M1 = 3 and p1 = 1 atm. Calculate the total
pressure behind the shock using
a. p0,2/p0,1 from Appendix B (the correct way)
b. p0,2/p1 from Appendix B (the incorrect way)
Compare the results.

9.5 Consider the flow over a 22.2◦ half-angle wedge. If M1 = 2.5,
p1 = 1 atm, and T1 = 300 K, calculate the wave angle and p2, T2, and M2.

9.6 Consider a flat plate at an angle of attack α to a Mach 2.4 airflow at 1 atm
pressure. What is the maximum pressure that can occur on the plate
surface and still have an attached shock wave at the leading edge? At what
value of α does this occur?

9.7 A 30.2◦ half-angle wedge is inserted into a freestream with M∞ = 3.5 and
p∞ = 0.5 atm. A Pitot tube is located above the wedge surface and behind
the shock wave. Calculate the magnitude of the pressure sensed by the
Pitot tube.

9.8 Consider a Mach 4 airflow at a pressure of 1 atm. We wish to slow this
flow to subsonic speed through a system of shock waves with as small a
loss in total pressure as possible. Compare the loss in total pressure for the
following three shock systems:
a. A single normal shock wave
b. An oblique shock with a deflection angle of 25.3◦, followed by a

normal shock
c. An oblique shock with a deflection angle of 25.3◦, followed by a

second oblique shock of deflection angle of 20◦, followed by a normal
shock

From the results of (a), (b), and (c), what can you induce about the
efficiency of the various shock systems?

9.9 Consider an oblique shock generated at a compression corner with a
deflection angle θ = 18.2◦. A straight horizontal wall is present above the
corner, as shown in Figure 9.19. If the upstream flow has the properties
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M1 = 3.2, p1 = 1 atm and T1 = 520◦R, calculate M3, p3, and T3 behind
the reflected shock from the upper wall. Also, obtain the angle � which
the reflected shock makes with the upper wall.

9.10 Consider the supersonic flow over an expansion corner, such as given in
Figure 9.25. The deflection angle θ = 23.38◦. If the flow upstream of the
corner is given by M1 = 2, p1 = 0.7 atm, T1 = 630◦R, calculate M2, p2,
T2, ρ2, p0,2, and T0,2 downstream of the corner. Also, obtain the angles the
forward and rearward Mach lines make with respect to the upstream
direction.

9.11 A supersonic flow at M1 = 1.58 and p1 = 1 atm expands around a sharp
corner. If the pressure downstream of the corner is 0.1306 atm, calculate
the deflection angle of the corner.

9.12 A supersonic flow at M1 = 3, T1 = 285 K, and p1 = 1 atm is deflected
upward through a compression corner with θ = 30.6◦ and then is
subsequently expanded around a corner of the same angle such that the
flow direction is the same as its original direction. Calculate M3, p3, and
T3 downstream of the expansion corner. Since the resulting flow is in the
same direction as the original flow, would you expect M3 = M1, p3 = p1,
and T3 = T1? Explain.

9.13 Consider an infinitely thin flat plate at an angle of attack α in a Mach 2.6
flow. Calculate the lift and wave-drag coefficients for
(a) α = 5◦ (b) α = 15◦ (c) α = 30◦

(Note: Save the results of this problem for use in Chapter 12.)
9.14 Consider a diamond-wedge airfoil such as shown in Figure 9.36, with a

half-angle ε = 10◦. The airfoil is at an angle of attack α = 15◦ to a Mach 3
freestream. Calculate the lift and wave-drag coefficients for the airfoil.

9.15 Consider sonic flow. Calculate the maximum deflection angle through
which this flow can be expanded via a centered expansion wave.

9.16 Consider a circular cylinder (oriented with its axis perpendicular to the
flow) and a symmetric diamond-wedge airfoil with a half-angle of 5◦ at
zero angle of attack; both bodies are in the same Mach 5 freestream. The
thickness of the airfoil and the diameter of the cylinder are the same. The
drag coefficient (based on projected frontal area) of the cylinder is 4/3.
Calculate the ratio of the cylinder drag to the diamond airfoil drag. What
does this say about the aerodynamic performance of a blunt body
compared to a sharp-nosed slender body in supersonic flow?

9.17 Consider the supersonic flow over a flat plate at an angle of attack, as
sketched in Figure 9.35. As stated in Section 9.7, the flow direction
downstream of the trailing edge of the plate, behind the trailing edge
shock and expansion waves, is not precisely in the freestream direction.
Why? Outline a method to calculate the strengths of the trailing edge
shock and expansion waves, and the direction of the flow downstream of
the trailing edge.
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9.18 (The purpose of this problem is to calculate a two-dimensional expanding
supersonic flow and compare it with the analogous quasi-one-dimensional
flow in Problem 10.15.) Consider a two-dimensional duct with a straight
horizontal lower wall, and a straight upper wall inclined upward through
the angle θ = 3◦. The height of the duct entrance is 0.3 m. A uniform
horizontal flow at Mach 2 enters the duct and goes through a
Prandtl-Mayer expansion wave centered at the top corner of the entrance.
The wave propagates to the bottom wall, where the leading edge (the
forward Mach line) of the wave intersects the bottom wall at point A
located at distance xA from the duct entrance. Imagine a line drawn
perpendicular to the lower wall at point A, and intersecting the upper wall
at point B. The local height of the duct at point A is the length of this line
AB. Calculate the average flow Mach number over AB, assuming that M
varies linearly along that portion of AB inside the expansion wave.

9.19 Repeat Problem 9.18, except with θ = 30◦. Again, we will use these
results to compare with a quasi-one-dimensional calculation in
Problem 10.16. The reason for repeating this calculation is to examine the
effect of the much more highly two-dimensional flow generated in this
case by a much larger expansion angle.

9.20 Consider a Mach 3 flow at 1 atm pressure initially moving over a flat
horizontal surface. The flow then encounters a 20 degree expansion
corner, followed by a 20 degree compression corner that turns the flow
back to the horizontal. Calculate the pressure of the flow downstream of
the compression corner. Note: You will find that the pressure downstream
of the compression corner is different from the pressure upstream of the
expansion corner, even though the upstream and downstream flows are in
the same direction, namely horizontal. Why?

9.21 The purpose of this problem is to explain what causes the dramatic white
cloud pattern generated in the flow field over the F/A-18C Hornet shown
on the cover of this book. This problem is both a tutorial and a quantitative
calculation involving the reader. We first discuss some necessary
thermodynamic background, followed by an examination of the physical
nature of the flow field.

Necessary Thermodynamic Background
The white cloud surrounding the F/A-18C Hornet is condensed water
vapor in the airflow over the airplane. Inside the cloud, water appears in
two phases, vapor and liquid. Both inside and outside the cloud, the
medium is a mixture of air and water; outside the cloud the water is
completely in vapor form, and inside the cloud there is a mixture of air,
water vapor, and condensed liquid water. Both inside and outside the
cloud, the gas pressure p is the sum of the partial pressure of air and the
much smaller partial pressure of water vapor, pair and pH2O, respectively;
i.e., p = pair + pH2O. On a graph of pH2O versus temperature for this
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water-air mixture, we can construct a type of “phase diagram,” where over
part of this diagram the water is in the vapor phase only, and over another
part the water is a liquid-vapor mixture. The curve dividing these two
regions is called the saturation curve, which arches upward toward the
right (on the saturation curve, pH2O increases with increasing temperature,
with the slope of this curve, dpH2O/dT , increasing as T increases). To the
right of this curve, the water is completely vapor, and to the left of this
curve, the water is a mixture of vapor and liquid. What we see as the white
cloud over the top of the F/A-18C Hornet is light reflecting from the
condensed droplets of water; i.e., the white cloud is that region of the
airflow that is in the liquid-vapor region of the phase diagram, namely that
region to the left of the saturation curve.

Every point on the saturation curve corresponds to 100 percent
relative humidity in the ambient air. The temperature at each point on the
curve is the “dew-point” temperature. In the region to the right of this
curve the air is at less than 100 percent humidity, the temperature is
greater than the dew point, and there is no condensation of the water
vapor. In the region to the left of the curve, the temperature falls below the
dew point and condensation starts to occur.

The saturation curve is obtained experimentally. For this problem, we
use the saturation curve for an ambient pressure of 1 atm found on page
4-86 of Marks’ Mechanical Engineer’s Handbook, 6th Ed., McGraw-Hill,
1958 (we use an older edition because it is on the author’s personal book
shelf and therefore handy). This is a curve of pH2O versus T for air at
100 percent relative humidity with an ambient pressure of 1 atm.

For this problem, let us choose a particular point on this saturation
curve, namely the point where T = 520 ◦R and pH2O = 38.16 lb/ft2. Call
this point A. At point A, air has 100 percent humidity and contains an
amount of water vapor corresponding to a partial pressure of
pH2O = 38.16 lb/ft2. The slope of the curve, dpH2O/dT , at point A is
important to this problem. The slope is

dpH2O/dT = 1.08 lb/(ft2 · ◦R) saturation curve

Nature of the Flow field
The F/A-18C Hornet on the cover of this book is flying supersonically at a
small angle of attack; note that the trailing wing-tip vortices, also made
visible by water condensation, are very thin and tightly wound,
characteristic of tip vortices in a supersonic flow. Expansion waves occur
over the top surface of the wings and fuselage. The expansion region is
terminated by a trailing-edge shock wave. The objective of this problem is
to prove that water condensation occurs within the expansion wave, but
that the water goes back to the purely vapor phase when it passes through
the trailing-edge shock wave. We submit that the white cloud shown
around the F/A-18C Hornet is caused by water condensation within the
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expansion wave, and that the rather sharp termination of the cloud is
caused by water evaporation when the flow passes through the
trailing-edge shock wave.

For a simplified model of this flow, consider the flat plate at an
angle-of-attack in a supersonic flow as sketched in Figure 9.36. The
supersonic flow over the top surface of the plate first goes through an
expansion wave, then passes through the trailing-edge shock wave
downstream. If the freestream upstream of the plate has sufficiently high
humidity, a white cloud of condensed water vapor will form through and
downstream of the expansion wave. However, the white cloud will
disappear when the condensed water vapor is vaporized as the flow passes
through the trailing-edge shock wave. So in Figure 9.36, the white cloud
will occur in the region bounded upstream by the expansion wave, and
downstream by the trailing-edge shock wave. This simulates the nature of
the white cloud seen over the top of the F/A-18C Hornet on the cover of
this book.

Statement of the Problem
Consider the flow field sketched in Figure 9.36. Assume the supersonic
freestream is at a temperature of 520 ◦R and a pressure of 1 atm, and that
it has 100 percent humidity. Therefore, the thermodynamic state of the
freestream corresponds to point A on the saturation curve of the phase
diagram discussed earlier.
(a) Prove that a fluid element from the freestream, when passing into the

expansion wave, will experience water condensation.
(b) Prove that a fluid element already within and downstream of the

expansion wave and hence with some condensed water, will
experience water evaporation when passing through the trailing-edge
shock wave.

Comment and Hint
Well, you might say this is obvious. When the flow expands through the
expansion wave, the temperature decreases, and water will obviously
condense. Hence the fluid element in the phase diagram will obviously
penetrate through point A and enter the liquid-vapor region. But wait a
minute! When the fluid element enters the expansion wave, both its
temperature and pressure will decrease. The temperature decrease, by
itself, will move the properties of the fluid element toward the left of
point A into the liquid-vapor region, but the pressure decrease by itself
will move the properties of the fluid element vertically downward from
point A, farther away from the liquid-vapor region. The question is: Which
change is more dominant, the temperature decrease or the pressure
decease? This is for you to find out. As a hint, calculate the value of the
derivative dpH2O/dT for the fluid element as it enters the expansion
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wave. If this derivative is smaller than the slope of the saturation curve at
point A, given earlier as dpH2O/dT = 1.08 lb/(ft2 · ◦R), then the
properties of the fluid element as it enters the expansion wave will also
penetrate across point A into the liquid-vapor part of the phase diagram,
and clearly water condensation will then occur.

Similarly, for a fluid element crossing the shock wave, you might also
say that it is obvious that condensed water in the fluid element will
evaporate because the temperature increases across the shock, which
causes evaporation. But again, wait a minute! Consider that the properties
of the fluid element just in front of the shock wave are in the liquid-vapor
region just to the left of point A. Both the temperature and pressure will
increase across the shock wave. The increase in temperature will move the
properties of the fluid to the right of point A, away from the liquid-vapor
region and into the purely vapor region, but the increase in pressure will
move the properties of the fluid element vertically upward from point A,
farther into the liquid-vapor region. Again, the question is: Which change
is more dominant, the temperature increase or the pressure increase? This
is for you to find out. As a hint, calculate the value dpH2O/dT ≈ �pH2O/

�T across the shock wave. If this derivative is smaller than the slope of
the saturation curve at point A, given earlier as dpH2O/dT = 1.08 lb/

(ft2 · ◦R), then the properties of the fluid element as it crosses the shock
wave will also exit the liquid-vapor phase at point A and enter the purely
vapor region, and clearly evaporation will take place. To calculate
�pH2O/�T , you have to arbitrarily assume the strength of the shock wave.
Assume the shock is a normal shock wave with an upstream Mach number
of 1.2, and the upstream properties of the flow are those just minutely to
the left of point A; i.e., assume ahead of the shock wave
M1 = 1.2, p1 = 2116 lb/ft2, and pH2O = 38.16 lb/ft2.

Answers

(a) When the fluid element enters the expansion wave, dpH2O/dT =
0.256 lb/(ft2 · ◦R). This is a smaller slope than that of the saturation
curve at point A. The properties of the fluid will penetrate into the
liquid-vapor region, and condensation will occur.

(b) When the fluid element in front of the shock wave with properties
just inside the liquid-vapor region at point A crosses the shock wave,
�pH2O/�T = 0.2923 lb/(ft2 · ◦R). This is a smaller slope than that
of the saturation curve at point A. The properties of the fluid element
will penetrate into the purely vapor region, and evaporation will
occur.





C H A P T E R 10
Compressible Flow
Through Nozzles, Diffusers,
and Wind Tunnels

Having wondered from what source there is so much difficulty in successfully
applying the principles of dynamics to fluids than to solids, finally, turning the
matter over more carefully in my mind, I found the true origin of the difficulty;
I discovered it to consist of the fact that a certain part of the pressing forces
important in forming the throat (so called by me, not considered by others) was
neglected, and moreover regarded as if of no importance, for no other reason
than the throat is composed of a very small, or even an infinitely small, quantity
of fluid, such as occurs whenever fluid passes from a wider place to a narrower,
or vice versa, from a narrower to a wider.

Johann Bernoulli; from his
Hydraulics, 1743

PREVIEW BOX

One of the best examples of the harnessing of na-
ture by aerospace engineers is shown in Figure 10.1,
which is a photograph of the main rocket engine for the
space shuttle. This engine produces over 400,000 lb
of thrust. The laws of nature have been used by
aerospace engineers to design this engine. But what
laws of nature? Take another look at Figure 10.1,
and note the large bell-like divergent nozzle of the

rocket engine. Why this shape instead of some con-
vergent shape like the low-speed wind tunnel nozzles
discussed in Section 3.3? In reality, in Figure 10.1,
we are seeing only part of the rocket nozzle; hid-
den behind all the plumbing to the left of the diver-
gent duct in Figure 10.1 is a combustion chamber
that feeds the hot, high-pressure gas into a conver-
gent duct that transitions to the divergent duct seen in

689
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Figure 10.1 Space shuttle main rocket engine (NASA).

Figure 10.1. The whole rocket engine nozzle, from
the combustion chamber to the exit, is a convergent–
divergent shape such as sketched in Figure 10.2.
Why?

The answers to these questions and more are
given in the present chapter. Here we deal with
the internal flow of a high-speed compressible gas
through ducts of various shapes. The material in this
chapter is essential to the design of rocket engines, jet
engines, supersonic and hypersonic wind tunnels, and
any flow device that involves the compressible flow
of a gas internal to the device. We labeled the study

Combustion
chamber

Convergent-divergent
rocket nozzle

Figure 10.2 Schematic of rocket engine nozzle.

of shock waves in the previous two chapters as the
bread and butter of compressible flow. By compari-
son, the study of the flow through nozzles, diffusers,
and wind tunnels in the present chapter is the rolls and
jam of compressible flow. Applications of the mate-
rial in this chapter are made daily in the modern world
of aerospace engineering. Moreover, this material is
packed with interesting physical phenomena, some of
which you likely have not thought about before and
which you will find almost amazing in some instances.
Take this chapter very seriously. I predict that you will
find it enjoyable and rewarding.

10.1 INTRODUCTION
Chapters 8 and 9 treated normal and oblique waves in supersonic flow. These
waves are present on any aerodynamic vehicle in supersonic flight. Aeronautical
engineers are concerned with observing the characteristics of such vehicles, es-
pecially the generation of lift and drag at supersonic speeds, as well as details of
the flow field, including the shock- and expansion-wave patterns. To make such
observations, we usually have two standard choices: (1) conduct flight tests using
the actual vehicle, and (2) run wind-tunnel tests on a small-scale model of the
vehicle. Flight tests, although providing the final answers in the full-scale envi-
ronment, are costly and, not to say the least, dangerous if the vehicle is unproven.
Hence, the vast bulk of supersonic aerodynamic data have been obtained in wind
tunnels on the ground. What do such supersonic wind tunnels look like? How do
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Figure 10.3 The first practical supersonic wind tunnel, built by A. Busemann in Germany in
the mid-1930s. (Courtesy of John Anderson).

we produce a uniform flow of supersonic gas in a laboratory environment? What
are the characteristics of supersonic wind tunnels? The answers to these and other
questions are addressed in this chapter.

The first practical supersonic wind tunnel was built and operated by Adolf
Busemann in Germany in the mid-1930s, although Prandtl had a small supersonic
facility operating as early as 1905 for the study of shock waves. A photograph of
Busemann’s tunnel is shown in Figure 10.3. Such facilities proliferated quickly
during and after World War II. Today, all modern aerodynamic laboratories have
one or more supersonic wind tunnels, and many are equipped with hypersonic
tunnels as well. Such machines come in all sizes; an example of a moderately
large hypersonic tunnel is shown in Figure 10.4.

In this chapter, we discuss the aerodynamic fundamentals of compressible
flow through ducts. Such fundamentals are vital to the proper design of high-speed
wind tunnels, rocket engines, high-energy gas-dynamic and chemical lasers, and
jet engines, to list just a few. Indeed, the material developed in this chapter is
used almost daily by practicing aerodynamicists and is indispensable toward a
full understanding of compressible flow.

The road map for this chapter is given in Figure 10.5. After deriving the
governing equations, we treat the cases of a nozzle and diffuser separately. Then
we merge this information to examine the case of supersonic wind tunnels.
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Figure 10.4 A large hypersonic wind tunnel at the U.S. Air Force Wright Aeronautical
Laboratory, Dayton, Ohio. (NASA).

Figure 10.5 Road map for Chapter 10.

10.2 GOVERNING EQUATIONS FOR
QUASI-ONE-DIMENSIONAL FLOW

Recall the one-dimensional flow treated in Chapter 8. There, we considered the
flow-field variables to be a function of x only, that is, p = p(x), u = u(x), etc.
Strictly speaking, a streamtube for such a flow must be of constant area; that is, the
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Figure 10.6 One-dimensional and quasi-one-dimensional flows.

one-dimensional flow discussed in Chapter 8 is constant-area flow, as sketched
in Figure 10.6a.

In contrast, assume that the area of the streamtube changes as a function
of x , that is, A = A(x), as sketched in Figure 10.6b. Strictly speaking, this
flow is three-dimensional; the flow-field variables are functions of x , y, and z,
as can be seen simply by examining Figure 10.6b. In particular, the velocity at
the boundary of the streamtube must be tangent to the boundary, and hence it has
components in the y and z directions as well as the axial x direction. However,
if the area variation is moderate, the components in the y and z directions are
small in comparison with the component in the x direction. In such a case, the
flow-field variables can be assumed to vary with x only (i.e., the flow can be
assumed to be uniform across any cross section at a given x station). Such a
flow, where A = A(x), but p = p(x), ρ = ρ(x), u = u(x), etc., is defined
as quasi-one-dimensional flow, as sketched in Figure 10.6b. Such flow is the
subject of this chapter. We have encountered quasi-one-dimensional flow earlier,
in our discussion of incompressible flow through a duct in Section 3.3. Return to
Section 3.3, and review the concepts presented there before progressing further.

Although the assumption of quasi-one-dimensional flow is an approximation
to the actual flow in a variable-area duct, the integral forms of the conservation
equations, namely, continuity [Equation (2.48)], momentum [Equation (2.64)],
and energy [Equation (2.95)], can be used to obtain governing equations for
quasi-one-dimensional flow which are physically consistent, as follows. Consider
the control volume given in Figure 10.7. At station 1, the flow across area A1 is
assumed to be uniform with properties p1, ρ1, u1, etc. Similarly, at station 2, the
flow across area A2 is assumed to be uniform with properties p2, ρ2, u2, etc. The
application of the integral form of the continuity equation was made to such a
variable-area control volume in Section 3.3. The resulting continuity equation for
steady, quasi-one-dimensional flow was obtained as Equation (3.21), which in
terms of the nomenclature in Figure 10.7 yields

ρ1u1 A1 = ρ2u2 A2 (10.1)
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Figure 10.7 Finite control volume for
quasi-one-dimensional flow.

Consider the integral form of the momentum equation, Equation (2.64). For
a steady, inviscid flow with no body forces, this equation becomes

.......................................................................
.........

∫∫
S

(ρV · dS)V = − .......................................................................
.........

∫∫
S

p dS (10.2)

Since Equation (10.2) is a vector equation, let us examine its x component, given
below:

.......................................................................
.........

∫∫
S

(ρV · dS)u = − .......................................................................
.........

∫∫
S

(p d S)x (10.3)

where (p d S)x denotes the x component of the pressure force. Since Equa-
tion (10.3) is a scalar equation, we must be careful about the sign of the x com-
ponents when evaluating the surface integrals. All components pointing to the
right in Figure 10.7 are positive, and those pointing to the left are negative. The
upper and lower surfaces of the control volume in Figure 10.7 are streamlines;
hence, V · dS = 0 along these surfaces. Also, recall that across A1, V and dS are
in opposite directions; hence, V · dS is negative. Therefore, the integral on the
left of Equation (10.3) becomes −ρ1u2

1 A1 +ρ2u2
2 A2. The pressure integral on the

right of Equation (10.2), evaluated over the faces A1 and A2 of the control volume,
becomes −(−p1 A1 + p2 A2). (The negative sign in front of p1 A is because dS
over A1 points to the left, which is the negative direction for the x components.)
Evaluated over the upper and lower surface of the control volume, the pressure
integral can be expressed as

−
∫ A2

A1

−p d A =
∫ A2

A1

p d A (10.4)

where d A is simply the x component of the vector dS, that is, the area d S projected
on a plane perpendicular to the x axis. The negative sign inside the integral on
the left of Equation (10.4) is due to the direction of dS along the upper and lower
surfaces; note that dS points in the backward direction along these surfaces, as
shown in Figure 10.7. Hence, the x component of p dS is to the left, and therefore
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appears in our equations as a negative component. [Recall from Section 2.5 that the
negative sign outside the pressure integral, that is, outside the integral on the left of
Equation (10.4), is always present to account for the physical fact that the pressure
force p dS exerted on a control surface always acts in the opposite direction of
dS. If you are unsure about this, review the derivation of the momentum equation
in Section 2.5. Also, do not let the signs in the above results confuse you; they
are all quite logical if you keep track of the direction of the x components.] With
the above results, Equation (10.3) becomes

−ρ1u2
1 A1 + ρ2u2

2 A2 = −(−p1 A1 + p2 A2) +
∫ A2

A1

p d A

p1 A1 + ρ1u2
1 A1 +

∫ A2

A1

p d A = p2 A2 + ρ2u2
2 A2 (10.5)

Equation (10.5) is the momentum equation for steady, quasi-one-dimensional
flow.

Consider the energy equation given by Equation (2.95). For inviscid, adia-
batic, steady flow with no body forces, this equation becomes

.......................................................................
.........

∫∫
S

ρ

(
e + V 2

2

)
V · dS = − .......................................................................

.........

∫∫
S

pV · dS (10.6)

Applied to the control volume in Figure 10.7, Equation (10.6) yields

ρ1

(
e1 + u2

1

2

)
(−u1 A1) + ρ2

(
e2 + u2

2

2

)
(u2 A2) = −(−p1u1 A1 + p2u2 A2)

or p1u1 A1 + ρ1u1 A1

(
e1 + u2

1

2

)
= p2u2 A2 + ρ2u2 A2

(
e2 + u2

2

2

)
(10.7)

Dividing Equation (10.7) by Equation (10.1), we have

p1

ρ1
+ e1 + u2

1

2
= p2

ρ2
+ e2 + u2

2

2
(10.8)

Recall that h = e + pv = e + p/ρ. Hence, Equation (10.8) becomes

h1 + u2
1

2
= h2 + u2

2

2
(10.9)

which is the energy equation for steady, adiabatic, inviscid quasi-one-dimensional
flow. Examine Equation (10.9) closely; it is a statement that the total enthalpy,
h0 = h +u2/2, is a constant throughout the flow. Once again, this should come as
no surprise; Equation (10.9) is simply another example of the general result for
steady, inviscid, adiabatic flow discussed in Section 7.5. Hence, we can replace
Equation (10.9) by

h0 = const (10.10)
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Pause for a moment and examine our results given above. We have applied the
integral forms of the conservation equations to the control volume in Figure 10.5.
We have obtained, as a result, Equations (10.1), (10.5), and (10.9) or (10.10) as the
governing continuity, momentum, and energy equations, respectively, for quasi-
one-dimensional flow. Examine these equations—they are algebraic equations
(with the exception of the single integral term in the momentum equation). In
Figure 10.7, assume that the inflow conditions ρ1, u1, p1, T1, and h1 are given
and that the area distribution A = A(x) is presented. Also, assume a calorically
perfect gas, where

p2 = ρ2 RT2 (10.11)

and h2 = cpT2 (10.12)

Equations (10.1), (10.5), (10.9) or (10.10), (10.11), and (10.12) constitute five
equations for the five unknowns ρ2, u2, p2, T2, and h2. We could, in principle,
solve these equations directly for the unknown flow quantities at station 2 in
Figure 10.7. However, such a direct solution would involve substantial algebraic
manipulations. Instead, we take a simpler tack, as described in Section 10.3.

Before moving on to a solution of the governing equations, let us exam-
ine some physical characteristics of a quasi-one-dimensional flow. To help this
examination, we first obtain some differential expressions for the governing equa-
tions, in contrast to the algebraic equations obtained above. For example, consider
Equation (10.1), which states that

ρu A = const (10.13)

through a variable-area duct. Differentiating Equation (10.13), we have

d(ρu A) = 0 (10.14)

which is the differential form of the continuity equation for quasi-one-dimensional
flow.

To obtain a differential form of the momentum equation, apply Equation (10.5)
to the infinitesimal control volume sketched in Figure 10.8. The flow going into
the volume at station 1, where the area is A, has properties p, u, and ρ. In travers-
ing the length dx , where the area changes by d A, the flow properties change by
the corresponding amounts dp, dρ, and du. Hence, the flow leaving at station 2
has the properties p + dp, u + du, and ρ + dρ, as shown in Figure 10.8. For this
case, Equation (10.5) becomes [recognizing that the integral in Equation (10.5)
can be replaced by its integrand for the differential volume in Figure 10.8]

p A + ρu2 A + p d A = (p + dp)(A + d A) + (ρ + dρ)(u + du)2(A + d A)

(10.15)

In Equation (10.15), all products of differentials, such as dp d A, dρ(du)2, are
very small and can be ignored. Hence, Equation (10.15) becomes

A dp + Au2 dρ + ρu2 d A + 2ρu A du = 0 (10.16)
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Figure 10.8 Incremental
control volume.

Expanding the continuity equation, Equation (10.14), and multiplying by u, we
have

ρu2 d A + ρu A du + Au2 dρ = 0 (10.17)

Subtracting Equation (10.17) from (10.16), we obtain

dp = −ρu du (10.18)

which is the differential form of the momentum equation for steady, inviscid,
quasi-one-dimensional flow. Equation (10.18) is called Euler’s equation. We have
seen it before—as Equation (3.12). In Section 3.2, it was derived from the dif-
ferential form of the general momentum equation in three dimensions. (Make
certain to review that derivation before progressing further.) In Section 3.2, we
demonstrated that Equation (3.12) holds along a streamline in a general three-
dimensional flow. Now we see Euler’s equation again, in Equation (10.18), which
was derived from the governing equations for quasi-one-dimensional flow.

A differential form of the energy equation follows directly from Equa-
tion (10.9), which states that

h + u2

2
= const

Differentiating this equation, we have

dh + u du = 0 (10.19)

In summary, Equations (10.14), (10.18), and (10.19) are differential forms
of the continuity, momentum, and energy equations, respectively, for a steady,
inviscid, adiabatic, quasi-one-dimensional flow. We have obtained them from the
algebraic forms of the equations derived earlier, applied essentially to the picture
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shown in Figure 10.8. Now you might ask the question, Since we spent some effort
obtaining partial differential equations for continuity, momentum, and energy in
Chapter 2, applicable to a general three-dimensional flow, why would we not
simply set ∂/∂y = 0 and ∂/∂z = 0 in those equations and obtain differential
equations applicable to the one-dimensional flow treated in the present chapter?
The answer is that we certainly could perform such a reduction, and we would
obtain Equations (10.18) and (10.19) directly. [Return to the differential equations,
Equations (2.113a) and (2.114), and prove this to yourself.] However, if we take
the general continuity equation, Equation (2.52), and reduce it to one-dimensional
flow, we obtain d(ρu) = 0. Comparing this result with Equation (10.14) for quasi-
one-dimensional flow, we see an inconsistency. This is another example of the
physical inconsistency between the assumption of quasi-one-dimensional flow in
a variable-area duct and the three-dimensional flow that actually occurs in such
a duct. The result obtained from Equation (2.52), namely, d(ρu) = 0, is a truly
one-dimensional result, which applies to constant-area flows such as considered
in Chapter 8. [Recall in Chapter 8 that the continuity equation was used in the form
ρu = constant, which is compatible with Equation (2.52).] However, once we
make the quasi-one-dimensional assumption, that is, that uniform properties hold
across a given cross section in a variable-area duct, then Equation (10.14) is the
only differential form of the continuity equation which insures mass conservation
for such an assumed flow.

Let us now use the differential forms of the governing equations, obtained
above, to study some physical characteristics of quasi-one-dimensional flow. Such
physical information can be obtained from a particular combination of these
equations, as follows. From Equation (10.14),

dρ

ρ
+ du

u
+ d A

A
= 0 (10.20)

We wish to obtain an equation that relates the change in velocity du to the change in
area d A. Hence, to eliminate dρ/ρ in Equation (10.20), consider Equation (10.18)
written as

dp

ρ
= dp

dρ

dρ

ρ
= −u du (10.21)

Keep in mind that we are dealing with inviscid, adiabatic flow. Moreover, for
the time being, we are assuming no shock waves in the flow. Hence, the flow is
isentropic. In particular, any change in density dρ with respect to a change in
pressure dp takes place isentropically; that is,

dp

dρ
≡

(
∂p

∂ρ

)
s

(10.22)

From Equation (8.18) for the speed of sound, Equation (10.22) becomes

dp

dρ
= a2 (10.23)
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Substituting Equation (10.23) into (10.21), we have

a2 dρ

ρ
= −u du

or
dρ

ρ
= −u du

a2
= −u2

a2

du

u
= −M2 du

u
(10.24)

Substituting Equation (10.24) into (10.20), we have

−M2 du

u
+ du

u
+ dA

A
= 0

or dA

A
= (M2 − 1)

du

u
(10.25)

Equation (10.25) is the desired equation which relates d A to du; it is called the
area-velocity relation.

Equation (10.25) is very important; study it closely. In the process, recall the
standard convention for differentials; for example, a positive value of du connotes
an increase in velocity, a negative value of du connotes a decrease in velocity,
etc. With this in mind, Equation (10.25) tells us the following information:

1. For 0 ≤ M < 1 (subsonic flow), the quantity in parentheses in
Equation (10.25) is negative. Hence, an increase in velocity (positive du) is
associated with a decrease in area (negative d A). Likewise, a decrease in
velocity (negative du) is associated with an increase in area (positive d A).
Clearly, for a subsonic compressible flow, to increase the velocity, we must
have a convergent duct, and to decrease the velocity, we must have a
divergent duct. These results are illustrated at the top of Figure 10.9. Also,
these results are similar to the familiar trends for incompressible flow

M > 1

M < 1
u increasing

u increasing

u decreasing

u decreasing

Figure 10.9 Compressible flow in converging and diverging ducts.
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studied in Section 3.3. Once again we see that subsonic compressible flow
is qualitatively (but not quantitatively) similar to incompressible flow.

2. For M > 1 (supersonic flow), the quantity in parentheses in
Equation (10.25) is positive. Hence, an increase in velocity (positive du) is
associated with an increase in area (positive d A). Likewise, a decrease in
velocity (negative du) is associated with a decrease in area (negative d A).
For a supersonic flow, to increase the velocity, we must have a divergent
duct, and to decrease the velocity, we must have a convergent duct. These
results are illustrated at the bottom of Figure 10.9; they are the direct
opposite of the trends for subsonic flow.

3. For M = 1 (sonic flow), Equation (10.25) shows that d A = 0 even though a
finite du exists. Mathematically, this corresponds to a local maximum or
minimum in the area distribution. Physically, it corresponds to a minimum
area, as discussed below.

Imagine that we want to take a gas at rest and isentropically expand it to
supersonic speeds. The above results show that we must first accelerate the gas
subsonically in a convergent duct. However, as soon as sonic conditions are
achieved, we must further expand the gas to supersonic speeds by diverging
the duct. Hence, a nozzle designed to achieve supersonic flow at its exit is a
convergent-divergent duct, as sketched at the top of Figure 10.10. The minimum
area of the duct is called the throat. Whenever an isentropic flow expands from

Figure 10.10 Illustration and comparison of a supersonic
nozzle and a supersonic diffuser.
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subsonic to supersonic speeds, the flow must pass through a throat; moreover, in
such a case, M = 1 at the throat. The converse is also true; if we wish to take
a supersonic flow and slow it down isentropically to subsonic speeds, we must
first decelerate the gas in a convergent duct, and then as soon as sonic flow is
obtained, we must further decelerate it to subsonic speeds in a divergent duct.
Here, the convergent-divergent duct at the bottom of Figure 10.10 is operating
as a diffuser. Note that whenever an isentropic flow is slowed from supersonic to
subsonic speeds, the flow must pass through a throat; moreover, in such a case,
M = 1 at the throat.

As a final note on Equation (10.25), consider the case when M = 0. Then we
have d A/A = −du/u, which integrates to Au = constant. This is the familiar
continuity equation for incompressible flow in ducts as derived in Section 3.3 and
as given by Equation (3.22).

10.3 NOZZLE FLOWS
In this section, we move to the left-hand branch of the road map given in Fig-
ure 10.5; that is, we study in detail the compressible flow through nozzles. To
expedite this study, we first derive an important equation which relates Mach
number to the ratio of duct area to sonic throat area.

Consider the duct shown in Figure 10.11. Assume that sonic flow exists at the
throat, where the area is A∗. The Mach number and the velocity at the throat are
denoted by M∗ and u∗, respectively. Since the flow is sonic at the throat, M∗ = 1
and u∗ = a∗. (Note that the use of an asterisk to denote sonic conditions was
introduced in Section 7.5; we continue this convention in our present discussion.)
At any other section of this duct, the area, the Mach number, and the velocity
are denoted by A, M , and u, respectively, as shown in Figure 10.11. Writing
Equation (10.1) between A and A∗, we have

ρ∗u∗ A∗ = ρu A (10.26)

Figure 10.11 Geometry for the
derivation of the area–Mach
number relation.
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Since u∗ = a∗, Equation (10.26) becomes

A

A∗ = ρ∗

ρ

a∗

u
= ρ∗

ρ0

ρ0

ρ

a∗

u
(10.27)

where ρ0 is the stagnation density defined in Section 7.5 and is constant throughout
an isentropic flow. From Equation (8.46), we have

ρ∗

ρ0
=

(
2

γ + 1

)1/(γ−1)

(10.28)

Also, from Equation (8.43), we have

ρ0

ρ
=

(
1 + γ − 1

2
M2

)1/(γ−1)

(10.29)

Also, recalling the definition of M∗ in Section 8.4, as well as Equation (8.48), we
have (

u

a∗

)2

= M∗2 = [(γ + 1)/2]M2

1 + [(γ − 1)/2]M2
(10.30)

Squaring Equation (10.27) and substituting Equations (10.28) to (10.30), we
obtain (

A

A∗

)2

=
(

ρ∗

ρ0

)2 (
ρ0

ρ

)2 (
a∗

u

)2

or(
A

A∗

)2

=
(

2

γ + 1

)2/(γ−1) (
1 + γ − 1

2
M2

)2/(γ−1) 1 + [(γ − 1)/2]M2

[(γ + 1)/2]M2
(10.31)

Algebraically simplifying Equation (10.31), we have

(
A

A∗

)2

= 1

M2

[
2

γ + 1

(
1 + γ − 1

2
M2

)](γ+1)/(γ−1)

(10.32)

Equation (10.32) is very important; it is called the area–Mach number relation,
and it contains a striking result. “Turned inside out,” Equation (10.32) tells us
that M = f (A/A∗); that is, the Mach number at any location in the duct is a
function of the ratio of the local duct area to the sonic throat area. Recall from
our discussion of Equation (10.25) that A must be greater than or at least equal to
A∗; the case where A < A∗ is physically not possible in an isentropic flow. Thus,
in Equation (10.32), A/A∗ ≥ 1. Also, Equation (10.32) yields two solutions for
M at a given A/A∗—a subsonic value and a supersonic value. Which value of M
that actually holds in a given case depends on the pressures at the inlet and exit
of the duct, as explained later. The results for A/A∗ as a function of M , obtained
from Equation (10.32), are tabulated in Appendix A. Examining Appendix A, we
note that for subsonic values of M , as M increases, A/A∗ decreases (i.e., the duct
converges). At M = 1, A/A∗ = 1 in Appendix A. Finally, for supersonic values
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Figure 10.12 Isentropic supersonic nozzle flow.

of M , as M increases, A/A∗ increases (i.e., the duct diverges). These trends in
Appendix A are consistent with our physical discussion of convergent-divergent
ducts at the end of Section 10.2. Moreover, Appendix A shows the double-valued
nature of M as a function of A/A∗. For example, for A/A∗ = 2, we have either
M = 0.31 or M = 2.2.

Consider a given convergent-divergent nozzle, as sketched in Figure 10.12a.
Assume that the area ratio at the inlet Ai/A∗ is very large and that the flow at
the inlet is fed from a large gas reservoir where the gas is essentially stationary.
The reservoir pressure and temperature are p0 and T0, respectively. Since Ai/A∗

is very large, the subsonic Mach number at the inlet is very small, M ≈ 0. Thus,
the pressure and temperature at the inlet are essentially p0 and T0, respectively.
The area distribution of the nozzle A = A(x) is specified, so that A/A∗ is known
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at every station along the nozzle. The area of the throat is denoted by At , and the
exit area is denoted by Ae. The Mach number and static pressure at the exit are
denoted by Me and pe, respectively. Assume that we have an isentropic expansion
of the gas through this nozzle to a supersonic Mach number Me = Me,6 at the
exit (the reason for the subscript 6 will be apparent later). The corresponding exit
pressure is pe,6. For this expansion, the flow is sonic at the throat; hence, M = 1
and At = A∗ at the throat. The flow properties through the nozzle are a function
of the local area ratio A/A∗ and are obtained as follows:

1. The local Mach number as a function of x is obtained from
Equation (10.32), or more directly from the tabulated values in
Appendix A. For the specified A = A(x), we know the corresponding
A/A∗ = f (x). Then read the related subsonic Mach numbers in the
convergent portion of the nozzle from the first part of Appendix A (for
M < 1) and the related supersonic Mach numbers in the divergent portion
of the nozzle from the second part of Appendix A (for M > 1). The Mach
number distribution through the complete nozzle is thus obtained and is
sketched in Figure 10.12b.

2. Once the Mach number distribution is known, then the corresponding
variation of temperature, pressure, and density can be found from
Equations (8.40), (8.42), and (8.43), respectively, or more directly from
Appendix A. The distributions of p/p0 and T/T0 are sketched in
Figure 10.12c and d, respectively.

Examine the variations shown in Figure 10.12. For the isentropic expansion of
a gas through a convergent-divergent nozzle, the Mach number monotonically
increases from near 0 at the inlet to M = 1 at the throat, and to the supersonic
value Me,6 at the exit. The pressure monotonically decreases from p0 at the inlet
to 0.528p0 at the throat and to the lower value pe,6 at the exit. Similarly, the
temperature monotonically decreases from T0 at the inlet to 0.833T0 at the throat
and to the lower value Te,6 at the exit. Again, for the isentropic flow shown in
Figure 10.12, we emphasize that the distribution of M , and hence the resulting
distributions of p and T , through the nozzle depends only on the local area
ratio A/A∗. This is the key to the analysis of isentropic, supersonic, quasi-one-
dimensional nozzle flows.

Imagine that you take a convergent-divergent nozzle, and simply place it on
a table in front of you. What is going to happen? Is the air going to suddenly
start flowing through the nozzle of its own accord? The answer is, of course not!
Rather, by this stage in your study of aerodynamics, your intuition should tell you
that we have to impose a force on the gas in order to produce any acceleration.
Indeed, this is the essence of the momentum equation derived in Section 2.5. For
the inviscid flows considered here, the only mechanism to produce an accelerating
force on a gas is a pressure gradient. Thus, returning to the nozzle on the table,
a pressure difference must be created between the inlet and exit; only then will
the gas start to flow through the nozzle. The exit pressure must be less than the
inlet pressure; that is, pe < p0. Moreover, if we wish to produce the isentropic
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Figure 10.13 Isentropic subsonic nozzle flow.

supersonic flow sketched in Figure 10.12, the pressure pe/p0 must be precisely
the value stipulated by Appendix A for the known exit Mach number Me,6; that
is, pe/p0 = pe,6/p0. If the pressure ratio is different from the above isentropic
value, the flow either inside or outside the nozzle will be different from that shown
in Figure 10.12.

Let us examine the type of nozzle flows that occur when pe/p0 is not equal
to the precise isentropic value for Me,6, that is, when pe/p0 �= pe,6/p0. To begin
with, consider the convergent-divergent nozzle sketched in Figure 10.13a. If
pe = p0, no pressure difference exists, and no flow occurs inside the nozzle.
Now assume that pe is minutely reduced below p0, say, pe = 0.999p0. This
small pressure difference will produce a very low-speed subsonic flow inside the
nozzle—essentially a gentle wind. The local Mach number will increase slightly
through the convergent portion, reaching a maximum value at the throat, as shown
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by curve 1 in Figure 10.13b. This Mach number at the throat will not be sonic;
rather, it will be some small subsonic value. Downstream of the throat, the local
Mach number will decrease in the divergent section, reaching a very small but
finite value Me,1 at the exit. Correspondingly, the pressure in the convergent
section will gradually decrease from p0 at the inlet to a minimum value at the
throat, and then will gradually increase to the value pe,1 at the exit. This variation
is shown as curve 1 in Figure 10.13c. Please note that because the flow is not
sonic at the throat in this case, At is not equal to A∗. Recall that A∗, which appears
in Equation (10.32), is the sonic throat area. In the case of purely subsonic flow
through a convergent-divergent nozzle, A∗ takes on the character of a reference
area; it is not the same as the actual geometric area of the nozzle throat At . Rather,
A∗ is the area the flow in Figure 10.13 would have if it were somehow accelerated
to sonic velocity. If this did happen, the flow area would have to be decreased
further than shown in Figure 10.13a. Hence, for a purely subsonic flow At > A∗.

Assume that we further decrease the exit pressure in Figure 10.13, say, to the
value pe = pe,2. The flow is now illustrated by the curves labeled 2 in Figure 10.13.
The flow moves faster through the nozzle, and the maximum Mach number at
the throat increases but remains less than 1. Now, let us reduce pe to the value
pe = pe,3, such that the flow just reaches sonic conditions at the throat. This is
shown by curve 3 in Figure 10.13. The throat Mach number is 1, and the throat
pressure is 0.528p0. The flow downstream of the throat is subsonic.

Upon comparing Figures 10.12 and 10.13, we are struck by an important
physical difference. For a given nozzle shape, there is only one allowable isen-
tropic flow solution for the supersonic case shown in Figure 10.12. In contrast,
there are an infinite number of possible isentropic subsonic solutions, each one
corresponding to some value of pe, where p0 ≥ pe ≥ pe,3. Only three solutions
of this infinite set of solutions are sketched in Figure 10.13. Hence, the key factors
for the analysis of purely subsonic flow in a convergent-divergent nozzle are both
A/A∗ and pe/p0.

Consider the mass flow through the convergent-divergent nozzle in Fig-
ure 10.13. As the exit pressure is decreased, the flow velocity in the throat in-
creases; hence, the mass flow increases. The mass flow can be calculated by
evaluating Equation (10.1) at the throat; that is, ṁ = ρt ut At . As pe decreases, ut

increases and ρt decreases. However, the percentage increase in ut is much greater
than the decrease in ρt . As a result, ṁ increases, as sketched in Figure 10.14. When
pe = pe,3, sonic flow is achieved at the throat, and ṁ = ρ∗u∗ A∗ = ρ∗u∗ At . Now,
if pe is further reduced below pe,3, the conditions at the throat take on a new
behavior; they remain unchanged. From our discussion in Section 10.2, the Mach
number at the throat cannot exceed 1; hence, as pe is further reduced, M will
remain equal to 1 at the throat. Consequently, the mass flow will remain constant
as pe is reduced below pe,3, as shown in Figure 10.14. In a sense, the flow at
the throat, as well as upstream of the throat, becomes “frozen.” Once the flow
becomes sonic at the throat, disturbances cannot work their way upstream of the
throat. Hence, the flow in the convergent section of the nozzle no longer commu-
nicates with the exit pressure and has no way of knowing that the exit pressure
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Figure 10.14 Variation of mass flow with exit
pressure; illustration of choked flow.

is continuing to decrease. This situation—when the flow goes sonic at the throat,
and the mass flow remains constant no matter how low pe is reduced—is called
choked flow. It is a vital aspect of the compressible flow through ducts, and we
consider it further in our subsequent discussions.

Return to the subsonic nozzle flows sketched in Figure 10.13. Question:
What happens in the duct when pe is reduced below pe,3? In the convergent
portion, as described above, nothing happens. The flow properties remain fixed
at the conditions shown by curve 3 in the convergent section of the duct (the left
side of Figure 10.13b and c). However, a lot happens in the divergent section of
the duct. As the exit pressure is reduced below pe,3, a region of supersonic flow
appears downstream of the throat. However, the exit pressure is too high to allow
an isentropic supersonic flow throughout the entire divergent section. Instead, for
pe less than pe,3 but substantially higher than the fully isentropic value pe,6 (see
Figure 10.12c), a normal shock wave is formed downstream of the throat. This
situation is sketched in Figure 10.15.

In Figure 10.15, the exit pressure has been reduced to pe,4, where pe,4 <

pe,3, but where pe,4 is also substantially higher than pe,6. Here we observe a
normal shock wave standing inside the nozzle at a distance d downstream of
the throat. Between the throat and the normal shock wave, the flow is given by
the supersonic isentropic solution, as shown in Figure 10.15b and c. Behind the
shock wave, the flow is subsonic. This subsonic flow sees the divergent duct and
isentropically slows down further as it moves to the exit. Correspondingly, the
pressure experiences a discontinuous increase across the shock wave and then
is further increased as the flow slows down toward the exit. The flow on both
the left and right sides of the shock wave is isentropic; however, the entropy
increases across the shock wave. Hence, the flow on the left side of the shock
wave is isentropic with one value of entropy s1, and the flow on the right side
of the shock wave is isentropic with another value of entropy s2, where s2 > s1.
The location of the shock wave inside the nozzle, given by d in Figure 10.15a, is
determined by the requirement that the increase in static pressure across the wave
plus that in the divergent portion of the subsonic flow behind the shock be just
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Figure 10.15 Supersonic nozzle flow with a normal
shock inside the nozzle.

right to achieve pe,4 at the exit. As pe is further reduced, the normal shock wave
moves downstream, closer to the nozzle exit. At a certain value of exit pressure,
pe = pe,5, the normal shock stands precisely at the exit. This is sketched in
Figure 10.16a to c. At this stage, when pe = pe,5, the flow through the entire
nozzle, except precisely at the exit, is isentropic.

To this stage in our discussion, we have dealt with pe, which is the pres-
sure right at the nozzle exit. In Figures 10.12, 10.13, 10.15, and 10.16a to c,
we have not been concerned with the flow downstream of the nozzle exit. Now
imagine that the nozzle in Figure 10.16a exhausts directly into a region of sur-
rounding gas downstream of the exit. These surroundings could be, for example,
the atmosphere. In any case, the pressure of the surroundings downstream of the
exit is defined as the back pressure, denoted by pB . When the flow at the nozzle
exit is subsonic, the exit pressure must equal the back pressure, pe = pB , because
a pressure discontinuity cannot be maintained in a steady subsonic flow. That is,
when the exit flow is subsonic, the surrounding back pressure is impressed on the
exit flow. Hence, in Figure 10.13, pB = pe,1 for curve 1, pB = pe,2 for curve 2,
and pB = pe,3 for curve 3. For the same reason, pB = pe,4 in Figure 10.15, and
pB = pe,5 in Figure 10.16. Hence, in discussing these figures, instead of stating
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that we reduced the exit pressure pe and observed the consequences, we could just
as well have stated that we reduced the back pressure pB . It would have amounted
to the same thing.

For the remainder of our discussion in this section, let us now imagine that we
have control over pB and that we are going to continue to decrease pB . Consider
the case when the back pressure is reduced below pe,5. When pe,6 < pB < pe,5,
the back pressure is still above the isentropic pressure at the nozzle exit. Hence, in
flowing out to the surroundings, the jet of gas from the nozzle must somehow be
compressed such that its pressure is compatible with pB . This compression takes
place across oblique shock waves attached to the exit, as shown in Figure 10.16d .
When pB is reduced to the value such that pB = pe,6, there is no mismatch of
the exit pressure and the back pressure; the nozzle jet exhausts smoothly into the
surroundings without passing through any waves. This is shown in Figure 10.16e.
Finally, as pB is reduced below pe,6, the jet of gas from the nozzle must expand
further in order to match the lower back pressure. This expansion takes place
across centered expansion waves attached to the exit, as shown in Figure 10.16 f .
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When the situation in Figure 10.16d exists, the nozzle is said to be overex-
panded, because the pressure at the exit has expanded below the back pressure,
pe,6 < pB . That is, the nozzle expansion has gone too far, and the jet must pass
through oblique shocks in order to come back up to the higher back pressure.
Conversely, when the situation in Figure 10.16 f exists, the nozzle is said to
be underexpanded, because the exit pressure is higher than the back pressure,
pe,6 > pB , and hence the flow is capable of additional expansion after leaving
the nozzle.

Surveying Figures 10.12 through 10.16, note that the purely isentropic su-
personic flow originally illustrated in Figure 10.12 exists throughout the nozzle
for all cases when pB ≤ pe,5. For example, in Figure 10.16a, the isentropic su-
personic flow solution holds throughout the nozzle except right at the exit, where
a normal shock exists. In Figure 10.16d to f , the flow through the entire nozzle,
including at the exit plane, is given by the isentropic supersonic flow solution.

Keep in mind that our entire discussion of nozzle flows in this section is pred-
icated on having a duct of given shape. We assume that A = A(x) is prescribed.
When this is the case, the quasi-one-dimensional theory of this chapter gives a
reasonable prediction of the flow inside the duct, where the results are interpreted
as mean properties averaged over each cross section. This theory does not tell
us how to design the contour of the nozzle. In reality, if the walls of the nozzle
are not curved just right, then oblique shocks occur inside the nozzle. To obtain
the proper contour for a supersonic nozzle so that it produces isentropic shock-
free flow inside the nozzle, we must account for the three-dimensionality of the
actual flow. This is one purpose of the method of characteristics, a technique for
analyzing two- and three-dimensional supersonic flow. A brief introduction to the
method of characteristics is given in Chapter 13.

EXAMPLE 10.1

Consider the isentropic supersonic flow through a convergent-divergent nozzle with an
exit-to-throat area ratio of 10.25. The reservoir pressure and temperature are 5 atm and
600◦R, respectively. Calculate M , p, and T at the nozzle exit.

■ Solution
From the supersonic portion of Appendix A, for Ae/A∗ = 10.25,

Me = 3.95

Also,
pe

p0
= 1

142
and

Te

T0
= 1

4.12

Thus, pe = 0.007p0 = 0.007(5) = 0.035 atm

Te = 0.2427T0 = 0.2427(600) = 145.6◦R
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EXAMPLE 10.2

Consider the isentropic flow through a convergent-divergent nozzle with an exit-to-throat
area ratio of 2. The reservoir pressure and temperature are 1 atm and 288 K, respectively.
Calculate the Mach number, pressure, and temperature at both the throat and the exit
for the cases where (a) the flow is supersonic at the exit and (b) the flow is subsonic
throughout the entire nozzle except at the throat, where M = 1.

■ Solution
(a) At the throat, the flow is sonic. Hence,

Mt = 1.0

pt = p∗ = p∗

p0
p0 = 0.528(1 atm) = 0.528 atm

Tt = T ∗ = T ∗

T0
= 0.833(288) = 240 K

At the exit, the flow is supersonic. Hence, from the supersonic portion of Appendix A, for
Ae/A∗ = 2,

Me = 2.2

pe = pe

p0
p0 = 1

10.69
(1 atm) = 0.0935 atm

Te = Te

T0
T0 = 1

1.968
(288) = 146 K

(b) At the throat, the flow is still sonic. Hence, from above, Mt = 1.0, pt = 0.528 atm,
and Tt = 240 K. However, at all other locations in the nozzle, the flow is subsonic. At the
exit, where Ae/A∗ = 2, from the subsonic portion of Appendix A,

Me = 0.3 (rounded to the nearest entry in Appendix A)

pe = pe

p0
p0 = 1

1.064
(1 atm) = 0.94 atm

Te = Te

T0
T0 = 1

1.018
(288) = 282.9 K

EXAMPLE 10.3

For the nozzle in Example 10.2, assume the exit pressure is 0.973 atm. Calculate the Mach
numbers at the throat and the exit.

■ Solution
In Example 10.2, we saw that if pe = 0.94 atm, the flow is sonic at the throat, but
subsonic elsewhere. Hence, pe = 0.94 atm corresponds to pe,3 in Figure 10.13. In the
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present problem, pe = 0.973 atm, which is higher than pe,3. Hence, in this case, the flow
is subsonic throughout the nozzle, including at the throat. For this case, A∗ takes on a
reference value, and the actual geometric throat area is denoted by At . At the exit,

p0

pe
= 1

0.973
= 1.028

From the subsonic portion of Appendix A, for p0/pe = 1.028, we have

Me = 0.2 and
Ae

A∗ = 2.964

At

A∗ = At

Ae

Ae

A∗ = 0.5(2.964) = 1.482

From the subsonic portion of Appendix A, for At/A∗ = 1.482, we have

Mt = 0.44 (nearest entry)

EXAMPLE 10.4

An equation for the thrust of a jet-propulsion device can be derived by applying the integral
form of the momentum equation for a steady inviscid flow [Equation (2.71)] to a control
volume wrapped around the jet engine. This derivation is carried out in great detail in
Chapter 2 of Reference 21, and in a simpler form in Chapter 9 of Reference 2 where
the result is also specialized to a rocket engine. You are encouraged to examine these
derivations—they are an excellent example of the use of the control volume concept. The
resulting thrust equation for a rocket engine (see Section 9.8 of Reference 2) is

T = ṁue + (pe − p∞)Ae (E10.1)

where T is the thrust, ṁ is the mass flow through the engine, ue is the gas velocity at
the nozzle exit, pe is the gas pressure at the nozzle exit, p∞ is the surrounding ambient
atmospheric pressure, and Ae is the area of the exit.

Consider a rocket engine similar to that shown in Figure 10.1. Liquid hydrogen and
oxygen are burned in the combustion chamber producing a combustion gas pressure and
temperature of 30 atm and 3500 K, respectively. The area of the rocket nozzle throat is
0.4 m2. The area of the exit is designed so that the exit pressure exactly equals the ambient
atmospheric pressure at a standard altitude of 20 km. Assume an isentropic flow through
the rocket engine nozzle with an effective value of the ratio of specific heats γ = 1.22,
and a constant value of the specific gas constant R = 520 J/(kg)(K).

(a) Using Equation (E10.1), calculate the thrust of the rocket engine.
(b) Calculate the area of the nozzle exit.

■ Solution
(a) Examining Equation (E10.1), we first need to obtain the value of mass flow, ṁ, and
exit velocity, ue. The mass flow is constant through the nozzle and is equal to ṁ = ρu A
evaluated at any location in the nozzle. A convenient location to evaluate ṁ is at the
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throat, where

ṁ = ρ∗u∗ A∗

To obtain ρ*, we need ρ0 = p0/RT0. Noting that (1 atm) = 1.01 × 105 N/m2,

ρ0 = (30)(1.01 × 105)

(520)(3500)
= 1.665 kg/m3

From Equation (8.46),

ρ∗
ρ0

=
(

2

γ + 1

) 1
γ−1

=
(

2

1.22 + 1

) 1
1.22−1

=
(

2

2.22

)4.545

= 0.622

ρ∗ = 0.622ρ0 = 0.622(1.665) = 1.036 kg/m3

At the throat, the flow velocity is equal to the local speed of sound, u∗ = a∗. From
Equation (8.44),

T ∗

T0
= 2

γ + 1
= 2

2.22
= 0.901

T ∗ = 0.901T0 = 0.901(3500) = 3154 K

a∗ =
√

γ RT ∗ =
√

(1.22)(520)(3154) = 1415 m/s

ṁ = ρ∗u∗ A∗ = (1.036)(1415)(0.4) = 586.4 kg/s

This is the value of ṁ to be used in Equation (E10.1).
Next, we need to obtain the exit velocity ue. We do this by first obtaining the exit

Mach number from Equation (8.42).

p0

pe
=

(
1 + γ − 1

2
M2

e

) γ
γ−1

where, from the statement of the problem, pe is equal to the ambient pressure at a standard
altitude of 20 km. From Appendix D, at 20 km, p∞ = 5.5293 × 103 N/m2. Hence,

pe = p∞ = 5529 N/m2

Thus, from Equation (8.42),

1 + γ − 1

2
M2

e =
(

p0

pe

) γ−1
γ

=
[

(30)(1.01 × 105)

5529

] 0.22
1.22

= (548)0.18 = 3.111

Note: For future use in this solution, we set aside the value:

1 + γ − 1

2
M2

e = 3.111 (E10.2)

Thus, from Equation (E10.2),

γ − 1

2
M2

e = 2.111

M2
e = (2.111)

(
2

0.22

)
= 19.19

Me = 4.38
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To obtain the speed of sound at the exit, from Equations (8.40) and (E10.2),

T0

Te
= 1 + γ − 1

2
M2

e = 3.111

Te = T0

3.111
= 3500

3.111
= 1125 K

ae =
√

γ RTe =
√

(1.22)(520)(1125) = 844.8 m/s

Thus, ue = Meae = (4.38)(844.8) = 3700 m/s

Intermediate check: We can check this value of 3700 m/s for ue by directly using the
energy equation, Equation (8.38)

cpT0 = cpTe + u2
e

2
where, from Equation (7.9),

cp = γ R

γ − 1
= (1.22)(520)

0.22
= 2883.6

J

kg · K

Thus, from Equation (8.38),

u2
e = 2cp(T0 − Te) = 2(2883.6)(3500 − 1125) = 1.3697 × 107

or, ue = 3700 m/s

This checks with the result for ue obtained earlier.
Finally, we are ready to calculate the thrust from Equation (E10.1). Since the statement

of the problem gives pe = p∞, the pressure term in Equation (E10.1) drops out, and we
have

T = ṁue = (586.4)(3700) = 2.17 × 106 N

Since 1N = 0.2247 lb, we have

T = (2.17 × 106)(0.2247) = 487,600 lb

(b) From Equation (10.32),(
Ae

A∗

)2

= 1

M2
e

[
2

γ + 1

(
1 + γ − 1

2
M2

e

)] γ+1
γ−1

In this equation, the numerical values of the various terms are

γ + 1

γ − 1
= 2.22

0.22
= 10.1

2

γ + 1
= 2

2.22
= 0.9

1 + γ − 1

2
M2

e = 3.111 [from Equation (E10.2)]

and Me = 4.38
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Inserting these values into Equation (10.32),(
Ae

A∗

)2

= 1

(4.38)2 [(0.9)(3.111)]10.1 = 1710.8

Ae

A∗ = 41.36

Thus, Ae = (41.36)A∗ = (41.36)(0.4) = 16.5 m2

EXAMPLE 10.5

Calculate the mass flow through the rocket engine described in Example 10.4 using the
closed-form analytical expression given in Problem 10.5 at the end of this chapter. Compare
the result with that obtained in Example 10.4.

■ Solution
From Problem 10.5, the closed-form expression for the mass flow through a choked
nozzle is

ṁ = p0 A∗
√

T0

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)

(E10.3)

From Example 10.4 we have p0 = 30 atm, T0 = 3500 K, A∗ = 0.4 m2, R =
520 J/(kg)(K), and γ = 1.22.

Noting that

p0 = 30 atm = (30)(1.01 × 105) = 3.03 × 106 N/m2

γ /R = 1.22/510 = 2.346 × 10−3

2

γ + 1
= 2

2.22
= 0.9

γ + 1

γ − 1
= 2.22

0.22
= 10.09

from Equation (E10.3) we have

ṁ = (3.03 × 106)(0.4)√
3500

√
(2.346 × 10−3)(0.9)10.09 = 583.2 kg/s

This result, obtained from a single equation, compares well with the value of 586.4 kg/s
obtained from a sequence of calculations that is subject to a larger cumulative roundoff
error (the author is using a hand calculator and usually rounding off to the fourth significant
figure). The result obtained here, using Equation (E10.3), should be considered more
accurate.

10.3.1 More on Mass Flow

Equation (E10.3) in Example 10.5 has a distinct advantage over the piecemeal
calculations of ṁ in Example 10.4. Not only does it lead to a straightforward an-
swer in one step, it also shows us exactly on what variables the mass flow depends,
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and in what manner. From Equation (E10.3), we see that the mass flow depends
primarily on p0, T0, and A∗, and that it varies directly with reservoir pressure and
the area of the throat, and inversely as the square root of the reservoir temperature.
If you double the reservoir pressure, you double the mass flow. If you double the
throat area, you double the mass flow. If you quadruple the reservoir temperature,
you cut the mass flow by a half. These variations are fundamental to the physics
of choked flow in a nozzle. Make certain to fix in your mind this proportionality:

ṁ ∝ p0 A∗
√

T0
(10.33)

How is this discussion related to the variation of mass flow sketched in Fig-
ure 10.14? Recall that Figure 10.14 pertains to a nozzle flow with fixed reservoir
conditions, including a fixed value of p0. The mass flow is plotted versus exit
pressure. If the exit pressure equals p0, there is no pressure difference across
the nozzle, hence no flow through the nozzle (i.e., in Figure 10.14 the point for
pe = p0 corresponds to ṁ = 0). As the exit pressure decreases, ṁ first increases,
and then reaches a plateau when pe ≤ pe,3. For pe,3 ≤ pe ≤ p0, the nozzle
flow is not choked, and the value of the mass flow depends not only on p0, A∗,
and T0, but also on pe. When pe falls below pe,3, the flow is choked, and the
mass flow becomes constant no matter how low pe is decreased. The horizontal
portion of the curve in Figure 10.14 pertains to choked flow, and the magnitude
of this choked mass flow depends only on the values of p0, A∗, and T0 and not
on pe. For the case shown in Figure 10.14, the values of p0, A∗, and T0 are fixed,
specific values. If, for whatever reason, the value of p0, or A∗, or T0 is changed,
then the horizontal choked-flow line in Figure 10.14 would be raised or lowered
appropriately, governed by the proportionality given by Equation (10.33).

10.4 DIFFUSERS
The role of a diffuser was first introduced in Section 3.3 in the context of a low-
speed subsonic wind tunnel. There, a diffuser was a divergent duct downstream of
the test section whose role was to slow the higher-velocity air from the test section
down to a very low velocity at the diffuser exit (see Figure 3.8). Indeed, in general,
we can define a diffuser as any duct designed to slow an incoming gas flow to
lower velocity at the exit of the diffuser. The incoming flow can be subsonic,
as discussed in Figure 3.8, or it can be supersonic, as discussed in the present
section. However, the shape of the diffuser is drastically different, depending on
whether the incoming flow is subsonic or supersonic.

Before pursuing this matter further, let us elaborate on the concept of total
pressure p0 as discussed in Section 7.5. In a semiqualitative sense, the total
pressure of a flowing gas is a measure of the capacity of the flow to perform
useful work. Let us consider two examples:

1. A pressure vessel containing stagnant air at 10 atm
2. A supersonic flow at M = 2.16 and p = 1 atm
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In case 1, the air velocity is zero; hence, p0 = p = 10 atm. Now, imagine that
we want to use air to drive a piston in a piston-cylinder arrangement, where useful
work is performed by the piston being displaced through a distance. The air is
ducted into the cylinder from a large manifold, in the same vein as the reciprocating
internal combustion engine in our automobile. In case 1, the pressure vessel can act
as the manifold; hence, the pressure on the piston is 10 atm, and a certain amount
of useful work is performed, say, W1. However, in case 2, the supersonic flow must
be slowed to a low velocity before we can readily feed it into the manifold. If this
slowing process can be achieved without loss of total pressure, then the pressure
in the manifold in this case is also 10 atm (assuming V ≈ 0), and the same amount
of useful work W1 is performed. On the other hand, assume that in slowing down
the supersonic stream, a loss of 3 atm takes place in the total pressure. Then the
pressure in the manifold is only 7 atm, with the consequent generation of useful
work W2, which is less than in the first case; that is, W2 < W1. The purpose of
this simple example is to indicate that the total pressure of a flowing gas is indeed
a measure of its capability to perform useful work. On this basis, a loss of total
pressure is always an inefficiency—a loss of the capability to do a certain amount
of useful work.

In light of the above, let us expand our definition of a diffuser. A diffuser is
a duct designed to slow an incoming gas flow to lower velocity at the exit of the
diffuser with as small a loss in total pressure as possible. Consequently, an ideal
diffuser would be characterized by an isentropic compression to lower velocities;
this is sketched in Figure 10.17a, where a supersonic flow enters the diffuser at M1,

p02
 = p01

s2 = s1

p01

s1

M = 1

M ≈ 1 M < 1

(a) Ideal (isentropic) supersonic diffuser

(b) Actual supersonic diffuser

Weak normal shock

A*

M1 > 1

p01

s1

M1 > 1

M2 < 1

At

p02
 < p01

s2 > s1

M2 < 1

Figure 10.17 The ideal (isentropic) diffuser compared with the
actual situation.
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is isentropically compressed in a convergent duct to Mach 1 at the throat, where
the area is A∗, and then is further isentropically compressed in a divergent duct to
a low subsonic Mach number at the exit. Because the flow is isentropic, s2 = s1,
and from Equation (8.73), p0,2 = p0,1. Indeed, p0 is constant throughout the entire
diffuser—a characteristic of isentropic flow. However, common sense should tell
you that the ideal diffuser in Figure 10.17a can never be achieved. It is extremely
difficult to slow a supersonic flow without generating shock waves in the process.
For example, examine the convergent portion of the diffuser in Figure 10.17a.
Note that the supersonic flow is turned into itself; hence, the converging flow will
inherently generate oblique shock waves, which will destroy the isentropic nature
of the flow. Moreover, in real life, the flow is viscous; there will be an entropy
increase within the boundary layers on the walls of the diffuser. For these reasons,
an ideal isentropic diffuser can never be constructed; an ideal diffuser is of the
nature of a “perpetual motion machine”—only a utopian wish in the minds of
engineers.

An actual supersonic diffuser is sketched in Figure 10.17b. Here, the incoming
flow is slowed by a series of reflected oblique shocks, first in a convergent section
usually consisting of straight walls, and then in a constant-area throat. Due to the
interaction of the shock waves with the viscous flow near the wall, the reflected
shock pattern eventually weakens and becomes quite diffuse, sometimes ending
in a weak normal shock wave at the end of the constant-area throat. Finally, the
subsonic flow downstream of the constant-area throat is further slowed by moving
through a divergent section. At the exit, clearly s2 > s1; hence p0,2 < p0,1. The
art of diffuser design is to obtain as small a total pressure loss as possible, that
is, to design the convergent, divergent, and constant-area throat sections so that
p0,2/p0,1 is as close to unity as possible. Unfortunately, in most cases, we fall
far short of that goal. For more details on supersonic diffusers, see Chapter 5 of
Reference 21 and Chapter 12 of Reference 1.

Please note that due to the entropy increase across the shock waves and in
the boundary layers, the real diffuser throat area At is larger than A∗, that is, in
Figure 10.17, At > A∗.

10.5 SUPERSONIC WIND TUNNELS
Return to the road map given in Figure 10.5. The material for the left and right
branches is covered in Sections 10.3 and 10.4, respectively. In turn, a mating of
these two branches gives birth to the fundamental aspects of supersonic wind
tunnels, to be discussed in this section.

Imagine that you want to create a Mach 2.5 uniform flow in a laboratory for the
purpose of testing a model of a supersonic vehicle, say, a cone. How do you do it?
Clearly, we need a convergent-divergent nozzle with an area ratio Ae/A∗ = 2.637
(see Appendix A). Moreover, we need to establish a pressure ratio, p0/pe =
17.09, across the nozzle in order to obtain a shock-free expansion to Me = 2.5
at the exit. Your first thought might be to exhaust the nozzle directly into the
laboratory, as sketched in Figure 10.18. Here, the Mach 2.5 flow passes into the
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A*

A*

p0 = 17.09 atm

Me = 2.5

pe = 1 atm

pB = 1 atm

Test model

Ae

Ae

= 2.637

Figure 10.18 Nozzle exhausting directly to the atmosphere.

p0 = 2.4 atm
Me = 2.5

pe = 0.14 atm

pB = 1 atm

p2 = pB = 1 atm

Nozzle exit Normal shock
Constant area

section

Figure 10.19 Nozzle exhausting into a constant-area duct, where
a normal shock stands at the exit of the duct.

surroundings as a “free jet.” The test model is placed in the flow downstream of
the nozzle exit. In order to make certain that the free jet does not have shock or
expansion waves, the nozzle exit pressure pe must equal the back pressure pB ,
as originally sketched in Figure 10.16e. Since the back pressure is simply that
of the atmosphere surrounding the free jet, pB = pe = 1 atm. Consequently, to
establish the proper isentropic expansion through the nozzle, you need a high-
pressure reservoir with p0 = 17.09 atm at the inlet to the nozzle. In this manner,
you would be able to accomplish your objective, namely, to produce a uniform
stream of air at Mach 2.5 in order to test a supersonic model, as sketched in
Figure 10.18.

In the above example, you may have a problem obtaining the high-pressure
air supply at 17.09 atm. You need an air compressor or a bank of high-pressure
air bottles—both of which can be expensive. It requires work, hence money, to
create reservoirs of high-pressure air—the higher the pressure, the more the cost.
So, can you accomplish your objective in a more efficient way, at less cost? The
answer is yes, as follows. Instead of the free jet as sketched in Figure 10.18,
imagine that you have a long constant-area section downstream of the nozzle
exit, with a normal shock wave standing at the end of the constant-area section;
this is shown in Figure 10.19. The pressure downstream of the normal shock wave
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is p2 = pB = 1 atm. At M = 2.5, the static pressure ratio across the normal
shock is p2/pe = 7.125. Hence, the pressure upstream of the normal shock is
0.14 atm. Since the flow is uniform in the constant-area section, this pressure is
also equal to the nozzle exit pressure; that is, pe = 0.14 atm. Thus, in order to
obtain the proper isentropic flow through the nozzle, which requires a pressure
ratio of p0/pe = 17.09, we need a reservoir with a pressure of only 2.4 atm.
This is considerably more efficient than the 17.09 atm required in Figure 10.18.
Hence, we have created a uniform Mach 2.5 flow (in the constant-area duct) at a
considerable reduction in cost compared with the scheme in Figure 10.18.

In Figure 10.19, the normal shock wave is acting as a diffuser, slowing the air
originally at Mach 2.5 to the subsonic value of Mach 0.513 immediately behind
the shock. Hence, by the addition of this “diffuser,” we can more efficiently
produce our uniform Mach 2.5 flow. This illustrates one of the functions of a
diffuser. However, the “normal shock diffuser” sketched in Figure 10.19 has
several problems:

1. A normal shock is the strongest possible shock, hence creating the largest
total pressure loss. If we could replace the normal shock in Figure 10.19
with a weaker shock, the total pressure loss would be less, and the required
reservoir pressure p0 would be less than 2.4 atm.

2. It is extremely difficult to hold a normal shock wave stationary at the duct
exit; in real life, flow unsteadiness and instabilities would cause the shock
to move somewhere else and to fluctuate constantly in position. Thus, we
could never be certain about the quality of the flow in the constant-area duct.

3. As soon as a test model is introduced into the constant-area section, the
oblique waves from the model would propagate downstream, causing the
flow to become two- or three-dimensional. The normal shock sketched in
Figure 10.19 could not exist in such a flow.

Hence, let us replace the normal shock in Figure 10.19 with the oblique shock
diffuser shown in Figure 10.17b. The resulting duct would appear as sketched
in Figure 10.20. Examine this figure closely. We have a convergent-divergent
nozzle feeding a uniform supersonic flow into the constant-area duct, which

Me

pe
p0

At1 = A*
(Nozzle throat)
(First throat)

At2
(Diffuser throat)
(Second throat)

M << 1

pB

Test
model

DiffuserTest sectionNozzle

1 2

Figure 10.20 Sketch of a supersonic wind tunnel.
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is called the test section. This flow is subsequently slowed to a low subsonic
speed by means of a diffuser. This arrangement—namely, a convergent-divergent
nozzle, a test section, and a convergent-divergent diffuser—is a supersonic wind
tunnel. A test model, the cone in Figure 10.20, is placed in the test section,
where aerodynamic measurements such as lift, drag, and pressure distribution are
made. The wave system from the model propagates downstream and interacts
with the multireflected shocks in the diffuser. The pressure ratio required to run
the supersonic tunnel is p0/pB . This can be obtained by making p0 large via a
high-pressure reservoir at the inlet to the nozzle or by making pB small via a
vacuum source at the exit of the diffuser, or a combination of both.

The main source of total pressure loss in a supersonic wind tunnel is the
diffuser. How does the oblique shock diffuser in Figure 10.20 compare with the
hypothetical normal shock diffuser in Figure 10.19? Is the total pressure loss
across all the reflected oblique shocks in Figure 10.20 greater or less than across
the single normal shock wave in Figure 10.19? This is an important question,
since the smaller the total pressure loss in the diffuser, the smaller is the pressure
ratio p0/pB required to run the supersonic tunnel. There is no pat answer to this
question. However, it is usually true that progressively reducing the velocity of a
supersonic flow through a series of oblique shocks to a low supersonic value, and
then further reducing the flow to subsonic speeds across a weak normal shock,
results in a smaller total pressure loss than simply reducing the flow to subsonic
speeds across a single, strong normal shock wave at the initially high supersonic
Mach number. This trend is illustrated by Example 9.5. Therefore, the oblique
shock diffuser shown in Figures 10.17b and 10.20 is usually more efficient than
the simple normal shock diffuser shown in Figure 10.19. This is not always true,
however, because in an actual real-life oblique shock diffuser, the shock waves
interact with the boundary layers on the walls, causing local thickening and even
possible separation of the boundary layers. This creates an additional total pressure
loss. Moreover, the simple aspect of skin friction exerted on the surface generates
a total pressure loss. Hence, actual oblique shock diffusers may have efficiencies
greater or less than a hypothetical normal shock diffuser. Nevertheless, virtually
all supersonic wind tunnels use oblique shock diffusers qualitatively similar to
that shown in Figure 10.20.

Notice that the supersonic wind tunnel shown in Figure 10.20 has two throats:
the nozzle throat with area At,1 is called the first throat, and the diffuser throat
with area At,2 is called the second throat. The mass flow through the nozzle can
be expressed as ṁ = ρu A evaluated at the first throat. This station is denoted
as station 1 in Figure 10.20, and hence the mass flow through the nozzle is
ṁ1 = ρ1u1 At,1 = ρ∗

1 a∗
1 At,1. In turn, the mass flow through the diffuser can be

expressed as ṁ = ρu A evaluated at station 2, namely, ṁ2 = ρ2u2 At,2. For steady
flow through the wind tunnel, ṁ1 = ṁ2. Hence,

ρ∗
1 a∗

1 At,1 = ρ2u2 At,2 (10.34)

Since the thermodynamic state of the gas is irreversibly changed in going through
the shock waves created by the test model and generated in the diffuser, clearly
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ρ2 and possibly u2 are different from ρ∗
1 and a∗

1 , respectively. Hence, from Equa-
tion (10.34), the second throat must have a different area from the first throat;
that is, At,2 �= At,1.

Question: How does At,2 differ from At,1? Let us assume that sonic flow
occurs at both stations 1 and 2 in Figure 10.20. Thus, Equation (10.34) can be
written as

At,2

At,1
= ρ∗

1 a∗
1

ρ∗
2 a∗

2

(10.35)

Recall from Section 8.4 that a∗ is constant for an adiabatic flow. Also, recall that
the flow across shock waves is adiabatic (but not isentropic). Hence, the flow
throughout the wind tunnel sketched in Figure 10.18 is adiabatic, and therefore
a∗

1 = a∗
2 . In turn, Equation (10.35) becomes

At,2

At,1
= ρ∗

1

ρ∗
2

(10.36)

Recall from Section 8.4 that T ∗ is also constant throughout the adiabatic flow of
a calorically perfect gas. Hence, from the equation of state,

ρ∗
1

ρ∗
2

= p∗
1/RT ∗

1

p∗
2/RT ∗

2

= p∗
1

p∗
2

(10.37)

Substituting Equation (10.37) into (10.36), we have

At,2

At,1
= p∗

1

p∗
2

(10.38)

From Equation (8.45), we have

p∗
1 = p0,1

(
2

γ + 1

)γ /(γ−1)

and p∗
2 = p0,2

(
2

γ + 1

)γ /(γ−1)

Substituting the above into Equation (10.38), we obtain

At,2

At,1
= p0,1

p0,2
(10.39)

Examining Figure 10.20, the total pressure always decreases across shock waves;
therefore, p0,2 < p0,1. In turn, from Equation (10.39), At,2 > At,1. Thus, the
second throat must always be larger than the first throat. Only in the case of an
ideal isentropic diffuser, where p0 = constant, would At,2 = At,1, and we have
already discussed the impossibility of such an ideal diffuser.



CHAPTER 10 Compressible Flow Through Nozzles, Diffusers, and Wind Tunnels 723

Equation (10.39) is a useful relation to size the second throat relative to the
first throat if we know the total pressure ratio across the tunnel. In the absence
of such information, for the preliminary design of supersonic wind tunnels, the
total pressure ratio across a normal shock is assumed.

For a given wind tunnel, if At,2 is less than the value given by Equation (10.39),
the diffuser will “choke”; that is, the diffuser cannot pass the mass flow coming
from the isentropic, supersonic expansion through the nozzle. In this case, nature
adjusts the flow through the wind tunnel by creating shock waves in the nozzle,
which in turn reduce the Mach number in the test section, producing weaker
shocks in the diffuser with an attendant overall reduction in the total pressure
loss; that is, nature adjusts the total pressure loss such that p0,1/p0,2 = p0,1/pB

satisfies Equation (10.39). Sometimes this adjustment is so severe that a nor-
mal shock stands inside the nozzle, and the flow through the test section and
diffuser is totally subsonic. Obviously, this choked situation is not desirable be-
cause we no longer have uniform flow at the desired Mach number in the test
section. In such a case, the supersonic wind tunnel is said to be unstarted. The
only way to rectify this situation is to make At,2/At,1 large enough so that the
diffuser can pass the mass flow from the isentropic expansion in the nozzle, that
is, so that Equation (10.39) is satisfied along with a shock-free isentropic nozzle
expansion.

As a general concluding comment, the basic concepts and relations discussed
in this chapter are not limited to nozzles, diffusers, and supersonic wind tunnels.
Rather, we have been discussing quasi-one-dimensional flow, which can be ap-
plied in many applications involving flow in a duct. For example, inlets on jet
engines, which diffuse the flow to lower speeds before entering the engine com-
pressor, obey the same principles. Also, a rocket engine is basically a supersonic
nozzle designed to optimize the thrust from the expanded jet. The applications
of the ideas presented in this chapter are numerous, and you should make certain
that you understand these ideas before progressing further.

In Section 1.2, we subdivided aerodynamics into external and internal flows.
You are reminded that the material in this chapter deals exclusively with internal
flows.

EXAMPLE 10.6

For the preliminary design of a Mach 2 supersonic wind tunnel, calculate the ratio of the
diffuser throat area to the nozzle throat area.

■ Solution
Assuming a normal shock wave at the entrance of the diffuser (for starting), from Ap-
pendix B, p0,2/p0,1 = 0.7209 for M = 2.0. Hence, from Equation (10.39),

At,2

At,1
= p0,1

p0,2
= 1

0.7209
= 1.387
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10.6 VISCOUS FLOW: SHOCK-WAVE/
BOUNDARY-LAYER INTERACTION INSIDE
NOZZLES

Return to Figure 10.15. Here we see the case where the pressure ratio, pe,4/p0 is
such that a normal shock wave stands inside the nozzle. This is a classic inviscid
flow picture. In reality, there is a boundary layer growing along the nozzle wall,
and the shock wave interacts with this boundary layer. One of the possible flow
fields resulting from this interaction is sketched in Figure 10.21. The adverse
pressure gradient across the shock causes the boundary layer to separate from
the nozzle wall. A lambda-type shock pattern occurs at the two feet of the shock
near the wall, and the core of the nozzle flow, now separated from the wall, flows
downstream at almost constant area.

A series of schlieren photographs showing this type of flow is given in Fig-
ure 10.22, obtained from the recent work of Hunter (Craig A. Hunter, “Exper-
imental Investigation of Separated Nozzle Flows,” Journal of Propulsion and
Power, vol. 20, no. 3, May–June 2004, pp. 527–532). For the nozzle shown in
Figure 10.22, the exit-to-throat area ratio, Ae/At , is 1.797. In Figure 10.22a, the
pressure ratio pe,4/p0 = 0.5; the normal shock stands inside the nozzle, and the
lambda structure at both ends of the shock is clearly seen. The separated flow
is seen trailing downstream from the lambda shock pattern. In Figures 10.22b,
c, and d the shock pattern progressively moves closer to the nozzle exit as the
pressure ratio is progressively reduced to 0.417, 0.333, and 0.294, respectively.
A detailed schematic of the shock pattern for the pressure ratio of 0.417 is shown
in Figure 10.23, corresponding to the flow in Figure 10.22b.

These results are an example of how the realities of a viscous flow can change
the ideal picture obtained for an inviscid flow. The recent paper by Craig Hunter,
referenced earlier, is an excellent discussion of the real flow in a supersonic nozzle
under conditions where shock waves occur inside the nozzle. You are encouraged
to study this reference for a revealing discussion of this interesting phenomena.

Figure 10.21 Sketch of an overexpanded nozzle
flow with flow separation. (Source: Craig
Hunter, NASA).
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Figure 10.22 Schlieren photographs of the shock-wave/boundary-layer interaction inside an
overexpanded nozzle flow. Exit-to-reservoir pressure ratio is (a) 0.5, (b) 0.417, (c) 0.333, and
(d) 0.294. (Craig Hunter, NASA).
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Figure 10.23 Detailed shock schematic for the case
with a pressure ratio of 0.417. (Craig Hunter, NASA).
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10.7 SUMMARY
The results of this chapter are highlighted below:

Quasi-one-dimensional flow is an approximation to the actual three-
dimensional flow in a variable-area duct; this approximation assumes that
p = p(x), u = u(x), T = T (x), etc., although the area varies as A = A(x).
Thus, we can visualize the quasi-one-dimensional results as giving the mean
properties at a given station, averaged over the cross section. The quasi-one-
dimensional flow assumption gives reasonable results for many internal flow
problems; it is a “workhorse” in the everyday application of compressible flow.
The governing equations for this are

Continuity: ρ1u1 A1 = ρ2u2 A2 (10.1)

Momentum: p1 A1 + ρ1u2
1 A1 +

∫ A2

A1

p d A = p2 A2 + ρ2u2
2 A2 (10.5)

Energy: h1 + u2
1

2
= h2 + u2

2

2
(10.9)

The area velocity relation

d A

A
= (M2 − 1)

du

u
(10.25)

tells us that

1. To accelerate (decelerate) a subsonic flow, the area must decrease
(increase).

2. To accelerate (decelerate) a supersonic flow, the area must increase
(decrease).

3. Sonic flow can only occur at a throat or minimum area of the flow.

The isentropic flow of a calorically perfect gas through a nozzle is governed
by the relation(

A

A∗

)2

= 1

M2

[
2

γ + 1

(
1 + γ − 1

2
M2

)](γ+1)/(γ−1)

(10.32)

This tells us that the Mach number in a duct is governed by the ratio of local
duct area to the sonic throat area; moreover, for a given area ratio, there are
two values of Mach number that satisfy Equation (10.32)—a subsonic value
and a supersonic value.
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For a given convergent-divergent duct, there is only one possible isentropic
flow solution for supersonic flow; in contrast, there are an infinite number of
subsonic isentropic solutions, each one associated with a different pressure
ratio across the nozzle, p0/pe = p0/pB .

In a supersonic wind tunnel, the ratio of second throat area to first throat area
should be approximately

At,2

At,1
= p0,1

p0,2
(10.39)

If At,2 is reduced much below this value, the diffuser will choke and the tunnel
will unstart.

10.8 INTEGRATED WORK CHALLENGE:
CONCEPTUAL DESIGN OF A SUPERSONIC
WIND TUNNEL

Concept: A basic sketch of a supersonic wind tunnel is given in Figure 10.20
that illustrates the essential components: nozzle, test section, and diffuser. The
pressure ratio p0/pB from the inlet to the nozzle to the exit of the diffuser is what
makes the tunnel run. Not shown in Figure 10.20 is how this pressure ratio is
generated. The answer to this question is an essential first step in the conceptual
design of a supersonic wind tunnel.

Four different supersonic wind tunnel configurations for producing the proper
pressure ratio across the supersonic nozzle are sketched in Figure 10.24.

(a) Blowdown Tunnel (Figure 10.24a): High-pressure air at pressure p0 is
stored in a tank at the entrance to the tunnel. The exit of the tunnel is open to
the surrounding atmosphere, where the back pressure pB is the atmospheric
pressure. The pressure ratio across the tunnel is p0/pB . Flow is started when
a pressure valve at point A is opened. As the air flows out of the storage tank
and through the tunnel, the remaining air in the tank expands to fill the tank.
During this expansion, both the total pressure p0 and total temperature T0 of
the remaining air in the tank decrease. These decreases in p0 and T0 with
time are a disadvantage of the blowdown tunnel, but they can be minimized
at the start by having a large enough storage tank such that the mass flow
through the tunnel is a small percentage of the mass of air stored in the tank.
Eventually, however, during the run of the tunnel there will be some point in
time at which p0 becomes too small and the pressure ratio p0/pB required
to run the tunnel dips below that required to maintain the proper isentropic
flow through the nozzle. This is the effective end of the test time.
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Figure 10.24 Supersonic wind tunnel configurations.

(b) Indraft tunnel (Figure 10.24b): A vacuum tank evacuated to a very low
pressure pB is connected to the exit of the tunnel. The entrance to the tunnel
is open to the atmosphere, where the atmospheric pressure is pa . When
valve B in front of the vacuum tank is opened, atmospheric air is sucked in
through the tunnel entrance, and flow starts through the tunnel. The total
pressure at the entrance to the tunnel is p0 = pa , and the pressure ratio
across the tunnel is p0/pB . As the run continues, air fills the vacuum tank
and pB increases. The test run effectively ends when the pressure ratio
p0/pB becomes smaller than that required to maintain isentropic flow
through the nozzle.

(c) Pressure-vacuum Tunnel (Figure 10.24c): This tunnel design is a
combination of the two already described earlier—it is a kind of “push-pull”
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Figure 10.24 (Continued)

arrangement. Here, the inlet to the tunnel is connected to a high-pressure
storage tank with pressure p0, and the exit of the tunnel is connected to an
evacuated tank at pressure pB . The pressure ratio across the tunnel is p0/pB .
During the running of the tunnel, p0 decreases and pB increases, and the
run terminates when p0/pB becomes too small to support isentropic flow
through the supersonic nozzle. This type of arrangement is specifically used
for hypersonic wind tunnels where very large pressure ratios are required to
produce the requisite test section Mach numbers at Mach 5 and higher.

Note that the tunnels sketched in Figure 10.24a–c have run times that are lim-
ited by the storage capacity of the high-pressure tank and/or the volume capacity
of the vacuum tank. Hence, these tunnels are in a class of intermittent tunnels.
This leads to a fourth class of wind tunnel, as follows.

(d) Closed-circuit Continuous Flow Tunnel (Figure 10.24d): This concept is
not unlike the continuous flow closed-circuit subsonic wind tunnels
discussed in Sections 3.3 and 3.23, and sketched in Figure 3.8b, except that
the power source that drives the supersonic tunnel must be much stronger in
order to maintain the proper isentropic pressure ratio across the supersonic
nozzle. Referring to Figure 10.24d, there is a loss of total pressure
throughout the circuit due to shock waves occurring on a model in the test
section and shock waves in the diffuser, and due to friction losses in the
boundary layers formed along the tunnel walls. The function of the power
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source in the continuous flow tunnel is mainly to restore this loss of total
pressure. As sketched in Figure 10.24d, the power source is frequently an
axial-flow compressor mounted in the tunnel circuit upstream of the nozzle,
driven by an electric motor or diesel engine connected to the compressor
externally through an axle.

The four types of supersonic wind tunnels sketched in Figure 10.24a–d have
their advantages and disadvantages. A thorough discussion can be found in Pope
and Goin, High-Speed Wind Tunnel Testing, Kreieger, New York, 1978. For our
purposes here, we note that intermittent tunnels in general are simpler and easier
to design and build, and hence are particular favorites for academic institutions.
On the other hand, their limited running times can restrict the amount and type
of data to be taken. On the whole, intermittent facilities are much less expensive.
Continuous flow supersonic tunnels tend to be large and expensive; for the most
part they are found at large government laboratories.

Challenge: You wish to design a Mach 2 supersonic wind tunnel that is capable of
testing airplane models like the low boom configuration sketched in Figure 9.43.
You want the test section to accommodate four-foot-long models with wing spans
that are on the order of two feet. In order to achieve turbulent boundary-layer flow
over the test model (to try to simulate the turbulent boundary layers encountered in
full-scale flight), you would like to have a Reynolds number of at least 10 million
based on the length of the model. Set up the conceptual design of a supersonic
wind tunnel to meet these specifications.

Solution: To determine the size of the test section that can properly accommodate
the specified model size, we rely once again on previous experience. Pope and
Goin in their book High-Speed Wind Tunnel Testing recommend a size that will
ensure that shock and expansion waves generated by the model will reflect from
the walls of the test section far enough downstream that the reflected waves will not
impinge back on the model (this is only common sense). Figure 10.25 is a sketch
of a four-foot-long slender configuration (such as that sketched in Figure 9.43).

h

2 ft

l = 4 ft

� = 30°

� = 30°

Figure 10.25 Wave generation from a test model, and reflection from the
tunnel wall.
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For simplicity, assume the bow shock wave is weak and can be simulated by
a Mach wave, as sketched in Figure 10.25. The minimum height of the model
centerline above the lower wind tunnel wall is denoted by h. At Mach 2,

μ = arc sin
(

1

M

)
= arc sin

(
1

2

)
= 30◦

From the geometry in Figure 10.25,

h

2
= tan μ = tan 30◦ = 0.577

h = 1.155 ft

The total allowable minimum height of the test section is then 2h = 2.31 ft.
For the tunnel design, however, we need to be somewhat conservative. The

waves from the model are finite shock and expansion waves, not Mach waves,
and the wave angles will be larger than 30 degrees. Therefore, h will be larger
than 1.155 ft and the total test section height should be made larger than 2.31 ft.
A word of caution, however. The overall size of the wind tunnel will be governed
by the size of the test section; the larger the size, the more mass flow will pass
through the tunnel, with consequent increases in power requirements and costs of
operation, not to mention the initial construction cost of the tunnel. Let us apply a
conservative “factor of safety” on the height of the test section, i.e., let us design
the test section height to be 3.5 ft. Also, since the length of the model is four feet
and we want the entire model length to easily fit within the test section, we will
design the length of the test section to be five feet. Finally, to accommodate a
model wing span of two feet and to minimize side-wall effects on the flow over
the wind, we choose a test section width of 3 ft. In summary the conceptual design
size of the test section will be a length, width, and height of 5 ft, 3 ft, and 3.5 ft,
respectively.

Our next step is the choice of the type of supersonic tunnel: blowdown, in-
draft, pressure-vacuum, or closed-circuit continuous flow. This choice may be
partly determined by the requirement for a Reynolds number of 107 based on
test model length, i.e., for a length of four feet. Also the choice may be dictated
by the laboratory space available to house the tunnel. Other considerations may
be the availability of existing equipment in the laboratory such as compressors,
high-pressure air storage tanks, and instrumentation—the realities of life in ex-
perimental work. So, for our present Integrated Work Challenge, there is no “right
choice” of the type of supersonic tunnel to be made—much like the design of
an airplane that depends on a number of technical compromises. See Pope and
Goin, High-Speed Wind Tunnel Testing, for an extensive discussion of such design
matters.

In this light, we will proceed as follows. Because of its relative mechanical
simplicity and compact size, let us consider a blowdown tunnel, estimate the
running conditions, and see if the Reynolds number requirement is satisfied.
The flow through the blowdown tunnel is dumped directly to the surrounding
atmosphere at the diffuser exit (Figure 10.24a) with a back pressure pB at the exit
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that ideally is equal to the atmospheric pressure, pa . This ideal case, however,
corresponds to the flow through the diffuser being slowed to a low subsonic
velocity at the exit, and hence nature will impress the surrounding atmospheric
pressure pa directly at the exit, giving an overall pressure ratio across the tunnel
of p0/pa . If the reservoir pressure in the air storage tank were at a higher value of
p0 required to run the tunnel, the overall pressure levels through the tunnel would
be higher, and the pressure at the diffuser exit would be higher than required. At
the very least, this will lead to a higher velocity flow at the diffuser exit—a waste
of energy and a reduction of operating efficiency. If p0 in the reservoir is high
enough, the flow through the divergent downstream section of the diffuser, after
being reduced to Mach 1 in the diffuser throat, might even become supersonic
again, with a supersonic exit flow blasting out into the laboratory surroundings.
This would create an intolerable noise level in the laboratory, as well as being
totally inefficient. Therefore, in this problem we will design a blowdown tunnel
with just the minimum overall pressure ratio p0/pB = p0/pa sufficient to achieve
isentropic flow in the nozzle with shock-free flow entering the test section.

In this calculation, we first estimate the loss of total pressure through the
tunnel. Boundary layers throughout the tunnel increase the entropy level of the
flow and result in a loss of total pressure. This loss is small, however, compared
with losses across shock waves from the model mounted in the test section,
and especially across the shock waves that occur in the diffuser, as sketched in
Figure 10.17b. For conceptual design purposes, we assume the shock losses are
equivalent to the total pressure loss across a normal shock wave at the design test
section Mach number; this “normal shock efficiency” is a rule of thumb frequently
used for estimating losses in the supersonic diffuser, especially in the design of
hypersonic tunnels. We will use this rule of thumb here.

At Mach 2, from Appendix B,
p02

p01

= 0.7209

Assuming that p02 is the total pressure at the diffuser exit and the flow velocity is
small, we assume p02 = pa = 1 atm. Thus,

p01 = p02

0.7209
= 1

0.7209
p01 = 1.387 atm

Ignoring all other losses, this implies that we need a reservoir pressure in the air
storage tank of 1.387 atm.

There is yet another consideration, namely, starting a supersonic tunnel. If
we would simply open some valves and impose the minimum pressure ratio of
1.387 across the tunnel, the losses across the waves associated with the transient
starting process might be too large, and the flow process struggles to start itself.
In this case, the starting pressure ratio across the tunnel needs to be higher than
the running pressure ratio. It is difficult to estimate the starting pressure ratio,
especially when there is a model mounted in the test section. This is something
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usually determined empirically. Finally, speaking of the test model, it should not
be so large as to cause a “blockage” of the mass flow through the tunnel. The
cross-sectional area of the model should be a small fraction of the test section
cross-section area. The maximum size model allowed in the test section without
causing blockage is a function of model shape (streamlined and slender versus
blunt) and test section Mach number. The maximum model size allowable is also
something usually determined empirically.

These practical considerations notwithstanding, we might conservatively de-
sign for an overall pressure ratio of about 2, which can be throttled down to the
minimum design value of 1.387 after the tunnel is properly started.

Question: For an operating value of p0 = 1.387 atm in the reservoir, will the
Reynolds number of the flow over the model satisfy our specification of 107? To
make this estimate, we first calculate the air density, ρ0, in the reservoir, assuming
the air temperature in the reservoir is the standard sea level value of T0 = 519 ◦R.

ρ0 = p0

RT0
= (1.387)(2116)

(1716)(519)
= 0.00329

slug

ft3

At Mach 2 in the test section, from Appendix A,

ρ0

ρ
= 4.347 and

T0

T
= 1.8

Thus, in the test section, the isentropic flow properties are

ρ = ρ0

4.347
= 0.00329

4.347
= 7.568 × 10−4 slug

ft3

and

T = T0

1.8
= 519

1.8
= 288◦R

The speed of sound in the test section is

a = √
γ RT =

√
(1.4)(1716)(288) = 831.8 ft/s

and the flow velocity is

V = Ma = 2(831.8) = 1664 ft/s

The viscosity coefficient as a function of temperature is given in Figure 1.50, but
in SI units. Converting T into degrees Kelvin, we have

T = 280

1.8
= 155.6 K

Extrapolating the linear variation shown in Figure 1.50 to a temperature of 155 K,
we have μ = 1.05 × 10−5 kg/(m)(s). Converting to the Engineering system of
units where 1 slug = 14.594 kg, and 1 ft = 0.3048 m, we have

μ = 1.05 × 10−5 kg

(m)(s)

[
1 slug

14.594 kg

]
0.3048 m

1 ft
= 2.19 × 10−7 slug

(ft)(s)
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Therefore, for the reservoir conditions in the high pressure air storage tank, the
Reynolds number for the four-footlong model in the test section is:

Re = ρV L

μ
= (7.568 × 10−4)(1664)(4)

2.19 × 10−7
= 23 × 106

This value of a Reynolds number of 23 million exceeds the stipulated requirement
of 10 million, so our conceptual design of the blowdown tunnel is on track so far.

Our tunnel is bordering on being rather large, and the next questions are:
What is the mass flow through the tunnel? What running times do we want? How
large an air storage tank is going to be required? These are all related questions.

First, consider the mass flow. A closed-form expression for the mass flow is
given in the end-of-chapter problem 10.5 as

ṁ = p0 A∗
√

T0

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)

(C10.1)

where A∗ is the nozzle throat area. At Mach 2, from Appendix A, Ae/A∗ = 1.687.
Since our tunnel is a “two-dimensional” tunnel with a nozzle and test-section
cross-sectional areas being rectangular and with the height of the nozzle exit
being he = 3.5 ft, then the height of the nozzle throat, h∗, is

h∗ = he/1.687 = 3.5

1.687
= 2.075 ft

The width of the nozzle is 3 ft. Hence, A∗ = (2.075)(3) = 6.225 ft2. For
p0 = 1.387 atm, where 1 atm = 2116 lb/ft2, and hence p0 = (1.387)(2116) =
2935 lb/ft2, and where T0 = 519◦R, we have from Equation (C10.1),

ṁ = (2935)(6.225)√
519

[
1.4

1716

(
2

1.4 + 1

)2.4/0.4
]

= 802(2.73 × 10−4) = 0.219 slug/s

Since 32.2 lbm = 1 slug, the mass flow is

ṁ = (0.219)(32.2) = 7.05 lbm /s

What about running time? This is a matter of choice. It should be long enough
to allow all measurements to be made on the test model—pressure, temperature,
force, etc. We choose a running time of one minute for this purpose. Therefore,
during that minute, the total mass of air flowing through the tunnel is

m = (7.05)(60) = 423 lbm

Our high-pressure air storage tank should be large enough to discharge 423 lbm

of air through the tunnel and still have enough air left in the tank to maintain a
reservoir pressure of p0 = 1.387 atm throughout the run. For starting the tunnel,
we have estimated that initially p0 = 2 atm is required. After the tunnel is started,
although the tank pressure initially remains above the stipulated 1.387 atm, the air
pressure entering the nozzle can be reduced to the desired 1.387 atm by passing
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through a throttling valve. What we want during the tunnel run is for the pressure in
the tank to remain at or above 1.387 atm. From the equation of state pV = M RT ,
where V is the tank volume and M is the mass of air in the tank we have for fixed
V and T ,

pi

p f
= Mi

M f
(C10.2)

where pi and p f are the initial and final pressures in the tank, respectively, and
Mi and M f are the initial and final mass in the tank, respectively.

pi

p f
= 2

1.387
= 1.44

Hence,

Mi/M f = 1.44

or,

M f = Mi

1.44
(C10.3)

Also, the difference between the initial and final mass in the tank is equal to the
mass discharged during the one-minute run,

Mi − M f = 423 lb (C10.4)

Substituting Equation (10.3) into Equation (10.4), we have

Mi − Mi

1.44
= 423

1.44 Mi − Mi = (423)(1.44)

0.44 Mi = 609.1

Mi = 609.1

0.44
= 1384 lbm

So the storage tank must contain at least 1384 lbm of air at p = 2 atm at the
beginning of the run. Finally, we can now estimate the volume of the storage tank,
which must hold 1384 lbm of air at a pressure of 2 atm initially. The mass in slugs
is M = 1384

32.2 = 43 slug, and the pressure in lb/ft2 is p = 2(2116) = 4232 lb/ft2.
Thus,

V = M RT

p
= (43)(1716)(519)

4232
= 9049 ft3

How large is this tank? Let us assume a cylindrical tank with a 12-foot diameter.
Let h be the height of the tank. The volume of the tank is V = πd2

4 h or,

h = 4V

πd2
= (4)(9049)

π(12)2
= 80 ft
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Wow! This is a tall tank—too tall for normal laboratory space. Here is the impor-
tance of a conceptual design process. Instead of storing the air at 2 atm pressure,
let us store it at 20 atm and then feed the air to the tunnel through a throttling
valve. A 20 atm tank would decrease the tank volume by a factor of 10 compared
with the 2 atm tank, yielding a height of 8 ft—a much more reasonable value.

We have barely scratched the surface of the conceptual design of a supersonic
tunnel. A more thorough process would be to look at the other types of supersonic
tunnels, not just the blowdown tunnel as we have done here. And then we could
compare all four types as to which might be the best to satisfy our specifications.
But we have done enough here to give you the flavor. Our blowdown tunnel will do
the job. It is a big tunnel, driven by the rather large specified size of the test model,
and hence requiring a large supersonic test section. Supersonic wind tunnels for
testing models of this sort tend to be big—it is just the nature of the beast!

10.9 PROBLEMS
10.1 The reservoir pressure and temperature for a convergent-divergent nozzle

are 5 atm and 520◦R, respectively. The flow is expanded isentropically to
supersonic speed at the nozzle exit. If the exit-to-throat area ratio is 2.193,
calculate the following properties at the exit: Me, pe, Te, ρe, ue, p0,e, T0,e.

10.2 A flow is isentropically expanded to supersonic speeds in a
convergent-divergent nozzle. The reservoir and exit pressures are 1 and
0.3143 atm, respectively. What is the value of Ae/A∗?

10.3 A Pitot tube inserted at the exit of a supersonic nozzle reads
8.92 × 104 N/m2. If the reservoir pressure is 2.02 × 105 N/m2, calculate
the area ratio Ae/A∗ of the nozzle.

10.4 For the nozzle flow given in Problem 10.1, the throat area is 4 in2.
Calculate the mass flow through the nozzle.

10.5 A closed-form expression for the mass flow through a choked nozzle is

ṁ = p0 A∗
√

T0

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)

Derive this expression.
10.6 Repeat Problem 10.4, using the formula derived in Problem 10.5, and

check your answer from Problem 10.4.
10.7 A convergent-divergent nozzle with an exit-to-throat area ratio of 1.616

has exit and reservoir pressures equal to 0.947 and 1.0 atm, respectively.
Assuming isentropic flow through the nozzle, calculate the Mach number
and pressure at the throat.

10.8 For the flow in Problem 10.7, calculate the mass flow through the nozzle,
assuming that the reservoir temperature is 288 K and the throat area is
0.3 m2.
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10.9 Consider a convergent-divergent nozzle with an exit-to-throat area ratio
of 1.53. The reservoir pressure is 1 atm. Assuming isentropic flow, except
for the possibility of a normal shock wave inside the nozzle, calculate the
exit Mach number when the exit pressure pe is
(a) 0.94 atm (b) 0.886 atm (c) 0.75 atm (d) 0.154 atm

10.10 A 20◦ half-angle wedge is mounted at 0◦ angle of attack in the test
section of a supersonic wind tunnel. When the tunnel is operating, the
wave angle from the wedge leading edge is measured to be 41.8◦. What
is the exit-to-throat area ratio of the tunnel nozzle?

10.11 The nozzle of a supersonic wind tunnel has an exit-to-throat area ratio
of 6.79. When the tunnel is running, a Pitot tube mounted in the test
section measures 1.448 atm. What is the reservoir pressure for the
tunnel?

10.12 We wish to design a supersonic wind tunnel that produces a Mach 2.8
flow at standard sea level conditions in the test section and has a mass
flow of air equal to 1 slug/s. Calculate the necessary reservoir pressure
and temperature, the nozzle throat and exit areas, and the diffuser throat
area.

10.13 Consider a rocket engine burning hydrogen and oxygen. The total mass
flow of the propellant plus oxidizer into the combustion chamber is
287.2 kg/s. The combustion chamber temperature is 3600 K. Assume
that the combustion chamber is a low-velocity reservoir for the rocket
engine. If the area of the rocket nozzle throat is 0.2 m2, calculate the
combustion chamber (reservoir) pressure. Assume that the gas that flows
through the engine has a ratio of specific heats, γ = 1.2, and a molecular
weight of 16.

10.14 For supersonic and hypersonic wind tunnels, a diffuser efficiency, ηD ,
can be defined as the ratio of the total pressures at the diffuser exit and
nozzle reservoir, divided by the total pressure ratio across a normal shock
at the test-section Mach number. This is a measure of the efficiency of
the diffuser relative to normal shock pressure recovery. Consider a
supersonic wind tunnel designed for a test-section Mach number of 3.0
which exhausts directly to the atmosphere. The diffuser efficiency is 1.2.
Calculate the minimum reservoir pressure necessary for running the
tunnel.

10.15 Return to Problem 9.18, where the average Mach number across the
two-dimensional flow in a duct was calculated, and where θ for the upper
wall was 3◦. Assuming quasi-one-dimensional flow, calculate the Mach
number at the location AB in the duct.

10.16 Return to Problem 9.19, where the average Mach number across the
two-dimensional flow in a duct was calculated, and where θ for the upper
wall was 30◦. Assuming quasi-one-dimensional flow, calculate the Mach
number at the location AB in the duct.
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10.17 A horizontal flow initially at Mach 1 flows over a downward-sloping
expansion corner, thus creating a centered Prandtl-Meyer expansion
wave. The streamlines that enter the head of the expansion wave curve
smoothly and continuously downward through the expansion fan, and
emerge parallel to the downward sloping surface downstream of the tail
of the wave, as shown in Figure 9.2b. Imagine a polar coordinate system
r , � with its origin at the expansion corner (the vertex of the Prandtl-
Meyer expansion wave), with r the usual radial distance along a ray from
the origin and � the polar angle of r measured from the horizontal.
Because the upstream flow is at Mach 1, the head of the expansion fan is
a Mach wave perpendicular to the free stream. Consider a given
streamline entering the expansion wave at the point (r , �) = (r∗, π/2).
Construct a method for calculating the shape of this streamline as a
function of r and � through the expansion fan. Note: To solve this
problem, material from both Chapters 9 and 10 is required.

10.18 Consider a centered expansion wave where M1 = 1.0 and M2 = 1.6.
Using the method developed in Problem 10.17, plot to scale a streamline
that passes through the expansion wave.



C H A P T E R 11
Subsonic Compressible Flow
over Airfoils: Linear Theory

During the war a British engineer named Frank Whittle invented the jet engine,
and deHavilland built the first production-type model. He produced a jet plane
named Vampire, the first to exceed 500 mph. Then he built the experimental
DH 108, and released it to young Geoffrey for test. In the first cautious trials the
new plane behaved beautifully; but as Geoffrey stepped up the speed he
unsuspectingly drew closer to an invisible wall in the sky then unknown to
anyone, later named the sound barrier, which can destroy a plane not designed
to pierce it. One evening he hit the speed of sound, and the plane disintegrated.
Young Geoffrey’s body was not found for ten days.

From the Royal Air Force Flying
Review, as condensed in Reader’s
Digest, 1959

PREVIEW BOX

We learned all about airfoils in Chapter 4—but did
we really? Chapter 4 dealt with airfoils in low-speed
incompressible flow. What happens when we have a
high-speed compressible flow over these airfoils? By
this stage of our discussions about compressible flow,
you might expect compressibility to make some dif-
ferences, and you would be correct. But what differ-
ences, and by how much? This chapter and the next
give some answers.

The present chapter deals with airfoils in a high-
speed subsonic flow. What happens when an airfoil is

flown at high subsonic Mach numbers, near the speed
of sound? How does compressibility change the airfoil
properties, and by how much? How do we analyze and
calculate these compressibility effects? The answers
are given in this chapter. In addition, we will see that
as Mach 1 is approached, the drag of an airfoil sud-
denly skyrockets and looks like it is going out of sight
(the so-called sound barrier, as sometimes referenced
in the popular literature). What is going on here? How
do we deal with it?

739
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These are all very important and very practical
questions, and they are all addressed in this chapter.
Every time you fly in a high-speed jet transport, such
as a Boeing 777 cruising at a Mach number of 0.85,
you are encountering the phenomena that drive these
questions. Without proper answers, we would never
be able to design this type of airplane, and we would
always be relegated to flying slower—something that
the pace of modern life would not easily tolerate. So
pay close attention to the material in this chapter.

But be aware. Our first four chapters dealing with
the basics of compressible flow (Chapters 7–10) used

mathematics at essentially the level of algebra. To go
further in our study of compressible flow, especially
to answer the questions posed here, we have to re-
turn to the world of partial differential equations. But
this is no big deal; we have been there before in our
discussions of incompressible flow in Part 1 of this
book. So jump right in to the material of this chapter.
I predict that you will experience some increase in
technical maturity as you study this material, and that
you will enjoy it. After all, here you will be dealing
with some of the most important and exciting appli-
cations in modern aerodynamics.

11.1 INTRODUCTION
The above quotation refers to an accident that took place on September 27,
1946, when Geoffrey deHavilland, son of the famed British airplane designer
Sir Geoffrey deHavilland, took the D. H. 108 Swallow up for an attack on the
world’s speed record. At that time, no airplane had flown at or beyond the speed of
sound. The Swallow was an experimental jet-propelled aircraft with swept wings
and no tail. During its first high-speed, low-level run, the Swallow encountered
major compressibility problems and broke up in the air. deHavilland was killed
instantly. This accident strengthened the opinion of many that Mach 1 stood as a
barrier to manned flight and that no airplane would ever fly faster than the speed
of sound. This myth of the “sound barrier” originated in the early 1930s. It was in
full force by the time of the Volta Conference in 1935 (see Section 7.1). In light
of the opening quotation, the idea of a sound barrier was still being discussed in
the popular literature as late as 1959, 12 years after the first successful supersonic
flight by Captain Charles Yeager on October 14, 1947.

Of course, we know today that the sound barrier is indeed a myth; the super-
sonic transport Concorde flew at Mach 2, and some military aircraft are capable
of Mach 3 and slightly beyond. The X-15 hypersonic research airplane has flown
at Mach 7, and the Apollo lunar return capsule successfully reentered the earth’s
atmosphere at Mach 36. Supersonic flight is now an everyday occurrence. So,
what caused the early concern about a sound barrier? In the present chapter, we
develop a theory applicable to high-speed subsonic flight, and we see how the
theory predicts a monotonically increasing drag going to infinity as M∞ → 1. It
was this type of result that led some people in the early 1930s to believe that flight
beyond the speed of sound was impossible. However, we also show in this chapter
that the approximations made in the theory break down near Mach 1 and that in
reality, although the drag coefficient at Mach 1 is large, it is still a manageable
finite number.
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Specifically, the purpose of this chapter is to examine the properties of two-
dimensional airfoils at Mach numbers above 0.3, where we can no longer assume
incompressible flow, but below Mach 1. That is, this chapter is an extension of
the airfoil discussions in Chapter 4 (which applied to incompressible flow) to the
high-speed subsonic regime.

In the process, we climb to a new tier in our study of compressible flow. If
you survey our discussions so far of compressible flow, you will observe that they
treat one-dimensional cases such as normal shock waves and flows in ducts. Even
oblique shock waves, which are two- and three-dimensional in nature, depend
only on the component of Mach number normal to the wave. Therefore, we have
not been explicitly concerned with a multidimensional flow. As a consequence,
note that the types of equations which allow an analysis of these flows are alge-
braic equations, and hence are relatively easy to solve in comparison with partial
differential equations. In Chapters 8 to 10, we have dealt primarily with such
algebraic equations. These algebraic equations were obtained by applying the in-
tegral forms of the conservation equations [Equations (2.48), (2.64), and (2.95)]
to appropriate control volumes where the flow properties were uniform over the
inflow and outflow faces of the control volume. However, for general two- and
three-dimensional flows, we are usually not afforded such a luxury. Instead, we
must deal directly with the governing equations in their partial differential equa-
tion form (see Chapter 2). Such is the nature of the present chapter. Indeed, for
the remainder of our aerodynamic discussions in this book, we appeal mainly to
the differential forms of the continuity, momentum, and energy equations [such
as Equations (2.52), (2.113a to c), and (2.114)].

The road map for this chapter is given in Figure 11.1. We are going to return to
the concept of a velocity potential, first introduced in Section 2.15. We are going
to combine our governing equations so as to obtain a single equation simply in

Velocity potential
equation

Linearized velocity
potential equation

Critical  Mach number

Prandtl-Glauert 
compressibility correction

Improved compressibility
correction

The area rule for
transonic flow

Supercritical airfoils

Figure 11.1 Road map for Chapter 11.
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terms of the velocity potential; that is, we are going to obtain for compressible
flow an equation analogous to Laplace’s equation derived for incompressible flow
in Section 3.7 [see Equation (3.40)]. However, unlike Laplace’s equation, which
is linear, the exact velocity potential equation for compressible flow is nonlin-
ear. By making suitable approximations, we are able to linearize this equation
and apply it to thin airfoils at small angles of attack. The results enable us to
correct incompressible airfoil data for the effects of compressibility—so-called
compressibility corrections. Finally, we conclude this chapter by discussing sev-
eral practical aspects of airfoil and general wing-body aerodynamics at speeds
near Mach 1.

11.2 THE VELOCITY POTENTIAL EQUATION
The inviscid, compressible, subsonic flow over a body immersed in a uniform
stream is irrotational; there is no mechanism in such a flow to start rotating the
fluid elements (see Section 2.12). Thus, a velocity potential (see Section 2.15) can
be defined. Since we are dealing with irrotational flow and the velocity potential,
review Sections 2.12 and 2.15 before progressing further.

Consider two-dimensional, steady, irrotational, isentropic flow. A velocity
potential, φ = φ(x, y), can be defined such that [from Equation (2.154)]

V = ∇φ (11.1)

or in terms of the cartesian velocity components,

u = ∂φ

∂x
(11.2a)

v = ∂φ

∂y
(11.2b)

Let us proceed to obtain an equation for φ which represents a combination of
the continuity, momentum, and energy equations. Such an equation would be
very useful, because it would be simply one governing equation in terms of one
unknown, namely the velocity potential φ.

The continuity equation for steady, two-dimensional flow is obtained from
Equation (2.52) as

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (11.3)

or ρ
∂u

∂x
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

∂v

∂y
= 0 (11.4)

Substituting Equations (11.2a and b) into (11.4), we have

ρ
∂2φ

∂x2
+ ∂φ

∂x

∂ρ

∂x
+ ∂φ

∂y

∂ρ

∂y
+ ρ

∂2φ

∂y2
= 0

or ρ

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
+ ∂φ

∂x

∂ρ

∂x
+ ∂φ

∂y

∂ρ

∂y
= 0 (11.5)
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We are attempting to obtain an equation completely in terms of φ; hence, we need
to eliminate ρ from Equation (11.5). To do this, consider the momentum equation
in terms of Euler’s equation:

dp = −ρV dV (3.12)

This equation holds for a steady, compressible, inviscid flow and relates p and
V along a streamline. It can readily be shown that Equation (3.12) holds in
any direction throughout an irrotational flow, not just along a streamline (try it
yourself). Therefore, from Equations (3.12) and (11.2a and b), we have

dp = −ρV dV = −ρ

2
d(V 2) = −ρ

2
d(u2 + v2)

or dp = −ρ

2
d

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
]

(11.6)

Recall that we are also considering the flow to be isentropic. Hence, any change
in pressure dp in the flow is automatically accompanied by a corresponding
isentropic change in density dρ. Thus, by definition

dp

dρ
=

(
∂p

∂ρ

)
s

(11.7)

The right-hand side of Equation (11.7) is simply the square of the speed of sound.
Thus, Equation (11.7) yields

dp = a2 dρ (11.8)

Substituting Equation (11.8) for the left side of Equation (11.6), we have

dρ = − ρ

2a2
d

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
]

(11.9)

Considering changes in the x direction, Equation (11.9) directly yields

∂ρ

∂x
= − ρ

2a2

∂

∂x

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
]

or
∂ρ

∂x
= − ρ

a2

(
∂φ

∂x

∂2φ

∂x2
+ ∂φ

∂y

∂2φ

∂x∂y

)
(11.10)

Similarly, for changes in the y direction, Equation (11.9) gives

∂ρ

∂y
= − ρ

a2

(
∂φ

∂x

∂2φ

∂x ∂y
+ ∂φ

∂y

∂2φ

∂y2

)
(11.11)
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Substituting Equations (11.10) and (11.11) into (11.5), canceling the ρ which
appears in each term, and factoring out the second derivatives of φ, we obtain

[
1 − 1

a2

(
∂φ

∂x

)2
]

∂2φ

∂x2
+

[
1 − 1

a2

(
∂φ

∂y

)2
]

∂2φ

∂y2

− 2

a2

(
∂φ

∂x

) (
∂φ

∂y

)
∂2φ

∂x ∂y
= 0

(11.12)

which is called the velocity potential equation. It is almost completely in terms
of φ; only the speed of sound appears in addition to φ. However, a can be readily
expressed in terms of φ as follows. From Equation (8.33), we have

a2 = a2
0 − γ − 1

2
V 2 = a2

0 − γ − 1

2
(u2 + v2)

= a2
0 − γ − 1

2

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
]

(11.13)

Since a0 is a known constant of the flow, Equation (11.13) gives the speed of
sound a as a function of φ. Hence, substitution of Equation (11.13) into (11.12)
yields a single partial differential equation in terms of the unknown φ. This
equation represents a combination of the continuity, momentum, and energy
equations. In principle, it can be solved to obtain φ for the flow field around
any two-dimensional shape, subject of course to the usual boundary conditions at
infinity and along the body surface. These boundary conditions on φ are detailed
in Section 3.7, and are given by Equations (3.47a and b) and (3.48b).

Because Equation (11.12) [along with Equation (11.13)] is a single equa-
tion in terms of one dependent variable φ, the analysis of isentropic, irrotational,
steady, compressible flow is greatly simplified—we only have to solve one equa-
tion instead of three or more. Once φ is known, all the other flow variables are
directly obtained as follows:

1. Calculate u and v from Equations (11.2a and b).
2. Calculate a from Equation (11.13).
3. Calculate M = V/a = √

u2 + v2/a.
4. Calculate T , p, and ρ from Equations (8.40), (8.42), and (8.43),

respectively. In these equations, the total conditions T0, p0, and ρ0 are
known quantities; they are constant throughout the flow field and hence are
obtained from the given freestream conditions.

Although Equation (11.12) has the advantage of being one equation with one
unknown, it also has the distinct disadvantage of being a nonlinear partial differ-
ential equation. Such nonlinear equations are very difficult to solve analytically,
and in modern aerodynamics, solutions of Equation (11.12) are usually sought by
means of sophisticated finite-difference numerical techniques. Indeed, no gen-
eral analytical solution of Equation (11.12) has been found to this day. Contrast
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this situation with that for incompressible flow, which is governed by Laplace’s
equation—a linear partial differential equation for which numerous analytical
solutions are well known.

Given this situation, aerodynamicists over the years have made assumptions
regarding the physical nature of the flow field which are designed to simplify
Equation (11.12). These assumptions limit our considerations to the flow over
slender bodies at small angles of attack. For subsonic and supersonic flows, these
assumptions lead to an approximate form of Equation (11.12) which is linear,
and hence can be solved analytically. These matters are the subject of the next
section.

Keep in mind that, within the framework of steady, irrotational, isentropic
flow, Equation (11.12) is exact and holds for all Mach numbers, from subsonic
to hypersonic, and for all two-dimensional body shapes, thin and thick.

11.3 THE LINEARIZED VELOCITY POTENTIAL
EQUATION

Consider the two-dimensional, irrotational, isentropic flow over the body shown
in Figure 11.2. The body is immersed in a uniform flow with velocity V∞ oriented
in the x direction. At an arbitrary point P in the flow field, the velocity is V with
the x and y components given by u and v, respectively. Let us now visualize the
velocity V as the sum of the uniform flow velocity plus some extra increments
in velocity. For example, the x component of velocity u in Figure 11.2 can be
visualized as V∞ plus an increment in velocity (positive or negative). Similarly,
the y component of velocity v can be visualized as a simple increment itself, be-
cause the uniform flow has a zero component in the y direction. These increments
are called perturbations, and

u = V∞ + û v = v̂

where û and v̂ are called the perturbation velocities. These perturbation velocities
are not necessarily small; indeed, they can be quite large in the stagnation region
in front of the blunt nose of the body shown in Figure 11.2. In the same vein,

V�

y
v

V
P

u

u = V� + û
� = �̂

x

Figure 11.2 Uniform flow and perturbed flow.
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because V = ∇φ, we can define a perturbation velocity potential φ̂ such that

φ = V∞x + φ̂

where ∂φ̂

∂x
= û

∂φ̂

∂y
= v̂

Hence,
∂φ

∂x
= V∞ + ∂φ̂

∂x

∂φ

∂y
= ∂φ̂

∂y

∂2φ

∂x2
= ∂2φ̂

∂x2

∂2φ

∂y2
= ∂2φ̂

∂y2

∂2φ

∂x ∂y
= ∂2φ̂

∂x ∂y

Substituting the above definitions into Equation (11.12), and multiplying by a2,
we obtain ⎡

⎣a2 −
(

V∞ + ∂φ̂

∂x

)2
⎤
⎦ ∂2φ̂

∂x2
+

⎡
⎣a2 −

(
∂φ̂

∂y

)2
⎤
⎦ ∂2φ̂

∂y2

(11.14)

−2

(
V∞ + ∂φ̂

∂x

)(
∂φ̂

∂y

)
∂2φ̂

∂x ∂y
= 0

Equation (11.14) is called the perturbation velocity potential equation. It is pre-
cisely the same equation as Equation (11.12) except that it is expressed in terms
of φ̂ instead of φ. It is still a nonlinear equation.

To obtain better physical insight in some of our subsequent discussion, let us
recast Equation (11.14) in terms of the perturbation velocities. From the definition
of φ̂ given earlier, Equation (11.14) can be written as

[a2 − (V∞ + û)2]
∂ û

∂x
+ (a2 − v̂2)

∂v̂

∂y
− 2(V∞ + û)v̂

∂ û

∂y
= 0 (11.14a)

From the energy equation in the form of Equation (8.32), we have

a2
∞

γ − 1
+ V 2

∞
2

= a2

γ − 1
+ (V∞ + û)2 + v̂2

2
(11.15)

Substituting Equation (11.15) into (11.14a), and algebraically rearranging, we
obtain(

1 − M2
∞

)∂ û

∂x
+ ∂v̂

∂y
= M2

∞

[
(γ + 1)

û

V∞
+ γ + 1

2

û2

V 2∞
+ γ − 1

2

v̂2

V 2∞

]
∂ û

∂x

+ M2
∞

[
(γ − 1)

û

V∞
+ γ + 1

2

v̂2

V 2∞
+ γ − 1

2

û2

V 2∞

]
∂v̂

∂y

+ M2
∞

[
v̂

V∞

(
1 + û

V∞

)(
∂ û

∂y
+ ∂v̂

∂x

)]
(11.16)
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Equation (11.16) is still exact for irrotational, isentropic flow. Note that the left-
hand side of Equation (11.16) is linear but the right-hand side is nonlinear. Also,
keep in mind that the size of the perturbations û and v̂ can be large or small;
Equation (11.16) holds for both cases.

Let us now limit our considerations to small perturbations; that is, assume
that the body in Figure 11.2 is a slender body at small angle of attack. In such a
case, û and v̂ will be small in comparison with V∞. Therefore, we have

û

V∞
,

v̂

V∞
� 1

û2

V 2∞
,

v̂2

V 2∞
�� 1

Keep in mind that products of û and v̂ with their derivatives are also very small.
With this in mind, examine Equation (11.16). Compare like terms (coefficients
of like derivatives) on the left- and right-hand sides of Equation (11.16). We find

1. For 0 ≤ M∞ ≤ 0.8 or M∞ ≥ 1.2, the magnitude of

M2
∞

[
(γ + 1)

û

V∞
+ · · ·

]
∂ û

∂x

is small in comparison with the magnitude of

(
1 − M2

∞
)∂ û

∂x

Thus, ignore the former term.
2. For M∞ < 5 (approximately),

M2
∞

[
(γ − 1)

û

V∞
+ · · ·

]
∂v̂

∂y

is small in comparison with ∂v̂/∂y. So ignore the former term. Also,

M2
∞

[
v̂

V∞

(
1 + û

V∞

)(
∂ û

∂y
+ ∂v̂

∂x

)]
≈ 0

With the above order-of-magnitude comparisons, Equation (11.16) reduces to

(
1 − M2

∞
)∂ û

∂x
+ ∂v̂

∂y
= 0 (11.17)

or in terms of the perturbation velocity potential,

(
1 − M2

∞
)∂2φ̂

∂x2
+ ∂2φ̂

∂y2
= 0 (11.18)

Examine Equation (11.18). It is a linear partial differential equation, and therefore
is inherently simpler to solve than its parent equation, Equation (11.16). However,
we have paid a price for this simplicity. Equation (11.18) is no longer exact. It is
only an approximation to the physics of the flow. Due to the assumptions made in
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obtaining Equation (11.18), it is reasonably valid (but not exact) for the following
combined situations:

1. Small perturbation, that is, thin bodies at small angles of attack
2. Subsonic and supersonic Mach numbers

In contrast, Equation (11.18) is not valid for thick bodies and for large angles of
attack. Moreover, it cannot be used for transonic flow, where 0.8 < M∞ < 1.2,
or for hypersonic flow, where M∞ > 5.

We are interested in solving Equation (11.18) in order to obtain the pressure
distribution along the surface of a slender body. Since we are now dealing with
approximate equations, it is consistent to obtain a linearized expression for the
pressure coefficient—an expression that is approximate to the same degree as
Equation (11.18), but which is extremely simple and convenient to use. The
linearized pressure coefficient can be derived as follows.

First, recall the definition of the pressure coefficient Cp given in Section 1.5:

C p ≡ p − p∞
q∞

(11.19)

where q∞ = 1
2ρ∞V 2

∞ = dynamic pressure. The dynamic pressure can be ex-
pressed in terms of M∞ as follows:

q∞ = 1

2
ρ∞V 2

∞ = 1

2

γ p∞
γ p∞

ρ∞V 2
∞ = γ

2
p∞

(
ρ∞
γ p∞

)
V 2

∞ (11.20)

From Equation (8.23), we have a2
∞ = γ p∞/ρ∞. Hence, Equation (11.20) becomes

q∞ = γ

2
p∞

V 2
∞

a2∞
= γ

2
p∞M2

∞ (11.21)

Substituting Equation (11.21) into (11.19), we have

Cp = 2

γ M2∞

(
p

p∞
− 1

)
(11.22)

Equation (11.22) is simply an alternate form of the pressure coefficient expressed
in terms of M∞. It is still an exact representation of the definition of Cp.

To obtain a linearized form of the pressure coefficient, recall that we are
dealing with an adiabatic flow of a calorically perfect gas; hence, from Equa-
tion (8.39),

T + V 2

2cp
= T∞ + V 2

∞
2cp

(11.23)

Recalling from Equation (7.9) that cp = γ R/(γ − 1), Equation (11.23) can be
written as

T − T∞ = V 2
∞ − V 2

2γ R/(γ − 1)
(11.24)
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Also, recalling that a∞ = √
γ RT∞, Equation (11.24) becomes

T

T∞
− 1 = γ − 1

2

V 2
∞ − V 2

γ RT∞
= γ − 1

2

V 2
∞ − V 2

a2∞
(11.25)

In terms of the perturbation velocities

V 2 = (V∞ + û)2 + v̂2

Equation (11.25) can be written as

T

T∞
= 1 − γ − 1

2a2∞
(2ûV∞ + û2 + v̂2) (11.26)

Since the flow is isentropic, p/p∞ = (T/T∞)γ/(γ−1), and Equation (11.26) be-
comes

p

p∞
=

[
1 − γ − 1

2a2∞
(2ûV∞ + û2 + v̂2)

]γ /(γ−1)

or p

p∞
=

[
1 − γ − 1

2
M2

∞

(
2û

V∞
+ û2 + v̂2

V 2∞

)]γ /(γ−1)

(11.27)

Equation (11.27) is still an exact expression. However, let us now make the
assumption that the perturbations are small, that is, û/V∞ � 1, û2/V 2

∞ �� 1,
and v̂2/V 2

∞ �� 1. In this case, Equation (11.27) is of the form
p

p∞
= (1 − ε)γ/(γ−1) (11.28)

where ε is small. From the binomial expansion, neglecting higher-order terms,
Equation (11.28) becomes

p

p∞
= 1 − γ

γ − 1
ε + · · · (11.29)

Comparing Equation (11.27) to (11.29), we can express Equation (11.27) as

p

p∞
= 1 − γ

2
M2

∞

(
2û

V∞
+ û2 + v̂2

V 2∞

)
+ · · · (11.30)

Substituting Equation (11.30) into the expression for the pressure coefficient,
Equation (11.22), we obtain

Cp = 2

γ M2∞

[
1 − γ

2
M2

∞

(
2û

V∞
+ û2 + v̂2

V 2∞

)
+ · · · − 1

]

or Cp = − 2û

V∞
− û2 + v̂2

V 2∞
(11.31)

Since û2/V 2
∞ and v̂2/V 2

∞��1, Equation (11.31) becomes

Cp = − 2û

V∞
(11.32)
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Equation (11.32) is the linearized form for the pressure coefficient; it is valid
only for small perturbations. Equation (11.32) is consistent with the linearized
perturbation velocity potential equation, Equation (11.18). Note the simplicity of
Equation (11.32); it depends only on the x component of the velocity perturbation,
namely, û.

To round out our discussion on the basics of the linearized equations, we note
that any solution to Equation (11.18) must satisfy the usual boundary conditions
at infinity and at the body surface. At infinity, clearly φ̂ = constant; that is,
û = v̂ = 0. At the body, the flow-tangency condition holds. Let θ be the angle
between the tangent to the surface and the freestream. Then, at the surface, the
boundary condition is obtained from Equation (3.48e):

tan θ = v

u
= v̂

V∞ + û
(11.33)

which is an exact expression for the flow-tangency condition at the body surface.
A simpler, approximate expression for Equation (11.33), consistent with lin-
earized theory, can be obtained by noting that for small perturbations, û � V∞.
Hence, Equation (11.33) becomes

v̂ = V∞ tan θ

or ∂φ̂

∂y
= V∞ tan θ (11.34)

Equation (11.34) is an approximate expression for the flow-tangency condition
at the body surface, with accuracy of the same order as Equations (11.18) and
(11.32).

11.4 PRANDTL-GLAUERT COMPRESSIBILITY
CORRECTION

The aerodynamic theory for incompressible flow over thin airfoils at small angles
of attack was presented in Chapter 4. For aircraft of the period 1903–1940, such
theory was adequate for predicting airfoil properties. However, with the rapid evo-
lution of high-power reciprocating engines spurred by World War II, the velocities
of military fighter planes began to push close to 450 mi/h. Then, with the advent
of the first operational jet-propelled airplanes in 1944 (the German Me 262), flight
velocities took a sudden spurt into the 550 mi/h range and faster. As a result, the
incompressible flow theory of Chapter 4 was no longer applicable to such aircraft;
rather, high-speed airfoil theory had to deal with compressible flow. Because a vast
bulk of data and experience had been collected over the years in low-speed aero-
dynamics, and because there was no desire to totally discard such data, the natural
approach to high-speed subsonic aerodynamics was to search for methods that
would allow relatively simple corrections to existing incompressible flow results
which would approximately take into account the effects of compressibility. Such
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Figure 11.3 Airfoil in physical space.

methods are called compressibility corrections. The first, and most widely known
of these corrections is the Prandtl-Glauert compressibility correction, to be derived
in this section. The Prandtl-Glauert method is based on the linearized perturbation
velocity potential equation given by Equation (11.18). Therefore, it is limited to
thin airfoils at small angles of attack. Moreover, it is purely a subsonic theory and
begins to give inappropriate results at values of M∞ = 0.7 and above.

Consider the subsonic, compressible, inviscid flow over the airfoil sketched
in Figure 11.3. The shape of the airfoil is given by y = f (x). Assume that the
airfoil is thin and that the angle of attack is small; in such a case, the flow is
reasonably approximated by Equation (11.18). Define

β2 ≡ 1 − M2
∞

so that Equation (11.18) can be written as

β2 ∂2φ̂

∂x2
+ ∂2φ̂

∂y2
= 0 (11.35)

Let us transform the independent variables x and y into a new space, ξ and η,
such that

ξ = x (11.36a)

η = βy (11.36b)

Moreover, in this transformed space, consider a new velocity potential φ̄ such
that

φ̄(ξ, η) = βφ̂(x, y) (11.36c)

To recast Equation (11.35) in terms of the transformed variables, recall the chain
rule of partial differentiation; that is,

∂φ̂

∂x
= ∂φ̂

∂ξ

∂ξ

∂x
+ ∂φ̂

∂η

∂η

∂x
(11.37)
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and
∂φ̂

∂y
= ∂φ̂

∂ξ

∂ξ

∂y
+ ∂φ̂

∂η

∂η

∂y
(11.38)

From Equations (11.36a and b), we have

∂ξ

∂x
= 1

∂ξ

∂y
= 0

∂η

∂x
= 0

∂η

∂y
= β

Hence, Equations (11.37) and (11.38) become

∂φ̂

∂x
= ∂φ̂

∂ξ
(11.39)

∂φ̂

∂y
= β

∂φ̂

∂η
(11.40)

Recalling Equation (11.36c), Equations (11.39) and (11.40) become

∂φ̂

∂x
= 1

β

∂φ̄

∂ξ
(11.41)

and ∂φ̂

∂y
= ∂φ̄

∂η
(11.42)

Differentiating Equation (11.41) with respect to x (again using the chain rule),
we obtain

∂2φ̂

∂x2
= 1

β

∂2φ̄

∂ξ 2
(11.43)

Differentiating Equation (11.42) with respect to y, we find that the result is

∂2φ̂

∂y2
= β

∂2φ̄

∂η2
(11.44)

Substitute Equations (11.43) and (11.44) into (11.35):

β2 1

β

∂2φ̄

∂ξ 2
+ β

∂2φ̄

∂η2
= 0

or ∂2φ̄

∂ξ 2
+ ∂2φ̄

∂η2
= 0 (11.45)

Examine Equation (11.45)—it should look familiar. Indeed, Equation (11.45) is
Laplace’s equation. Recall from Chapter 3 that Laplace’s equation is the gov-
erning relation for incompressible flow. Hence, starting with a subsonic com-
pressible flow in physical (x, y) space where the flow is represented by φ̂(x, y)

obtained from Equation (11.35), we have related this flow to an incompressible
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flow in transformed (ξ, η) space, where the flow is represented by φ̄(ξ, η) ob-
tained from Equation (11.45). The relation between φ̄ and φ̂ is given by Equa-
tion (11.36c).

Consider again the shape of the airfoil given in physical space by y = f (x).
The shape of the airfoil in the transformed space is expressed as η = q(ξ). Let
us compare the two shapes. First, apply the approximate boundary condition,
Equation (11.34), in physical space, noting that d f/dx = tan θ . We obtain

V∞
d f

dx
= ∂φ̂

∂y
= 1

β

∂φ̄

∂y
= ∂φ̄

∂η
(11.46)

Similarly, apply the flow-tangency condition in transformed space, which from
Equation (11.34) is

V∞
dq

dξ
= ∂φ̄

∂η
(11.47)

Examine Equations (11.46) and (11.47) closely. Note that the right-hand sides of
these two equations are identical. Thus, from the left-hand sides, we obtain

d f

dx
= dq

dξ
(11.48)

Equation (11.48) implies that the shape of the airfoil in the transformed space is
the same as in the physical space. Hence, the above transformation relates the
compressible flow over an airfoil in (x, y) space to the incompressible flow in
(ξ, η) space over the same airfoil.

The above theory leads to an immensely practical result, as follows. Recall
Equation (11.32) for the linearized pressure coefficient. Inserting the above trans-
formation into Equation (11.32), we obtain

Cp = −2û

V∞
= − 2

V∞

∂φ̂

∂x
= − 2

V∞

1

β

∂φ̄

∂x
= − 2

V∞

1

β

∂φ̄

∂ξ
(11.49)

Question: What is the significance of ∂φ̄/∂ξ in Equation (11.49)? Recall that φ̄

is the perturbation velocity potential for an incompressible flow in transformed
space. Hence, from the definition of velocity potential, ∂φ̄/∂ξ = ū, where ū is
a perturbation velocity for the incompressible flow. Hence, Equation (11.49) can
be written as

Cp = 1

β

(
− 2ū

V∞

)
(11.50)

From Equation (11.32), the expression (−2ū/V∞) is simply the linearized pres-
sure coefficient for the incompressible flow. Denote this incompressible pressure
coefficient by Cp,0. Hence, Equation (11.50) gives

Cp = Cp,0

β
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or recalling that β ≡ √
1 − M2∞, we have

Cp = Cp,0√
1 − M2∞

(11.51)

Equation (11.51) is called the Prandtl-Glauert rule; it states that, if we know the
incompressible pressure distribution over an airfoil, then the compressible pres-
sure distribution over the same airfoil can be obtained from Equation (11.51).
Therefore, Equation (11.51) is truly a compressibility correction to incompress-
ible data.

Consider the lift and moment coefficients for the airfoil. For an inviscid flow,
the aerodynamic lift and moment on a body are simply integrals of the pressure
distribution over the body, as described in Section 1.5. (If this is somewhat foggy
in your mind, review Section 1.5 before progressing further.) In turn, the lift and
moment coefficients are obtained from the integral of the pressure coefficient via
Equations (1.15) to (1.19). Since Equation (11.51) relates the compressible and
incompressible pressure coefficients, the same relation must therefore hold for
lift and moment coefficients:

cl = cl,0√
1 − M2∞

cm = cm,0√
1 − M2∞

[11.52]

[11.53]

The Prandtl-Glauert rule, embodied in Equations (11.51) to (11.53), was
historically the first compressibility correction to be obtained. As early as 1922,
Prandtl was using this result in his lectures at Göttingen, although without written
proof. The derivation of Equations (11.51) to (11.53) was first formally published
by the British aerodynamicist, Hermann Glauert, in 1928. Hence, the rule is
named after both men. The Prandtl-Glauert rule was used exclusively until 1939,
when an improved compressibility correction was developed. Because of their
simplicity, Equations (11.51) to (11.53) are still used today for initial estimates
of compressibility effects.

Recall that the results of Chapters 3 and 4 proved that inviscid, incompressible
flow over a closed, two-dimensional body theoretically produces zero drag—the
well-known d’Alembert’s paradox. Does the same paradox hold for inviscid,
subsonic, compressible flow? The answer can be obtained by again noting that
the only source of drag is the integral of the pressure distribution. If this integral is
zero for an incompressible flow, and since the compressible pressure coefficient
differs from the incompressible pressure coefficient by only a constant scale factor,
β, then the integral must also be zero for a compressible flow. Hence, d’Alembert’s
paradox also prevails for inviscid, subsonic, compressible flow. However, as soon
as the freestream Mach number is high enough to produce locally supersonic flow
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on the body surface with attendant shock waves, as shown in Figure 1.43b, then
a positive wave drag is produced, and d’Alembert’s paradox no longer prevails.

EXAMPLE 11.1

At a given point on the surface of an airfoil, the pressure coefficient is −0.3 at very low
speeds. If the freestream Mach number is 0.6, calculate C p at this point.

■ Solution
From Equation (11.51),

C p = C p,0√
1 − M2

= −0.3√
1 − (0.6)2

= −0.375

EXAMPLE 11.2

From Chapter 4, the theoretical lift coefficient for a thin, symmetric airfoil in an incom-
pressible flow is cl = 2πα. Calculate the lift coefficient for M∞ = 0.7.

■ Solution
From Equation (11.52),

cl = cl,0√
1 − M2∞

= 2πα√
1 − (0.7)2

= 8.8α

Note: The effect of compressibility at Mach 0.7 is to increase the lift slope by the ratio
8.8/2π = 1.4, or by 40 percent.

11.5 IMPROVED COMPRESSIBILITY
CORRECTIONS

The importance of accurate compressibility corrections reached new highs during
the rapid increase in airplane speeds spurred by World War II. Efforts were made
to improve upon the Prandtl-Glauert rule discussed in Section 11.4. Several of
the more popular formulas are given below.

The Karman-Tsien rule states

C p = Cp,0√
1 − M2∞ + [

M2∞/
(
1 + √

1 − M2∞
)]

Cp,0/2
(11.54)

This formula, derived in References 27 and 28, has been widely adopted by the
aeronautical industry since World War II.

Laitone’s rule states

C p = Cp,0√
1 − M2∞ + (

M2∞
{

1 + [(γ − 1)/2]M2∞
}
/2

√
1 − M2∞

)
Cp,0

(11.55)

This formula is more recent than either the Prandtl-Glauert or the Karman-Tsien
rule; it is derived in Reference 29.
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Figure 11.4 Several compressibility corrections
compared with experimental results for an NACA
4412 airfoil at an angle of attack α = 1◦ 53′. The
experimental data are chosen for their historical
significance; from Stack, John, W. F. Lindsey, and
R. E. Littell: The Compressibility Burble and the
Effect of Compressibility on Pressures and Forces
Acting on an Airfoil, NACA report no. 646, 1938.
This was the first major NACA publication to
address the compressibility problem in a systematic
fashion; it covered work performed in the 2-ft
high-speed tunnel at the Langley Aeronautical
Laboratory and was carried out during 1935–1936.

These compressibility corrections are compared in Figure 11.4, which also
shows experimental data for the Cp variation with M∞ at the 0.3-chord location on
an NACA 4412 airfoil. Note that the Prandtl-Glauert rule, although the simplest to
apply, underpredicts the experimental data, whereas the improved compressibility
corrections are clearly more accurate. Recall that the Prandtl-Glauert rule is based
on linear theory. In contrast, both the Laitone and Karman-Tsien rules attempt to
account for some of the nonlinear aspects of the flow.

11.6 CRITICAL MACH NUMBER
Return to the road map given in Figure 11.1. We have now finished our discus-
sion of linearized flow and the associated compressibility corrections. Keep in
mind that such linearized theory does not apply to the transonic flow regime,
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M� = 0.3

Local MA = 0.435

A

(a)

M� = 0.5

Local MA = 0.772

A

(b)

Sonic line where M = 1

M� = Mcr = 0.61

Local MA = 1.0

A

(c)

M� = 0.65 > Mcr 

M > 1

(d )

Figure 11.5 Definition of critical Mach number. Point A is
the location of minimum pressure on the top surface of the
airfoil. (See end-of-chapter Problem 11.7 for the calculation
of the numbers in this figure.)

0.8 ≤ M∞ ≤ 1.2. Transonic flow is highly nonlinear, and theoretical transonic
aerodynamics is a challenging and sophisticated subject. For the remainder of this
chapter, we deal with several aspects of transonic flow from a qualitative point of
view. The theory of transonic aerodynamics is beyond the scope of this book.

Consider an airfoil in a low-speed flow, say, with M∞ = 0.3, as sketched
in Figure 11.5a. In the expansion over the top surface of the airfoil, the local
flow Mach number M increases. Let point A represent the location on the airfoil
surface where the pressure is a minimum, hence where M is a maximum. In Fig-
ure 11.5a, let us say this maximum is MA = 0.435. Now assume that we gradually
increase the freestream Mach number. As M∞ increases, MA also increases. For
example, if M∞ is increased to M = 0.5, the maximum local value of M will be
0.772, as shown in Figure 11.5b. Let us continue to increase M∞ until we achieve
just the right value such that the local Mach number at the minimum pressure
point equals 1, that is, such that MA = 1.0, as shown in Figure 11.5c. When this
happens, the freestream Mach number M∞ is called the critical Mach number,
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denoted by Mcr. By definition, the critical Mach number is that freestream Mach
number at which sonic flow is first achieved on the airfoil surface. In Figure 11.5c,
Mcr = 0.61.

One of the most important problems in high-speed aerodynamics is the deter-
mination of the critical Mach number of a given airfoil, because at values of M∞
slightly above Mcr, the airfoil experiences a dramatic increase in drag coefficient
(discussed in Section 11.7). The purpose of the present section is to give a rather
straightforward method for estimating Mcr.

Let p∞ and pA represent the static pressures in the freestream and at point A,
respectively, in Figure 11.5. For isentropic flow, where the total pressure p0 is
constant, these static pressures are related through Equation (8.42) as follows:

pA

p∞
= pA/p0

p∞/p0
=

(
1 + [(γ − 1)/2]M2

∞
1 + [(γ − 1)/2]M2

A

)γ /(γ−1)

(11.56)

The pressure coefficient at point A is given by Equation (11.22) as

Cp,A = 2

γ M2∞

(
pA

p∞
− 1

)
(11.57)

Combining Equations (11.56) and (11.57), we have

Cp,A = 2

γ M2∞

[(
1 + [(γ − 1)/2]M2

∞
1 + [(γ − 1)/2]M2

A

)γ /(γ−1)

− 1

]
(11.58)

Equation (11.58) is useful in its own right; for a given freestream Mach number, it
relates the local value of Cp to the local Mach number. [Note that Equation (11.58)
is the compressible flow analogue of Bernoulli’s equation, Equation (3.13), which
for incompressible flow with a given freestream velocity and pressure relates the
local pressure at a point in the flow to the local velocity at that point.] However,
for our purposes here, we ask the question, What is the value of the local Cp

when the local Mach number is unity? By definition, this value of the pressure
coefficient is called the critical pressure coefficient, denoted by Cp,cr. For a given
freestream Mach number M∞, the value of Cp,cr can be obtained by inserting
MA = 1 into Equation (11.58):

Cp,cr = 2

γ M2∞

[(
1 + [(γ − 1)/2]M2

∞
1 + (γ − 1)/2

)γ /(γ−1)

− 1

]
(11.59)

Equation (11.59) allows us to calculate the pressure coefficient at any point in
the flow where the local Mach number is 1, for a given freestream Mach number
M∞. For example, if M∞ is slightly greater than Mcr, say, M∞ = 0.65 as shown
in Figure 11.5d , then a finite region of supersonic flow will exist above the airfoil;
Equation (11.59) allows us to calculate the pressure coefficient at only those points
where M = 1, that is, at only those points that fall on the sonic line in Figure 11.5d.
Now, returning to Figure 11.5c, when the freestream Mach number is precisely
equal to the critical Mach number, there is only one point where M = 1, namely,
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Cp, cr = f (Mcr)
Eq. (11.60)

Figure 11.6 Estimation of critical Mach number.

point A. The pressure coefficient at point A will be C p,cr, which is obtained from
Equation (11.59). In this case, M∞ in Equation (11.59) is precisely Mcr. Hence,

Cp,cr = 2

γ M2
cr

[(
1 + [(γ − 1)/2]M2

cr

1 + (γ − 1)/2

)γ /(γ−1)

− 1

]
(11.60)

Equation (11.60) shows that Cp,cr is a unique function of Mcr; this variation
is plotted as curve C in Figure 11.6. Note that Equation (11.60) is simply an
aerodynamic relation for isentropic flow—it has no connection with the shape of
a given airfoil. In this sense, Equation (11.60), and hence curve C in Figure 11.6,
is a type of “universal relation” which can be used for all airfoils.

Equation (11.60), in conjunction with any one of the compressibility correc-
tions given by Equation (11.51), (11.54), or (11.55), allows us to estimate the
critical Mach number for a given airfoil as follows:

1. By some means, either experimental or theoretical, obtain the low-speed
incompressible value of the pressure coefficient Cp,0 at the minimum
pressure point on the given airfoil.

2. Using any of the compressibility corrections, Equation (11.51), (11.54), or
(11.55), plot the variation of Cp with M∞. This is represented by curve B
in Figure 11.6.

3. Somewhere on curve B, there will be a single point where the pressure
coefficient corresponds to locally sonic flow. Indeed, this point must
coincide with Equation (11.60), represented by curve C in Figure 11.6.
Hence, the intersection of curves B and C represents the point
corresponding to sonic flow at the minimum pressure location on the airfoil.
In turn, the value of M∞ at this intersection is, by definition, the critical
Mach number, as shown in Figure 11.6.
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M�
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Thick airfoil

Figure 11.7 Effect of airfoil thickness on critical Mach number.

The graphical construction in Figure 11.6 is not an exact determination of
Mcr. Although curve C is exact, curve B is approximate because it represents
the approximate compressibility correction. Hence, Figure 11.6 gives only an
estimation of Mcr. However, such an estimation is quite useful for prelimi-
nary design, and the results from Figure 11.6 are accurate enough for most
applications.

Consider two airfoils, one thin and the other thick, as sketched in Figure 11.7.
First consider the low-speed incompressible flow over these airfoils. The flow over
the thin airfoil is only slightly perturbed from the freestream. Hence, the expan-
sion over the top surface is mild, and Cp,0 at the minimum pressure point is
a negative number of only small absolute magnitude, as shown in Figure 11.7.
[Recall from Equation (11.32) that Cp ∝ û; hence, the smaller the perturba-
tion, the smaller is the absolute magnitude of Cp.] In contrast, the flow over the
thick airfoil experiences a large perturbation from the freestream. The expansion
over the top surface is strong, and Cp,0 at the minimum pressure point is a neg-
ative number of large magnitude, as shown in Figure 11.7. If we now perform
for each airfoil the same construction as given in Figure 11.6, we see that the
thick airfoil will have a lower critical Mach number than the thin airfoil. This
is clearly illustrated in Figure 11.7. For high-speed airplanes, it is desirable to
have Mcr as high as possible. Hence, modern high-speed subsonic airplanes are
usually designed with relatively thin airfoils. (The development of the supercrit-
ical airfoil has somewhat loosened this criterion, as discussed in Section 11.8.)
For example, the Gates Lear jet high-speed jet executive transport utilizes a
9 percent thick airfoil; contrast this with the low-speed Piper Aztec, a twin-
engine propeller-driven general aviation aircraft designed with a 14 percent thick
airfoil.
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EXAMPLE 11.3

In this example, we illustrate the estimation of the critical Mach number for an airfoil using
(a) the graphical solution discussed in this section, and (b) an analytical solution using
a closed-form equation obtained from a combination of Equations (11.51) and (11.60).
Consider the NACA 0012 airfoil at zero angle of attack shown at the top of Figure 11.8.
The pressure coefficient distribution over this airfoil, measured in a wind tunnel at low
speed, is given at the bottom of Figure 11.8. From this information, estimate the critical
Mach number of the NACA 0012 airfoil at zero angle of attack.

■ Solution
(a) Graphical Solution. First, let us accurately plot the curve of C p,cr versus Mcr from
Equation (11.60),

C p,cr = 2

γ M2
cr

[(
1 + [(γ − 1)/2]M2

cr

1 + (γ − 1)/2

)γ /(γ−1)

− 1

]
(11.60)
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Figure 11.8 Low-speed pressure coefficient distribution over
the surface of an NACA 0012 airfoil at zero angle of attack.
Re = 3.65 × 106. (Source: R. J. Freuler and G. M. Gregorek,
“An Evaluation of Four Single Element Airfoil Analytical
Methods,” in Advanced Technology Airfoil Research, NASA CP
2045, 1978, pp. 133–162).
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For γ = 1.4, from Equation (11.60) we can tabulate

M∞ 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cp,cr −3.66 −2.13 −1.29 −0.779 −0.435 −0.188 0

These numbers are plotted as curve C in Figure 11.9. Note that C p,cr = 0 when Mcr = 1.0.
This makes physical sense; if the free stream Mach number is already 1, then no change
in the pressure is required to achieve Mach 1 at a local point in the flow, and hence the
pressure difference (pcr − p∞) is zero and C p,cr = 0.

Following the three-step procedure mentioned earlier, in step one we obtain the low-
speed incompressible value of the minimum pressure coefficient (C p,0)min from the pres-
sure coefficient distribution given in Figure 11.8. The minimum value of C p on the surface
is −0.43. Following step two, in Equation (11.51), (C p,0)min = −0.43, and we have from
Equation (11.51),

(C p)min = (C p,0)min√
1 − M2∞

= −0.43√
1 − M2∞

(11.61)

Some values of (C p)min are tabulated below

M∞ 0 0.2 0.4 0.6 0.8

(Cp)min −0.43 −0.439 −0.469 −0.538 −0.717

Following step three, these values are plotted as Curve B in Figure 11.9. The intersection
of curves B and C is at point D. The freestream Mach number associated with point D is
the critical Mach number for the NACA 0012 airfoil. From Figure 11.9, we have

Mcr = 0.74
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M� Mcr = 0.74
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–0.4

–0.6

–0.8

–1.0

–1.2

Cp

–1.4

–1.6

–1.8

–2.0

Figure 11.9 Graphical solution for the critical
Mach number.
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(b) Analytical Solution. In Figure 11.9, curve B is given by Equation (11.61)

(C p)min = −0.43√
1 − M2∞

(11.61)

At the intersection point D, (C p)min in Equation (11.61) is the critical pressure coefficient
and M∞ is the critical Mach number

C p,cr = −0.43√
1 − M2

cr

(at point D) (11.62)

Also, at point D the value of C p,cr is given by Equation (11.60). Hence, at point D we
can equate the right-hand sides of Equations (11.62) and (11.60),

−0.43√
1 − M2

cr

= 2

γ M2
cr

[(
1 + [(γ − 1)/2]M2

cr

1 + (γ − 1)/2

)γ /γ−1

− 1

]
(11.63)

Equation (11.63) is one equation with one unknown, namely, Mcr. The solution of Equa-
tion (11.63) gives the value of Mcr associated with the intersection point D in Figure 11.9,
that is, the solution of Equation (11.63) is the critical Mach number for the NACA 0012
airfoil. Since Mcr appears in a complicated fashion on both sides of Equation (11.63), we
solve the equation by trial-and-error by assuming different values of Mcr, calculating the
values of both sides of Equation (11.63), and iterating until we find a value of Mcr that
results in both the right and left sides being the same value.

Mcr
−0.43√
1 − M2

cr

2

γ M2
cr

[(
1 + [(γ − 1)/2]M2

cr

1 + (γ − 1)/2

)γ /γ−1

− 1

]

0.72 −0.6196 −0.6996
0.73 −0.6292 −0.6621
0.74 −0.6393 −0.6260
0.738 −0.6372 −0.6331
0.737 −0.6362 −0.6367
0.7371 −0.6363 −0.6363

To four-place accuracy, when Mcr = 0.7371, both the left and right sides of Equa-
tion (11.63) have the same value. Therefore, the analytical solution yields

Mcr = 0.7371

Note: Within the two-place accuracy of the graphical solution in part (a), both the graphical
and analytical solutions give the same value of Mcr.

Question: How accurate is the estimate of the critical Mach number in this example?
To answer this question, we examine some experimental pressure coefficient distributions
for the NACA 0012 airfoil obtained at higher freestream Mach numbers. Wind tunnel
measurements of the surface pressure distributions for this airfoil at zero angle of attack
in a high-speed flow are shown in Figure 11.10; for Figure 11.10a, M∞ = 0.575, and
for Figure 11.10b, M∞ = 0.725. In Figure 11.10a, the value of C p,cr = −1.465 at
M∞ = 0.575 is shown as the dashed horizontal line. From the definition of critical
pressure coefficient, any local value of C p above this horizontal line corresponds to locally



764 PART 3 Inviscid, Compressible Flow

0 0.2 0.4
x
c

0.6 0.8 1.0
1.0

0.5

0

–0.5

–1.0 Locally supersonic flow

Cp,cr = –0.681
Locally subsonic flow

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4
x
c

(a)

(b)

0.6 0.8 1.0
1.0

0.5

0

–0.5

–1.0

–1.5

Locally supersonic flow

Cp,cr = –1.465

Cp 

Cp 

Locally subsonic flow

0 0.2 0.4 0.6 0.8 1.0

M� = 0.725
Re = 5.34 � 106

M� = 0.575
Re = 4.68 � 106

Figure 11.10 Wind tunnel measurements of surface
pressure coefficient distribution for the NACA 0012
airfoil at zero angle of attack. Experimental data
of Frueler and Gregorek, NASA CP 2045.
(a) M∞ = 0.575, (b) M∞ = 0.725.

supersonic flow, and any local value below the horizontal line corresponds to locally
subsonic flow. Clearly from the measured surface pressure coefficient distribution at
M∞ = 0.575 shown in Figure 11.10a, the flow is locally subsonic at every point on
the surface. Hence, M∞ = 0.575 is below the critical Mach number. In Figure 11.10b,
which is for a higher Mach number, the value of C p,cr = −0.681 at M∞ = 0.725 is
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shown as the dashed horizontal line. Here, the local pressure coefficient on the airfoil is
higher than C p,cr at every point on the surface except at the point of minimum pressure,
where (C p)min is essentially equal to C p,cr. This means that for M∞ = 0.725, the flow is
locally subsonic at every point on the surface except the point of minimum pressure, where
the flow is essentially sonic. Hence, these experimental measurements indicate that the
critical Mach number of the NACA 0012 airfoil at zero angle of attack is approximately
0.73. Comparing this experimental result with the calculated value of Mcr = 0.74 in this
example, we see that our calculations are amazingly accurate, to within about one percent.

11.6.1 A Comment on the Location of Minimum
Pressure (Maximum Velocity)

Examining the shape of the NACA 0012 airfoil shown at the top of Figure 11.8,
note that the maximum thickness occurs at x/c = 0.3. However, examining the
pressure coefficient distribution shown at the bottom of Figure 11.8, note that the
point of minimum pressure occurs on the surface at x/c = 0.11, considerably
ahead of the point of maximum thickness. This is a graphic illustration of the
general fact that the point of minimum pressure (hence maximum velocity) does
not correspond to the location of maximum thickness of the airfoil. Intuition might
at first suggest that, at least for a symmetric airfoil at zero degrees angle of attack,
the location of minimum pressure (maximum velocity) on the surface might be
at the maximum thickness of the airfoil, but our intuition would be completely
wrong. Nature places the maximum velocity at a point which satisfies the physics
of the whole flow field, not just what is happening in a local region of the flow.
The point of maximum velocity is dictated by the complete shape of the airfoil,
not just by the shape in a local region.

We also note that it is implicit in the approximate compressibility corrections
discussed in Sections 11.4 and 11.5, and their use for the estimation of the critical
Mach number as discussed in Section 11.6, that the point of minimum pressure
remains at a fixed location on the body surface as M∞ is increased from a very
low to a high subsonic value. This is indeed approximately the case. Examine the
experimental pressure distributions in Figures 11.8 and 11.10, which are for three
different Mach numbers ranging from a low, incompressible value (Figure 11.8)
to M∞ = 0.725 (Figure 11.10b). Note that in each case the minimum pressure
point is at the same approximate location, that is, at x/c = 0.11.

11.7 DRAG-DIVERGENCE MACH NUMBER: THE
SOUND BARRIER

Imagine that we have a given airfoil at a fixed angle of attack in a wind tunnel,
and we wish to measure its drag coefficient cd as a function of M∞. To begin
with, we measure the drag coefficient at low subsonic speed to be cd,0, shown in
Figure 11.11. Now, as we gradually increase the freestream Mach number, we
observe that cd remains relatively constant all the way to the critical Mach number,
as illustrated in Figure 11.11. The flow fields associated with points a, b, and c in
Figure 11.11 are represented by Figure 11.5a, b, and c, respectively. As we very
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Figure 11.11 Sketch of the variation of profile drag coefficient with freestream Mach
number, illustrating the critical and drag-divergence Mach numbers and showing the large
drag rise near Mach 1.

carefully increase M∞ slightly above Mcr, say, to point d in Figure 11.11, a finite
region of supersonic flow appears on the airfoil, as shown in Figure 11.5d. The
Mach number in this bubble of supersonic flow is only slightly above Mach 1,
typically 1.02 to 1.05. However, as we continue to nudge M∞ higher, we encounter
a point where the drag coefficient suddenly starts to increase. This is given as point
e in Figure 11.11. The value of M∞ at which this sudden increase in drag starts is
defined as the drag-divergence Mach number. Beyond the drag-divergence Mach
number, the drag coefficient can become very large, typically increasing by a
factor of 10 or more. This large increase in drag is associated with an extensive
region of supersonic flow over the airfoil, terminating in a shock wave, as sketched
in the insert in Figure 11.11. Corresponding to point f on the drag curve, this insert
shows that as M∞ approaches unity, the flow on both the top and bottom surfaces
can be supersonic, both terminated by shock waves. For example, consider the
case of a reasonably thick airfoil, designed originally for low-speed applications,
when M∞ is beyond drag-divergence; in such a case, the local Mach number can
reach 1.2 or higher. As a result, the terminating shock waves can be relatively
strong. These shocks generally cause severe flow separation downstream of the
shocks, with an attendant large increase in drag.

Now, put yourself in the place of an aeronautical engineer in 1936. You are
familiar with the Prandtl-Glauert rule, given by Equation (11.51). You recognize
that as M∞ → 1, this equation shows the absolute magnitude of Cp approaching
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Figure 11.12 The Bell XS-1—the first manned airplane to fly faster than sound, October 14,
1947. (NASA).

infinity. This hints at some real problems near Mach 1. Furthermore, you know
of some initial high-speed subsonic wind-tunnel tests that have generated drag
curves that resemble the portion of Figure 11.11 from points a to f . How far will
the drag coefficient increase as we get closer to M∞ = 1? Will cd go to infinity?
At this stage, you might be pessimistic. You might visualize the drag increase
to be so large that no airplane with the power plants existing in 1936, or even
envisaged for the future, could ever overcome this “barrier.” It was this type of
thought that led to the popular concept of a sound barrier and that prompted many
people to claim that humans would never fly faster than the speed of sound.

Of course, today we know the sound barrier was a myth. We cannot use the
Prandtl-Glauert rule to argue that cd will become infinite at M∞ = 1, because the
Prandtl-Glauert rule is invalid at M∞ = 1 (see Sections 11.3 and 11.4). Moreover,
early transonic wind-tunnel tests carried out in the late 1940s clearly indicated
that cd peaks at or around Mach 1 and then actually decreases as we enter the
supersonic regime, as shown by points g and h in Figure 11.11. All we need is
an aircraft with an engine powerful enough to overcome the large drag rise at
Mach 1. The myth of the sound barrier was finally put to rest on October 14,
1947, when Captain Charles (Chuck) Yeager became the first human being to
fly faster than sound in the sleek, bullet-shaped Bell XS-1. This rocket-propelled
research aircraft is shown in Figure 11.12. Of course, today supersonic flight is
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a common reality; we have jet engines powerful enough to accelerate military
fighters through Mach 1 flying straight up! Such airplanes can fly at Mach 3 and
beyond. Indeed, we are limited only by aerodynamic heating at high speeds (and
the consequent structural problems). Right now, NASA is conducting research
on supersonic combustion ramjet engines for flight at Mach 5 and higher (see
the Design Box at the end of Section 9.6). Keep in mind, however, that because
of the large power requirements for very high-speed flight, the fuel consumption
becomes large. In today’s energy-conscious world, this constraint can be as much
a barrier to high-speed flight as the sound barrier was once envisaged.

Since 1945, research in transonic aerodynamics has focused on reducing the
large drag rise shown in Figure 11.11. Instead of living with a factor of 10 increase
in drag at Mach 1, can we reduce it to a factor of 2 or 3? This is the subject of the
remaining sections of this chapter.

DESIGN BOX

In order to cope with the large drag rise near Mach 1,
as seen in Figure 11.11, the designers of high-speed
airplanes after World War II utilized two aerodynamic
design features to increase the critical Mach number,
and hence the drag-divergence Mach number, for such
aircraft. These two features are now classic and are
discussed here.

The first design ploy was the use of thin airfoil
sections on the airplane wing. We have already dis-
cussed that, everything else being equal, the thinner
is the airfoil the higher is the critical Mach number;
this is shown in Figure 11.7. This phenomenon was
observed as early as 1918 by two research engineers,
F. W. Caldwell and E. N. Fales, at the Army’s McCook
Field in Dayton, Ohio, and was solidly confirmed
by various experiments during the 1920s and 1930s.
More historical details are given in Section 11.11, and
the detailed story of the early research in the twenti-
eth century on compressibility effects is told in Ref-
erence 58. Indeed, the Bell X-1 (Figure 11.12) was
designed with the full knowledge of the importance
of thin airfoils. As a result, the X-1 was designed with
two sets of wings, one with a 10 percent thick airfoil
for more routine flights and another with an 8 percent
thick airfoil for flights intended to penetrate through
Mach 1. The airfoil sections for the two wings were
NACA 65-110 and NACA 65-108, respectively. These
wings were much thinner than conventional airplanes

at that time, which had wing thickness typically of
15 percent or higher. Moreover, the horizontal tail was
even thinner, utilizing a 6-percent thick NACA 65-006
airfoil section. This was done to ensure that when the
wing encountered major compressibility effects, the
horizontal tail and elevator would still be free of such
problems and would be functional for stability and
control. However, hedging their bets, the Bell engi-
neers also made the tail all-moving, that is, the in-
cidence angle of the complete horizontal tail surface
could be changed in flight in case elevator effective-
ness was lost, and to help trim the airplane as it flew
through Mach 1. Chuck Yeager made good use of
this all-moving tail feature during his history-making
flights in the X-1.

The use of thin airfoils on high-speed aircraft
is almost a standard design practice today. The de-
sign trend to thin airfoils is illustrated in Figure 11.13,
which shows the variation of airfoil thickness for dif-
ferent airplanes as a function of their design Mach
number. Clearly, as M∞ increases, the trend is toward
thinner wings.

The second design ploy was the use of swept
wings. The story surrounding the history of the swept
wing concept is told in Reference 58; the invention of
the concept is shared by two people, the German engi-
neer Adolf Busemann in 1935 and the American aero-
dynamicist R. T. Jones who independently conceived
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Figure 11.13 Variation of thickness-to-chord ratio with Mach number for a
representative sampling of different airplanes. (Data Source: Ray Whitford,
Design for Air Combat, Jane’s Information Group, Surry, England, 1989).

the idea in 1945. There are several ways of explain-
ing how a swept wing works (e.g., see Reference 2).
However, for our purposes here we will explain the
benefit of a swept wing using the ideas set forth
about thin airfoils, as discussed above. Consider a
straight wing, a portion of which is sketched in Fig-
ure 11.14a. We define a straight wing as one for which
the mid-chord line is perpendicular to the freestream;
this is certainly the case for the rectangular planform
shown in Figure 11.14a. Assume the straight wing
has an airfoil section with a thickness-to-chord ra-
tio of 0.15 as shown at the left of Figure 11.14a.
Streamline AB flowing over this wing sees the air-
foil with t1/c1 = 0.15. Now consider the same wing
swept back through the angle  = 45◦, as shown

in Figure 11.14b. Streamline CD that flows over this
wing (ignoring any three-dimensional curvature ef-
fects) sees an effective airfoil shape with the same
thickness as before (t2 = t1), but the effective chord
length c2 is longer by a factor of 1.41 (i.e., c2 =
1.41c1). This makes the effective thickness-to-chord
ratio seen by streamline CD equal to t2/c2 = 0.106—
thinner by almost one-third compared to the straight-
wing case. Hence, by sweeping the wing, the flow
behaves as if the airfoil section is thinner, with a con-
sequent increase in the critical Mach number of the
wing. Everything else being equal, a swept wing has
a larger critical Mach number, hence a larger drag-
divergence Mach number than a straightwing. For this
reason, most high-speed airplanes designed since the
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middle 1940s have swept wings. (The only reason
why the Bell X-1, shown in Figure 11.12, had straight
wings is because its design commenced in 1944 before
any knowledge or data about swept wings was avail-
able in the United States. Later, when such swept-wing
data flooded into the United States from Germany
in mid-1945, the Bell designers were conservative,
and stuck with the straight wing.) A wonderful ex-
ample of an early swept-wing fighter is the North
American F-86 of Korean War vintage, shown in
Figure 11.15.

Finally, we note some compressibility correc-
tions that apply to Equations (5.69), (5.81), and (5.82)
given earlier for the estimation of the lift slope for high
aspect ratio straight wings, low aspect ratio straight
wings, and swept wings respectively. These equations
apply to low-speed, incompressible flow. The Prandtl-
Glauert rule for an airfoil section expressed in terms of
pressure coefficient as given by Equation (11.51) also
holds for the lift slope for the airfoil. Letting a0 be the
lift slope for an infinite wing for incompressible flow,
and a0,comp be the lift slope for an infinite wing in a
subsonic compressible flow, from the Prandtl-Glauert
rule we have

a0,comp = a0√
1 − M2∞

(11.64)

We assume that Equation (5.70) relating the lift slope
of a finite wing to that for an infinite wing, as obtained
from Prandtl’s lifting line theory, holds for subsonic
compressible flow as well. Letting the term (1+ τ)−1

in Equation (5.70) be replaced by a span efficiency fac-
tor for lift slope denoted by e1, where e1 = (1+τ)−1,
and denoting the compressible lift slope for the finite
wing by acomp, the compressible analogue of Equa-
tion (5.70) is

acomp = a0,comp

1 + a0,comp/(πe1AR)
(11.65)

Substituting Equation (11.64) into Equation (11.65),
and simplifying, we obtain

acomp = a0√
1 − M2∞ + a0/(πe1AR)

(11.66)

Equation (11.66) is an equation for estimating the lift
slope for a high-aspect-ratio straight wing in a com-
pressible flow with a subsonic M∞ from the known lift
slope for an infinite wing in an incompressible flow a0.

Helmbold’s equation for low-aspect-ratio
straight wings for incompressible flow, Equa-
tion (5.81), can be modified for compressibility effects
by replacing a0 in that equation by a0/

√
1 − M2∞,

yielding

acomp = a0√
1 − M2∞ + [a0/(πe1AR)]2 + a0/(πAR)

(11.67)

Equation (11.67) is an equation for estimating the lift
slope for a low-aspect-ratio straight wing in a com-
pressible flow with a subsonic M∞ from the known
lift slope for an infinite wing in an incompressible
flow a0.

Finally, Equation (5.82) for a swept wing can be
modified for compressibility effects by replacing a0
in that equation by a0/

√
1 − (M∞,n)2 where M∞,n

is the component of the freestream Mach number per-
pendicular to the half-chord line of the swept wing.
If the half-chord line is swept by the angle , then
M∞,n = M∞ cos . Hence, replace a0 in Equa-
tion (5.82) with a0/

√
1 − M2∞ cos2 . The result is in

Equation (11.68) below. Equation (11.68) is an equa-
tion for estimating the lift slope for a swept wing in
a compressible flow with a subsonic M∞ from the
known lift slope for an infinite wing in an incom-
pressible flow a0.

acomp = a0 cos √
1 − M2∞ cos2  + [(a0 cos )/(πAR)]2 + (a0 cos )/(πAR)

(11.68)



772 PART 3 Inviscid, Compressible Flow

Figure 11.15 A typical example of a swept-wing aircraft. The North American
F-86 Sabre of Korean War fame.
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11.8 THE AREA RULE
In addition to the classic approaches of using thin airfoils and swept wings to
cope with the large drag rise near Mach 1, in recent years two rather revolutionary
concepts have helped greatly to break down the “sound barrier” near and beyond
the speed of sound. One of these—the area rule—is discussed in this section; the
other—the supercritical airfoil—is the subject of Section 11.9.

For a moment, let us expand our discussion from two-dimensional airfoils
to a consideration of a complete airplane. In this section, we introduce a design
concept that has effectively reduced the drag rise near Mach 1 for a complete
airplane.

As stated before, the first practical jet-powered aircraft appeared at the end of
World War II in the form of the German Me 262. This was a subsonic fighter plane
with a top speed near 550 mi/h. The next decade saw the design and production
of many types of jet aircraft—all limited to subsonic flight by the large drag near
Mach 1. Even the “century” series of fighter aircraft designed to give the U.S.
Air Force supersonic capability in the early 1950s, such as the Convair F-102
delta-wing airplane, ran into difficulty and could not at first readily penetrate the
sound barrier in level flight. The thrust of jet engines at that time simply could
not overcome the large peak drag near Mach 1.

A planview, cross section, and area distribution (cross-sectional area versus
distance along the axis of the airplane) for a typical airplane of that decade are
sketched in Figure 11.16. Let A denote the total cross-sectional area at any given
station. Note that the cross-sectional area distribution experiences some abrupt

x
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B
A(x)
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Area distribution
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Cross section BB,
with cross-sectional
area A = f (x)

Figure 11.16 A schematic of a non-area-ruled aircraft.
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Figure 11.17 A schematic of an area-ruled aircraft.

changes along the axis, with discontinuities in both A and d A/dx in the regions
of the wing.

In contrast, for almost a century, it was well known by ballisticians that
the speed of a supersonic bullet or artillery shell with a smooth variation of
cross-sectional area was higher than projectiles with abrupt or discontinuous area
distributions. In the mid-1950s, an aeronautical engineer at the NACA Langley
Aeronautical Laboratory, Richard T. Whitcomb, put this knowledge to work on
the problem of transonic flight of airplanes. Whitcomb reasoned that the variation
of cross-sectional area for an airplane should be smooth, with no discontinuities.
This meant that, in the region of the wings and tail, the fuselage cross-sectional
area should decrease to compensate for the addition of the wing and tail cross-
sectional area. This led to a “coke bottle” fuselage shape, as shown in Figure 11.17.
Here, the planview and area distribution are shown for an aircraft with a relatively
smooth variation of A(x). This design philosophy is called the area rule, and it
successfully reduced the peak drag near Mach 1 such that practical airplanes
could fly supersonically by the mid-1950s. The variations of drag coefficient with
M∞ for an area-ruled and non-area-ruled airplane are schematically compared in
Figure 11.18; typically, the area rule leads to a factor-of-2 reduction in the peak
drag near Mach 1.

The development of the area rule was a dramatic breakthrough in high-speed
flight, and it earned a substantial reputation for Richard Whitcomb—a reputation
that was to be later garnished by a similar breakthrough in transonic airfoil design,
to be discussed in Section 11.9. The original work on the area rule was presented
by Whitcomb in Reference 30, which should be consulted for more details.
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11.9 THE SUPERCRITICAL AIRFOIL
Let us return to a consideration of two-dimensional airfoils. A natural conclu-
sion from the material in Section 11.6, and especially from Figure 11.11, is that
an airfoil with a high critical Mach number is very desirable, indeed necessary,
for high-speed subsonic aircraft. If we can increase Mcr, then we can increase
Mdrag-divergence, which follows closely after Mcr. This was the philosophy em-
ployed in aircraft design from 1945 to approximately 1965. Almost by accident,
the NACA 64-series airfoils (see Section 4.2), although originally designed to en-
courage laminar flow, turned out to have relative high values of Mcr in comparison
with other NACA shapes. Hence, the NACA 64 series has seen wide application
on high-speed airplanes. Also, we know that thinner airfoils have higher values of
Mcr (see Figure 11.7); hence, aircraft designers have used relatively thin airfoils
on high-speed airplanes.

However, there is a limit to how thin a practical airfoil can be. For example,
considerations other than aerodynamic influence the airfoil thickness; the airfoil
requires a certain thickness for structural strength, and there must be room for
the storage of fuel. This prompts the following question: For an airfoil of given
thickness, how can we delay the large drag rise to higher Mach numbers? To
increase Mcr is one obvious tack, as described above, but there is another approach.
Rather than increasing Mcr, let us strive to increase the Mach number increment
between Mcr and Mdrag-divergence. That is, referring to Figure 11.11, let us increase
the distance between points e and c. This philosophy has been pursued since 1965,
leading to the design of a new family of airfoils called supercritical airfoils, which
are the subject of this section.

The purpose of a supercritical airfoil is to increase the value of Mdrag-divergence,
although Mcr may change very little. The shape of a supercritical airfoil is com-
pared with an NACA 64-series airfoil in Figure 11.19. Here, an NACA 642-A215
airfoil is sketched in Figure 11.19a, and a 13-percent thick supercritical airfoil
is shown in Figure 11.19c. (Note the similarity between the supercritical profile
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Figure 11.19 Standard NACA 64-series airfoil compared with a
supercritical airfoil at cruise lift conditions. (Source: Whitcomb, R. T.,
and L. R. Clark: An Airfoil Shape for Efficient Flight at Supercritical
Mach Numbers, NASA TMX-1109, July 1965).

and the modern low-speed airfoils discussed in Section 4.11.) The supercritical
airfoil has a relatively flat top, thus encouraging a region of supersonic flow with
lower local values of M than the NACA 64 series. In turn, the terminating shock
is weaker, thus creating less drag. Similar trends can be seen by comparing the
C p distributions for the NACA 64 series (Figure 11.19b) and the supercritical air-
foil (Figure 11.19d). Indeed, Figure 11.19a and b for the NACA 64-series airfoil
pertain to a lower freestream Mach number, M∞ = 0.69, than Figure 11.19c and
d, which pertain to the supercritical airfoil at a higher freestream Mach number,
M∞ = 0.79. In spite of the fact that the 64-series airfoil is at a lower M∞, the
extent of the supersonic flow reaches farther above the airfoil, the local supersonic
Mach numbers are higher, and the terminating shock wave is stronger. Clearly, the
supercritical airfoil shows more desirable flow field characteristics; namely, the
extent of the supersonic flow is closer to the surface, the local supersonic Mach
numbers are lower, and the terminating shock wave is weaker. As a result, the
value of Mdrag-divergence will be higher for the supercritical airfoil. This is verified
by the experimental data given in Figure 11.20, taken from Reference 31. Here,
the value of Mdrag-divergence is 0.79 for the supercritical airfoil in comparison with
0.67 for the NACA 64 series.
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Because the top of the supercritical airfoil is relatively flat, the forward 60 per-
cent of the airfoil has negative camber, which lowers the lift. To compensate, the
lift is increased by having extreme positive camber on the rearward 30 percent
of the airfoil. This is the reason for the cusplike shape of the bottom surface near
the trailing edge.

The supercritical airfoil was developed by Richard Whitcomb in 1965 at
the NASA Langley Research Center. A detailed description of the rationale and
some early experimental data for supercritical airfoils are given by Whitcomb
in Reference 31, which should be consulted for more details. The supercritical
airfoil and many variations of such are now used by the aircraft industry on modern
high-speed airplane designs. Examples are the Boeing 757 and 767, and the latest
model Lear jets. The supercritical airfoil is one of two major breakthroughs made
in transonic airplane aerodynamics since 1945, the other being the area rule
discussed in Section 11.8. It is a testimonial to the man that Richard Whitcomb
was mainly responsible for both.

11.10 CFD APPLICATIONS: TRANSONIC AIRFOILS
AND WINGS

The analysis of subsonic compressible flow over airfoils discussed in this chapter,
resulting in classic compressibility corrections such as the Prandtl-Glauert rule
(Section 11.4), fits into the category of “closed-form” theory as discussed in
Section 2.17.1. Although this theory is elegant and useful, it is restricted to:

1. Thin airfoils at small angles of attack
2. Subsonic numbers that do not approach too close to one, that is, Mach

numbers typically below 0.7
3. Inviscid, irrotational flow

However, modern subsonic transports (Boeing 747, 777, etc.) cruise at freestream
Mach numbers on the order of 0.85, and high-performance military combat
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airplanes spend time at high subsonic speeds near Mach one. These airplanes
are in the transonic flight regime, as discussed in Section 1.10.4 and noted in
Figure 1.44. The closed-form theory discussed in this chapter does not apply
in this flight regime. The only approach that allows the accurate calculation of
airfoil and wing characteristics at transonic speeds is to use computational fluid
dynamics; the basic philosophy of CFD is discussed in Section 2.17.2, which
should be reviewed before you progress further.

The need to calculate accurately the transonic flow over airfoils and wings
was one of the two areas that drove advances in CFD in the early days of its
development, the other area being hypersonic flow. The growing importance of
high-speed jet civil transports during the 1960s and 1970s made the accurate
calculation of transonic flow imperative, and CFD was (and still is) the only way
of making such calculations. In this section we will give only the flavor of such
calculations; see Chapter 14 of Reference 21 for more details, as well as the
modern aerodynamic literature for the latest developments.

Beginning in the 1960s, transonic CFD calculations historically evolved
through four distinct steps, as follows:

1. The earliest calculations numerically solved the nonlinear
small-perturbation potential equation for transonic flow, obtained from
Equation (11.6) by dropping all terms on the right-hand side except for the
leading term, which is not small near M∞ = 1. This yields(

1 − M2
∞

)∂ û

∂x
+ ∂v̂
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∞

[
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û
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]
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]
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∂x2
(11.69)

Equation (11.69) is the transonic small perturbation potential equation; it is
non-linear due to the term on the right-hand side, which involves a product
of derivatives of the dependent variable φ̂. This necessitated a numerical
CFD solution. However, the results were limited to the assumptions
embodied in this equation, namely, small perturbations and hence thin
airfoils at small angles of attack.

2. The next step was numerical solutions of the full potential equation,
Equation (11.12). This allowed applications to airfoils of any shape at any
angle of attack. However, the flow was still assumed to be isentropic, and
even though shock waves appeared in the results, the properties of these
shocks were not always accurately predicted.

3. As CFD algorithms became more sophisticated, numerical solutions of the
Euler equations [the full continuity, momentum, and energy equations for
inviscid flow, such as Equations (7.40), (7.42), and (7.44)] were obtained.
The advantage of these Euler solutions was that shock waves were properly
treated. However, none of the approaches discussed in steps 1–3 accounted
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for the effects of viscous flow, the importance of which in transonic flows
soon became more appreciated because of the interaction of the shock wave
with the boundary layer. This interaction, with the attendant flow
separation, is dominant in the prediction of drag.

4. This led to the CFD solution of the viscous flow equations [the Navier–
Stokes equations, such as Equations (2.43), (2.61), and (2.87) with the
viscous terms included] for transonic flow. The Navier–Stokes equations
are developed in detail in Chapter 15. Such CFD solutions of the Navier–
Stokes equations are currently the state of the art in transonic flow
calculations. These solutions contain all of the realistic physics of such
flows, with the exception that some type of turbulence model must be
included to deal with turbulent boundary layers, and such turbulent models
are frequently the Achilles heel of these calculations.

An example of a CFD calculation for the transonic flow over an NACA 0012
airfoil at 2◦ angle of attack with M∞ = 0.8 is shown in Figure 11.21. The contour
lines shown here are lines of constant Mach number, and the bunching of these
lines together clearly shows the nearly normal shock wave occurring on the top
surface. In reference to our calculation in Example 11.3 showing that the critical
Mach number for the NACA 0012 airfoil at zero angle of attack is 0.74, and the
experimental confirmation of this shown in Figure 11.10b, clearly the flow over
the same airfoil shown in Figure 11.21 is well beyond the critical Mach number.
Indeed, the boundary layer downstream of the shock wave in Figure 11.21 is
separated, and the airfoil is squarely in the drag-divergence region. The CFD
calculations predict this separated flow because a version of the Navier–Stokes
equations (called the thin shear layer approximation) is being numerically solved,
taking into account the viscous flow effects. The results shown in Figure 11.21
are from the work of Nakahashi and Deiwert at the NASA Ames Research Center
(Reference 70); these results are a graphic illustration of the power of CFD applied
to transonic flow. For details on these types of CFD calculations, see the definitive
books by Hirsch (Reference 71).

Today, CFD is an integral part of modern transonic airfoil and wing design.
A recent example of how CFD is combined with modern optimization design
techniques for the design of complete wings for transonic aircraft is shown in
Figures 11.22 and 11.23, taken from the survey paper by Jameson (Reference 72).
On the left side of Figure 11.22a the airfoil shape distribution along the semispan
of a baseline, initial wing shape at M∞ = 0.83 is given, with the computed
pressure coefficient distributions shown at the right. The abrupt drop in C p in
these distributions is due to a relatively strong shock wave along the wing. After
repeated iterations, the optimized design at the same M∞ = 0.83 is shown in
Figure 11.22b. Again, the new airfoil shape distribution is shown on the left, and
the Cp distribution is given on the right. The new, optimized wing design shown in
Figure 11.22b is virtually shock free, as indicated by the smooth Cp distributions,
with a consequent reduction in drag of 7.6 percent. The optimization shown in
Figure 11.22 was subject to the constraint of keeping the wing thickness the same.
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Figure 11.21 Mach number contours in the transonic flow over an NACA 0012 airfoil at
M∞ = 0.8 and at 2◦ angle of attack. (Source: Nakahasi, K., and Deiwert, G. S.: “A Self-
Adaptive Grid Method with Application to Airfoil Flow,” AIAA Paper 85-1525, American
Institute of Aeronautics and Astronautics, 1985).

Another but similar case of wing design optimization is shown in Figure 11.23.
Here, the final optimized wing planform shape is shown for M∞ = 0.86, with the
final computed pressure contour lines shown on the planform. Straddling the wing
planform on both the left and right of Figure 11.23 are the pressure coefficient plots
at six spanwise stations. The dashed curves show the Cp variations for the initial
baseline wing, with the tell-tale oscillations indicating a shock wave, whereas the
solid curves are the final Cp variations for the optimized wing, showing smoother
variations that are almost shock-free. The results shown in Figures 11.22 and 11.23
are reflective of multidisciplinary design optimization using CFD for transonic
wings. For more details on this and other design applications, see the special issue
of the Journal of Aircraft, vol. 36, no. 1, Jan./Feb. 1999, devoted to aspects of
multidisciplinary design optimization.
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Initial wing

(a)

Cp on upper surface

Redesigned wing

(b)

Cp on upper surface

Figure 11.22 The use of CFD for optimized transonic wing design.
M∞ = 0.83. (a) Baseline wing with a shock wave. (b) Optimized
wing, virtually shock free. (Source: Jameson, Antony:
“Re-Engineering the Design Process Through Computation,”
J. Aircraft, vol. 36, no. 1, Jan.–Feb. 1999, pp. 36–50).
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Figure 11.23 Another example of optimized transonic wing design using CFD. M∞ = 0.86. (Source: Jameson, Antony:
“Re-Engineering the Design Process Through Computation,” J. Aircraft, vol. 36, no. 1, Jan.–Feb. 1999, pp. 36–50).

11.11 APPLIED AERODYNAMICS: THE
BLENDED WING BODY

This book began with images of six flight vehicles that illustrate six good reasons
to learn about aerodynamics. In particular, Figure 1.6 shows an artist’s conception
of the blended wing body, a new vehicle concept that promises to create a renais-
sance in long distance air transport. The aerodynamics of the blended wing body
(BWB) is deeply rooted in the aerodynamic fundamentals discussed in this book,
and so we take this opportunity to examine some of the applied aerodynamics
associated with the BWB.

As background, the BWB was the outgrowth of a challenge issued by Den-
nis Bushnell to the aircraft industry in 1988. Bushnell, the chief scientist of the
NASA Langley Research Center, asked if new, innovative thinking could result
in a commercial jet transport that would provide a quantum leap in efficiency
and performance in comparison to the standard tube-fuselage, swept wing air-
plane with jet engines pod-mounted under the wings, such as pioneered by the
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historic Boeing 707 (Figure 1.2). After 50 years, this configuration remains the
same for virtually all transport aircraft, as reinforced by Boeing’s latest design,
the 787 Dreamliner shown in Figure 2.2. Responding to this challenge, a small
group of aerodynamicists at McDonnell Douglas led by Dr. Robert Liebeck con-
ceived the blended wing body, one version of which is shown in Figure 11.24.

222�

BWB-5-450G

39�-8�

152�

Figure 11.24 Three-view of a blended wing body.
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When McDonnell Douglas was absorbed by Boeing, Liebeck continued his work
on the BWB funded by NASA. Figure 11.24 shows a configuration obtained
from a baseline study of the BWB carried out by Boeing circa 2002. Now a
Boeing senior technical fellow, Liebeck continues to spearhead the BWB con-
cept at Boeing.

The aerodynamics of the blended wing body is a graphic illustration of the
application of many of the fundamentals highlighted in this book. For this reason,
the blended wing body is chosen for attention in this applied aerodynamics section.
We will see that the BWB is an advanced futuristic flight vehicle applying the
very fundamental aerodynamics that is the subject of this book, underscoring the
fact that such fundamentals are timeless.

To begin with, examining Figure 11.24 shows that the BWB is clearly a
flying wing merged with a center body that is also an airfoil shape with a bullet
nose. By replacing the conventional tube fuselage with a center body that itself is
an efficient lifting surface, the spanwise lift distribution from one wing tip to the
other is closer to the ideal elliptical distribution. Our study of the aerodynamics of
finite wings in Chapter 5 underscored that an elliptical lift distribution yields the
minimum induced drag. The BWB is designed to preserve such an elliptical lift
distribution, as illustrated in Figure 11.25. Here we see the BWB lift distribution
along with plots of the spanwise airfoil lift coefficient cl and the airfoil thickness-
to-chord ratio t /c. There is a direct connection between the variations of cl and
t /c. The center body must be large enough and thick enough to accommodate
the passenger and cargo load, which drives the increase of both the airfoil chord
length and t /c for the center body section. In order to preserve the elliptical lift

0.5

Large center body chordNarrow wing chord

t/c

t/c

L

cl

cl

0.4
0.3
0.2
0.1
0.0

20%

15%

10%

5%

0%

Figure 11.25 Typical spanwise distribution of lift L , lift coefficient cl , and thickness-to-
chord ratio for the blended wing body.
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distribution over the center body, the airfoil section of the center body is different
from that used for the outer wing panels. It is chosen to have a lower lift coefficient
to counterbalance the larger chord length and thus preserve the smooth spanwise
elliptical lift distribution. (Recall that the lift distribution is the variation of the
lift force per unit span, and this lift force is proportional to both the local value
of cl and the chord length.)

The BWB is a high-speed subsonic airplane intended to fly at the lower end of
the transonic flight regime. Hence, major efforts are made to obtain as high a drag-
divergence Mach number as possible. Toward that end, the BWB incorporates two
design features, both of which deal with aerodynamic fundamentals discussed in
this chapter.

1. Supercritical airfoils. The function of a supercritical airfoil is discussed in
Section 11.9. The outer portions of the BWB wing incorporate a modern
supercritical airfoil section with aft camber, similar to that shown in Figure
11.19c. The center body profile is also an airfoil section. In the first
generation of the BWB development, the airfoil shape chosen was a Liebeck
LW102A airfoil (Reference 89) point designed for cl = 0.25 at a Mach
number of 0.7. A side view of the resulting center body profile is shown in
Figure 11.26a. The new-generation BWB uses an advanced customized
transonic airfoil design for the center body profile. Taking into account the
constraints in cross-sectional area required to effectively hold passengers,
baggage, and cargo, the new transonic airfoil design dealt with a careful
three-dimensional contouring of the center body smoothly blending into
the outer wing panels. The resulting center body profile is shown in

(a)

(b)

Figure 11.26 Center body profiles: (a) first generation; (b) recent generation.
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Figure 11.26b, giving a cleaner, more streamlined appearance than the
original profile in Figure 11.26a, and providing a higher critical Mach
number. Indeed, the new centerbody profile in Figure 11.2b increased the
BWB lift-to-drag ratio by 4 percent.

2. Area rule. The notion of the area rule is discussed in Section 11.8. The
blended wing body, with its smooth contours and smoothly varying cross
section, is almost naturally area-ruled. Figure 11.27 compares the
cross-sectional area distributions as a function of longitudinal coordinate
for the BWB (solid curve) and a conventional subsonic transport, the
MD-11 (dashed curve). Clearly, the BWB area distribution is much
smoother than that of the MD-11, thus exhibiting good area-rule qualities.
Liebeck (Reference 90) states that for the BWB “there appears to be no
explicit boundary for increasing the cruise Mach number beyond 0.88.”
Indeed, a set of blended wing bodies have been designed for Mach numbers
of 0.85, 0.9, 0.93, and 0.95.

The role of computational fluid dynamics (CFD) in the calculation of tran-
sonic inviscid flows is discussed in Section 11.10. This discussion is extended
in Chapter 20 to CFD solutions for viscous flows via numerical solutions of the
Navier-Stokes equations. Computational fluid dynamics is an essential tool in
modern aircraft design, and this is particularly important for the blended wing
body as discussed by Roman et al. (Reference 91) and Liebeck (Reference 92).
For example, Figure 11.28 shows the static pressure contours over the top sur-
face of the BWB obtained with a Navier-Stokes CFD solution. Shock waves are
indicated by regions where the pressure contours cluster together. These results
show that the typical transonic shock wave, which is well defined on the outboard
wing, becomes smeared into a weaker compression wave on the center body. The
CFD solutions showed that the flow pattern on the center body was relatively
insensitive to the angle of attack. Also, the results indicated the initiation of flow
separation in the kink region between the outboard wing and the center body.
More CFD results are compared in Figure 11.29 with experimental data obtained
on a blended wing body model tested in the National Transonic Facility (NFT) at
the NASA Langley Research Laboratory at almost full-scale Reynolds number.
Figure 11.29a gives the variation of drag coefficient CD with lift coefficient CL

(a portion of the drag polar). Figure 11.29b is a plot of CL versus angle of attack,
and Figure 11.29c gives lift coefficient versus moment coefficient. Even though,
for proprietary reasons, numbers are not given on the axes of these graphs, the
most important conclusion from these comparisons is that CFD results for the
BWB agree within 1% with experimental data. In the words of Robert Liebeck
(Reference 92), “The remarkable agreement indicated that CFD could be reliably
utilized for the aerodynamic design and analysis.”

In summary, we offer this applied aerodynamics section as a clear example of
how the understanding of the fundamental aerodynamics presented in this book is
so essential to the design of the flight vehicles of the future. For more information
on the blended wing body, see References 89–92.
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Figure 11.27 Longitudinal distributions of cross-sectional
area comparing the blended wing body with a conventional
wide-body civil transport, the McDonnell-Douglas MD-11.

Figure 11.28 Representative CFD calculations of the
static pressure contours over the top surface of the BWB
at midcruise condition.



788 PART 3 Inviscid, Compressible Flow

CL

CD

(a)

	CD = 1%

NTF
CFD

(b) (c)

CL

0.05

NTF
and
CFD


 CM

0.02

CFD

NTF

Figure 11.29 Comparison between CFD
calculations and experimental data for the blended
wing body. The CFD calculations are made with the
CFL3D code, and the experimental data are from the
National Transonic Facility at the NASA Langley
Research Laboratoty. (a) CL versus CD (drag polar);
(b) CL versus angle of attack; (c) CL versus moment
coefficient.

11.12 HISTORICAL NOTE: HIGH-SPEED
AIRFOILS—EARLY RESEARCH AND
DEVELOPMENT

Twentieth-century aerodynamics does not have the exclusive rights to the obser-
vation of the large drag rise on bodies flying at near the speed of sound; rather, in
the eighteenth century the Englishman Benjamin Robins, inventor of the ballistic
pendulum, reported that “the velocity at which the body shifts its resistance (from
a V 2 to a V 3 relation) is nearly the same with which sound is propagated through
air.” His statement was based on a large number of experiments during which
projectiles were fired into his ballistic pendulum. However, these results had lit-
tle relevance to the early aerodynamicists of this century, who were struggling
to push aircraft speeds to 150 mi/h during and just after World War I. To these
people, flight near the speed of sound was just fantasy.

With one exception! World War I airplanes such as the Spad and Nieuport
had propeller blades where the tips were moving at near the speed of sound. By
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1919, British researchers had already observed the loss in thrust and large increase
in blade drag for a propeller with tip speeds up to 1180 ft/s—slightly above the
speed of sound. To examine this effect further, F. W. Caldwell and E. N. Fales,
both engineers at the U.S. Army’s Engineering Division at McCook Field near
Dayton, Ohio (the forerunner of the massive Air Force research and development
facilities at Wright-Patterson Air Force Base today), conducted a series of high-
speed airfoil tests. They designed and built the first high-speed wind tunnel—a
facility with a 14-in-diameter test section capable of velocities up to 675 ft/s. In
1918, they conducted the first wind-tunnel tests involving the high-speed flow
over a stationary airfoil. Their results showed large decreases in lift coefficient
and major increases in drag coefficient for the thicker airfoils at angle of attack.
These were the first measured “compressibility effects” on an airfoil in history.
Caldwell and Fales noted that such changes occurred at a certain air velocity,
which they denoted as the “critical speed”—a term that was to evolve into the
critical Mach number at a later date. It is interesting to note that Orville Wright
was a consultant to the Army at this time (Wilbur had died prematurely in 1912
of typhoid fever) and observed some of the Caldwell and Fales tests. However,
a fundamental understanding and explanation of this critical-speed phenomenon
was completely lacking. Nobody at that time had even the remotest idea of what
was really happening in this high-speed flow over the airfoil.

Members of the National Advisory Committee for Aeronautics were well
aware of the Caldwell-Fales results. Rather than let the matter die, in 1922 the
NACA contracted with the National Bureau of Standards (NBS) for a study of
high-speed flows over airfoils, with an eye toward improved propeller sections.
The work at NBS included the building of a high-speed wind tunnel with a
12-in-diameter test section, capable of producing a Mach number of 0.95. The
aerodynamic testing was performed by Lyman J. Briggs (soon to become director
of NBS) and Hugh Dryden (soon to become one of the leading aerodynamicists of
the twentieth century). In addition to the usual force data, Briggs and Dryden also
measured pressure distributions over the airfoil surface. These pressure distribu-
tions allowed more insight into the nature of the flow and definitely indicated
flow separation on the top surface of the airfoil. We now know that such flow
separation is induced by a shock wave, but these early researchers did not at that
time know about the presence of such shocks.

During the same period, the only meaningful theoretical work on high-speed
airfoil properties was carried out by Ludwig Prandtl in Germany and Hermann
Glauert in England—work which led to the Prandtl-Glauert compressibility cor-
rection, given by Equation (11.51). As early as 1922, Prandtl is quoted as stating
that the lift coefficient increased according to (1 − M2

∞)−1/2; he mentioned this
conclusion in his lectures at Göttingen, but without written proof. This result was
mentioned again 6 years later by Jacob Ackeret, a colleague of Prandtl, in the
famous German series Handbuch der Physik, again without proof. Subsequently,
in 1928 the concept was formally established by Hermann Glauert, a British
aerodynamicist working for the Royal Aircraft Establishment. (See Chapter 9 of
Reference 21 for a biographical sketch of Glauert.) Using only six pages in the
Proceedings of the Royal Society, vol. 118, p. 113, Glauert presented a derivation
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based on linearized small-perturbation theory (similar to that described in Sec-
tion 11.4) which confirmed the (1 − M2

∞)−1/2 variation. In this paper, entitled
“The Effect of Compressibility on the Lift of an Airfoil,” Glauert derived the fa-
mous Prandtl-Glauert compressibility correction, given here as Equations (11.51)
to (11.53). This result was to stand alone, unaltered, for the next 10 years.

Hence, in 1930 the state of the art of high-speed subsonic airfoil research
was characterized by experimental proof of the existence of the drag-divergence
phenomenon, some idea that it was caused by flow separation, but no fundamental
understanding of the basic flow field. In turn, there was virtually no theoretical
background outside of the Prandtl-Glauert rule. Also, keep in mind that all the
above work was paced by the need to understand propeller performance, because
in that day the only component of airplanes to encounter compressibility effects
was the propeller tips.

All this changed in the 1930s. In 1928, the NACA had constructed its first rudi-
mentary high-speed subsonic wind tunnel at the Langley Aeronautical Laboratory,
utilizing a 1-ft-diameter test section. With Eastman Jacobs as tunnel director and
John Stack as the chief researcher, a series of tests was run on various standard
airfoil shapes. Frustrated by their continual lack of understanding about the flow
field, they turned to optical techniques, following in the footsteps of Ernst Mach
(see Section 9.10). In 1933, they assembled a crude schlieren optical system con-
sisting of 3-in-diameter reading-glass-quality lenses and a short-duration-spark
light source. In their first test using the schlieren system, dealing with flow over a
cylinder, the results were spectacular. Shock waves were seen, along with the re-
sulting flow separation. Visitors flocked to the wind tunnel to observe the results,
including Theodore Theodorsen, one of the ranking theoretical aerodynamicists
of that period. An indicator of the psychology at that time is given by Theodorsen’s
comment that since the freestream flow was subsonic, what appeared as shock
waves must be an “optical illusion.” However, Eastman Jacobs and John Stack
knew differently. They proceeded with a major series of airfoil testing, using stan-
dard NACA sections. Their schlieren pictures revealed the secrets of flow over
the airfoils above the critical Mach number. (See Figure 1.38b and its attendant
discussion of such supercritical flow.) In 1935, Jacobs traveled to Italy, where
he presented results of the NACA high-speed airfoil research at the fifth Volta
Conference (see Section 7.1). This is the first time in history that photographs of
the transonic flow field over standard-shaped airfoils were presented in a large
public forum.

During the course of such work in the 1930s, the incentive for high-speed
aerodynamic research shifted from propeller applications to concern about the
airframe of the airplane itself. By the mid-1930s, the possibility of the 550 mi/h
airplane was more than a dream—reciprocating engines were becoming power-
ful enough to consider such a speed regime for propeller-driven aircraft. In turn,
the entire airplane itself (wings, cowling, tail, etc.) would encounter compress-
ibility effects. This led to the design of a large 8-ft high-speed tunnel at Langley,
capable of test-section velocities above 500 mi/h. This tunnel, along with the
earlier 1-ft tunnel, established the NACA’s dominance in high-speed subsonic
research in the late 1930s.
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In the decade following 1930, the picture had changed completely. By 1940,
the high-speed flow over airfoils was relatively well understood. During this
period, Stack and Jacobs had not only highlighted the experimental aspects of
such high-speed flow, but they also derived the expression for Cp,cr as a function
of Mcr given by Equation (11.60), and had shown how to estimate the criti-
cal Mach number for a given airfoil as discussed in Section 11.6. Figure 11.30
shows some representative schlieren photographs taken by the NACA of the flow
over standard NACA airfoils. Although these photographs were taken in 1949,

Figure 11.30 Schlieren pictures and pressure distributions for transonic flows over
several NACA airfoils. These pictures were taken by the NACA in 1949. (NASA).
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they are similar to the results obtained by Stack and Jacobs in the 1930s. Su-
perimposed on these photographs are the measured pressure distributions over
the top (solid curve) and bottom (dashed curve) surfaces of the airfoil. Study
these pictures carefully. Moving from bottom to top, you can see the influence
of increasing freestream Mach number, and going from left to right, you can
observe the effect of increasing airfoil thickness. Note how the shock wave
moves downstream as M∞ is increased, finally reaching the trailing edge at
M∞ = 1.0. For this case, the top row of pictures shows almost completely
supersonic flow over the airfoil. Note also the large regions of separated flow
downstream of the shock waves for the Mach numbers of 0.79, 0.87, and 0.94—
this separated flow is the primary reason for the large increase in drag near Mach
1. By 1940, it was well understood that the almost discontinuous pressure in-
crease across the shock wave creates a strong adverse pressure gradient on the
airfoil surface, and this adverse pressure gradient is responsible for separating
the flow.

The high-speed airfoil research program continues today within NASA. It
led to the supercritical airfoils in the 1960s (see Sections 11.9 and 11.14). It has
produced a massive effort in modern times to use computational techniques for
theoretically solving the transonic flow over airfoils. Such efforts are beginning
to be successful, and in many respects, today we have the capability to design
transonic airfoils on the computer. However, such abilities today have roots which
reach all the way back to Caldwell and Fales in 1918.

For a more detailed account of the history of high-speed airfoil research, you
are encouraged to read the entertaining story portrayed by John V. Becker in The
High-Speed Frontier, NASA SP-445, 1980.

11.13 HISTORICAL NOTE: THE ORIGIN OF THE
SWEPT-WING CONCEPT

The concept of swept wings for high-speed flight was first introduced at the fifth
Volta Conference in Rome in 1935 by the German aerodynamicist Dr. Adolf Buse-
mann. The importance of this conference to the advancement of high-speed flight
in general is noted in Section 7.1; please review that section before reading fur-
ther. One of the most farsighted and important papers given at this conference was
presented by Busemann (see Figure 11.31). Entitled “Aerodynamischer Auftrieb
bei Überschallgeschwindigkert” (“Aerodynamic Forces at Supersonic Speeds”),
this paper introduced for the first time in history the concept of the swept wing
as a mechanism for reducing the large drag increase encountered at supersonic
speeds. Busemann reasoned that the flow over a wing is governed mainly by the
component of velocity perpendicular to the leading edge. If the wing is swept, this
component will decrease, as illustrated in Figure 11.32, which is taken directly
from Busemann’s original paper. Consequently the supersonic wave drag will
decrease. If the sweep angle is large enough, the normal component of velocity
will be subsonic (the supersonic wing is then said to have a “subsonic leading



CHAPTER 11 Subsonic Compressible Flow over Airfoils: Linear Theory 793

Figure 11.31 Adolf Busemann (1901–1986).
(Courtesy of John Anderson).
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Figure 11.32 The swept-wing concept as it
appeared in Busemann’s original paper in 1935.

edge”) with a dramatic reduction of wave drag. Figure 11.33, showing a complete
swept-wing planform, is also from Busemann’s paper.

At the time of the Volta conference, Adolf Busemann was a relatively young
(age 34) but accomplished aerodynamicist. Born in Lübeck, Germany, in 1901,
he completed high school in his home town and received his engineering diploma
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TU0
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Figure 11.33 A swept-wing airplane planform, from Busemann’s original paper
in 1935.

and doctorate in engineering in 1924 and 1925, respectively, from the Technische
Hochschule in Braunschweig. Busemann was one of the few important German
aerodynamicists of that era who did not begin as one of Ludwig Prandtl’s stu-
dents (see Section 5.8), but in 1925 Busemann began his professional career at the
Kaiser Wilhelm Institute in Göttingen and soon entered Prandtl’s sphere. From
1931 to 1935, Busemann broke away from that sphere to teach in the Engine Lab-
oratory of the Technische Hochschule in Dresden. He was still at Dresden when
he gave his seminal paper at the Volta Conference. Shortly thereafter, he went
to Braunschweig as chief of the Gas Dynamics Division of the Aeronautical Re-
search Laboratory (DFL). When the Allied technical teams moved into German
laboratories at the end of World War II, they not only scooped up masses of tech-
nical aerodynamic data but also effectively scooped up Busemann, who first went
to the Royal Aircraft Establishment in Farnborough, England, but then accepted
an invitation to join the NACA Langley Memorial Laboratory under Operation
Paperclip in 1947. Busemann continued his research on high-speed aerodynam-
ics for the NACA after joining Langley. He subsequently became chairman of
the advanced-study committee at Langley and among other responsibilities su-
pervised the preparation of science lectures used for training the early group of
astronauts in the manned space program. In 1963, Busemann became a profes-
sor in the Department of Aerospace Engineering Sciences at the University of
Colorado in Boulder. After retirement, he remained in Boulder, leading an active
life until his death in 1986.
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The swept-wing concept in Busemann’s 1935 Volta Conference paper was, for
everybody outside of Germany, an idea before its time. It is difficult to understand
how the premier aerodynamicist in the United States, Theodor von Kármán,
and other attendees failed to appreciate the significance of Busemann’s idea,
even forgetting it entirely, for that very evening Busemann went to dinner with
von Kármán, Hugh Dryden (see Section 11.11), and General Arturo Crocco, the
organizer of the conference. During dinner, Crocco sketched on the back of a
menu card an airplane with swept wings, swept tail, and swept propeller, calling
it, facetiously, “Busemann’s airplane of the future.”

There was no such facetiousness in Germany. The German Luftwaffe recog-
nized the military significance of the swept wing, and classified the concept in
1936—one year after the conference. From that time until the end of World War II,
the Germans produced a large bulk of swept-wing research, a secret known only
to themselves. Moreover, they expanded the horizons of the swept wing to high-
speed subsonic and transonic airplanes, recognizing that the same aerodynamic
mechanism described in Busemann’s Volta Conference paper would serve to in-
crease the critical Mach number for such aircraft. Experimental results for swept
wings at high subsonic Mach numbers were first reported by Hubert Ludweig in
1939, as shown in Figure 11.34. Here the drag polars (defined in Section 5.3.3
as lift coefficient CA versus drag coefficient CW , in the German notation) for a
straight wing and a swept wing are compared. These are the original figures from
the German report AVA-Bericht 39/H/18, 1939. This was top-secret data obtained
in a new high-speed wind tunnel at the Aerodynamische Versuchsanstalt (AVA)
in Göttingen, and represented just the tip of the iceberg of German swept-wing re-
search to follow. In his recent article, Peter Hamel (“Birth of Sweepback: Related
Research at Luftfahrtforschungsanstalt–Germany,” Journal of Aircraft, vol. 42,
no. 4, July–August 2005, pp. 801–813) labels this data as the first from what was
to be “established systematic wind-tunnel tests to generate a world-first database
for future transonic aircraft configurations with wing sweep.”

Meanwhile, Robert T. Jones (Figure 11.35), a leading aerodynamicist at the
NACA Langley Memorial Laboratory, independently discovered the advantages
of a swept wing. Jones was a self-made person. Born in Macon, Missouri, in
1910, Jones was totally captivated by aeronautics at an early age. He later wrote
in 1977 (“Recollections from an Earlier Period in American Aeronautics,” in
Annual Review of Fluid Mechanics, vol. 9, M. Van Dyke et al (eds), pp. 1–11):

All during the late twenties the weekly magazine Aviation appeared on the local
newsstand in my hometown, Macon, Missouri. Aviation carried technical articles by
eminent aeronautical engineers such as B. V. Korvin-Krovkovsky, Alexander Klemin,
and others. Included in both Aero Digest and Aviation were notices of forthcoming
NACA Technical Reports and Notes. These could be procured from the Government
Printing Office usually for ten cents and sometimes even free simply for writing
NACA Headquarters in Washington. The contents of these reports seemed much
more interesting to me than the regular high school and college curricula, and I
suspect that my English teachers may have been quite perplexed by the essays I
wrote for them on aeronautical subjects.
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Figure 11.35 Robert T. Jones (1910–1999) (NASA).

Jones attended the University of Missouri for one year, but left to take a se-
ries of aeronautics-related jobs, first as a crew member with Marie Meyer Flying
Circus, and then with the Nicholas-Beazley Airplane Company in Marshall, Mis-
souri, which was just starting to produce a single-engine, low-wing monoplane
designed by the noted British aeronautical engineer Walter H. Barling. At one
time, Nicholas-Beazley was producing and selling one of those aircraft each day.
However, the company became a victim of the Depression, and in 1933 Jones
found himself working as an elevator operator in Washington, D.C., and taking
night classes in aeronautics at Catholic University, taught by Max Monk. That
contact began a lifelong friendship between Jones and Monk. In 1934 the Public
Works Administration created a number of temporary scientific positions in the
federal government. On the recommendation of Congressman David J. Lewis,
from Jones’s hometown, Jones received a nine-month appointment at the NACA
Langley Memorial Laboratory. That was the beginning of a lifetime career for
Jones at the NACA/NASA. Through a passionate interest and self-study in aero-
nautics, Jones had become exceptionally knowledgeable in aerodynamic theory.
His talents were recognized at Langley, and he was kept on at the laboratory
through a series of temporary and emergency reappointments for the next two
years. Unable to promote him into the lowest professional engineering grade
because of civil-service regulations that required a college degree, in 1936 the
laboratory management was finally able to hire Jones permanently via a loophole:
It hired Jones at the next grade above the lowest, for which the requirement of a
college degree was not specifically stated (although presumed).
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By 1944, Jones was one of the most respected aerodynamicists in the NACA.
At that time he was working on the design of an experimental air-to-air missile
for the Army Air Force and he was also studying the aerodynamics of a proposed
glide bomb having a low-aspect-ratio delta wing. The Ludington-Griswald Com-
pany of Saybrook, Connecticut, had carried out wind-tunnel tests on a dart-shaped
missile of their design, and Roger Griswold, president of the company, showed the
data to Jones in 1944. Griswold had compared the lift data for the missile’s low-
aspect-ratio delta wing with calculations made from Prandtl’s tried-and-proved
lifting-line theory (Section 5.3). Jones realized that Prandtl’s lifting-line theory
was not valid for low-aspect-ratio wings, and he began to construct a more appro-
priate theory for the delta-wing planform. Jones obtained rather simple analytical
equations for the low-speed, incompressible flow over delta wings, but considered
the theory to be “so crude” that “nobody would be interested in it.” He placed his
analysis in his desk and went on with other matters.

In early 1945 Jones began to look at the mathematical theory of supersonic
potential (irrotational) flows. When applied to delta wings, Jones found that he was
obtaining equations similar to those he had found for incompressible flow using
the crude theory that was now buried in his desk. Searching for an explanation, he
recalled the statement by Max Munk in 1924 that the aerodynamic characteristics
of a wing were governed mainly by the component of the freestream velocity
perpendicular to the leading edge. The answer suddenly was quite simple: For the
delta wing, the reason his supersonic findings were the same as his earlier low-
speed findings was that the leading edge of the delta wing was swept far enough
that the component of the supersonic free stream Mach number perpendicular
to the leading edge was subsonic, and hence the supersonic swept wing acted
as if it were in a subsonic flow. With that revelation, Jones had independently
discovered the high-speed aerodynamic advantage of swept wings, albeit 10 years
after Busemann’s paper at the Volta conference.

Jones began to discuss his swept-wing theory with colleagues at NACA
Langley. In mid-February 1945 he outlined his thoughts to Jean Roche and Ezra
Kotcher of the Army Air Force at Wright Field. On March 5, 1945, he sent a
memo to Gus Crowley, chief of research at Langley, stated that he had “recently
made a theoretical analysis which indicates that a V-shaped wing traveling point
foremost would be less affected by compressibility than other planforms. In fact,
if the angle of the V is kept small relative to the Mach angle, the lift and center
of pressure remain the same at speeds both above and below the speed of sound.”
In the same memo, Jones asked Crowley to approve experimental work on swept
wings. Such work was quickly initiated by the Flight Research Section of Langley,
under the direction of Robert Gilruth, beginning with a series of free-flight tests
using bodies with swept wings dropped from high altitude.

Jones finished a formal report on his low-aspect-ratio wing theory in late
April 1945, including the effects of compressibility and the concept of a swept
wing. However, during the in-house editorial review of that report, Theodore
Theodorsen raised some serious objections. Theodorsen did not like the heavily
intuitive nature of Jones’s theory, and he asked Jones to clarify the “hocus-pocus”
with some “real mathematics.” Furthermore, because supersonic flow was so
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different physically and mathematically from subsonic flow, Theodorsen could
not accept the “subsonic” behavior of Jones’s highly swept wings at supersonic
speeds. Criticizing Jones’s entire swept-wing concept, calling it “a snare and a
delusion,” Theodorsen insisted that Jones take out the part about swept wings.

Theodorsen’s insistence prevailed, and publication of Jones’s report was de-
layed. However, at the end of May 1945, Gilruth’s free-flight tests dramatically
verified Jones’s predictions, showing a factor of 4 reduction in drag due to sweep-
ing the wings. Quickly following those data, wind-tunnel tests carried out in a
small supersonic wind tunnel at Langley showed a large reduction in drag on a
section of wire in the test section when the wire was placed at a substantial angle
of sweep relative to the flow in the test section. With that experimental proof
of the validity of the swept-wing concept, Langley forwarded Jones’s report to
NACA Headquarters in Washington for publication. But Theodorsen would not
give up: The transmittal letter to NACA Headquarters contained the statement that
“Dr. Theodore Theodorsen (still) does not agree with the arguments presented
and the conclusions reached and accordingly declined to participate in editing the
paper.” Such recalcitrance on the part of Theodorsen is reminiscent of his refusal
to believe that the shock waves seen in John Stack’s schlieren photographs of
the transonic flow over an airfoil 11 years earlier were real (see Section 11.11).
Theodorsen certainly made important contributions to airfoil theory in the 1930s,
but he was also capable of errors in judgment (i.e., he was human).

On June 21, 1945, the NACA issued Jones’s report as a confidential memo-
randum, chiefly for the Army and Navy. Three weeks later, the report was reissued
as an advance confidential report, sent by registered mail to those people in in-
dustry with a “need to know.” Entitled “Wing Plan Forms for High-Speed Flight,”
Jones’s report quickly spread the idea of the swept wing to selected members of
the aeronautical community in the United States, but by that time, information
about the German swept-wing research was beginning to reach the same aero-
nautical community. Jones’s work appeared in the open literature about a year
later, as NACA TR 863, a technical report only five pages long, but a classic
explanation of how a swept wing works aerodynamically.

Credit for the idea of the swept wing for high-speed flight is shared between
Busemann and Jones. Separated by a time interval of 10 years, and the closed shops
of military security in both Germany and the United States, each independently
developed the concept, not knowing of the other’s work. The full impact of the
swept-wing concept on the aeronautical industry came directly after the end of
World War II, with almost simultaneous release of similar information from both
sides of the ocean, thus promoting confidence in the validity of the concept.

The speed at which this information was used for airplane design is nothing
short of amazing. Boeing’s chief aerodynamicist, George Schairer, was a member
of one of the Allied technical intelligence teams sent to Germany in April 1945.
On the flight over, Schairer, who was aware of Jones’s swept-wing concept and
that Jones’s report was being held up in the editorial process, reported that the
concept was the main topic of conversation. Concluding that sweepback was a
valid concept, Schairer needed no convincing of its value when the team saw
the German swept-wing data at Baunschweig on May 7. On May 10 he sent a
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seminal and historically important letter to Boeing directing that a new design for a
straight-wing jet bomber immediately be changed to a swept-wing configuration,
and that other aircraft manufacturers be informed about the German swept-wing
research. At Boeing, the result of this letter was the Boeing B-47, shown in Figure
11.36, and at North American the result was the famous F-86 (Figure 11.15). The
B-47 sowed the seeds for the Boeing 707 swept-wing jet transport (Figure 1.2)
and for all subsequent large commercial jet transports to the present day.

Indeed, by 1948 the swept wing had become an accepted airplane design
feature. It had done for the high-speed jet airplane what streamlining had done
in the 1930s for the advanced propeller-driven airplane, namely, provided the
aerodynamic means for efficient flight in the desired flight regime. Virtually all

Figure 11.36 Three-view of the Boeing B-47 swept-wing bomber, circa 1948.
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high-speed, jet-propelled airplanes today have wings with highly swept leading
edges, and these contemporary aircraft can trace their ancestry directly back to
the B-47 and the F-86, and to the innovative ideas and genius of Adolf Busemann
and Robert Jones.

For a more in-depth discussion of the history of the swept wing, see Refer-
ences 58 and 111.

11.14 HISTORICAL NOTE: RICHARD T.
WHITCOMB—ARCHITECT OF THE AREA
RULE AND THE SUPERCRITICAL WING

The developments of the area rule (Section 11.8) and the supercritical airfoil
(Section 11.9) are two of the most important advancements in aerodynamics
since 1950. That both developments were made by the same man—Richard T.
Whitcomb—is remarkable. Who is this man? What qualities lead to such accom-
plishments? Let us pursue these matters further.

Richard Whitcomb was born on February 21, 1921, in Evanston, Illinois. At
an early age, he was influenced by his grandfather, who had known Thomas A.
Edison. In an interview with The Washington Post on August 31, 1969, Whitcomb
is quoted as saying: “I used to sit around and hear stories about Edison. He sort of
developed into my idol.” Whitcomb entered the Worcester Polytechnic Institute in
1939. (This is the same school from which the rocket pioneer, Robert H. Goddard,
had graduated 31 years earlier.) Whitcomb distinguished himself in college and
graduated with a mechanical engineering degree with honors in 1943. Informed
by a Fortune magazine article on the research facilities at the NACA Langley
Memorial Laboratory, Whitcomb immediately joined the NACA. He became a
wind-tunnel engineer, and as an early assignment he worked on design problems
associated with the Boeing B-29 Superfortress. He remained with the NACA and
later its successor, NASA, until his retirement in 1980—spending his entire career
with the wind tunnels at the Langley Research Center. In the process, he rose to
become head of the Eight-foot Tunnel Branch at Langley. He died of pneumonia
at the age of 88 on October 13, 2009 in Newport News, Virginia.

Whitcomb conceived the idea of the area rule as early as 1951. He tested his
idea in the transonic wind tunnel at Langley. The results were so promising that the
aeronautical industry changed designs in midstream. For example, the Convair F-
102 delta-wing fighter had been designed for supersonic flight, but was having ma-
jor difficulty even exceeding the speed of sound—the increase in drag near Mach
1 was simply too large. The F-102 was redesigned to incorporate Whitcomb’s area
rule and afterward was able to achieve its originally intended supersonic Mach
number. The area rule was such an important aerodynamic breakthrough that it
was classified “secret” from 1952 to 1954, when airplanes incorporating the area
rule began to roll off the production line. In 1954, Whitcomb was given the Collier
Trophy—an annual award for the “greatest achievement in aviation in America.”

In the early 1960s, Whitcomb turned his attention to airfoil design, with the
objective again of decreasing the large drag rise near Mach 1. Using the exist-
ing knowledge about airfoil properties, a great deal of wind-tunnel testing, and
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intuition honed by years of experience, Whitcomb produced the supercritical air-
foil. Again, this development had a major impact on the aeronautical industry, and
today virtually all new commercial transport and executive aircraft designs are
incorporating a supercritical wing. Because of his development of the supercriti-
cal airfoil, in 1974 NASA gave Whitcomb a cash award of $25,000—the largest
cash award ever given by NASA to a single individual.

There are certain parallels between the personalities of the Wright brothers
and Richard Whitcomb: (1) they all had powerful intuitive abilities which they
brought to bear on the problem of flight, (2) they were totally dedicated to their
work (none of them ever married), and (3) they did a great deal of their work
themselves, trusting only their own results. For example, here is a quote from
Whitcomb which appears in the same Washington Post interview mentioned
above. Concerning the detailed work on the development of the supercritical
airfoil, Whitcomb says:

I modified the shape of the wing myself as we tested it. It’s just plain easier this way.
In fact my reputation for filing the wing’s shape has become so notorious that the
people at North American have threatened to provide me with a 10-foot file to work
on the real airplane, also.

Perhaps the real ingredient for Whitcomb’s success is his personal philosophy, as
well as his long hours at work daily. In his own words:

There’s been a continual drive in me ever since I was a teenager to find a better way
to do everything. A lot of very intelligent people are willing to adapt, but only to a
certain extent. If a human mind can figure out a better way to do something, let’s do
it. I can’t just sit around. I have to think.

Students take note!

11.15 SUMMARY
Review the road map in Figure 11.1, and make certain that you have all the
concepts listed on this map well in mind. Some of the highlights of this chapter
are as follows:

For two-dimensional, irrotational, isentropic, steady flow of a compressible
fluid, the exact velocity potential equation is[
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This equation is exact, but it is nonlinear and hence difficult to solve. At present,
no general analytical solution to this equation exists.
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For the case of small perturbations (slender bodies at low angles of attack),
the exact velocity potential equation can be approximated by

(
1 − M2

∞
)∂2φ̂

∂x2
+ ∂2φ̂

∂y2
= 0 (11.18)

This equation is approximate, but linear, and hence more readily solved. This
equation holds for subsonic (0 ≤ M∞ ≤ 0.8) and supersonic (1.2 ≤ M∞ ≤ 5)

flows; it does not hold for transonic (0.8 ≤ M∞ ≤ 1.2) or hypersonic (M∞ >

5) flows.

The Prandtl-Glauert rule is a compressibility correction that allows the modifi-
cation of existing incompressible flow data to take into account compressibility
effects:

Cp = Cp,0√
1 − M2∞

(11.51)

Also, cl = cl,0√
1 − M2∞

(11.52)

and cm = cm,0√
1 − M2∞

(11.53)

The critical Mach number is that freestream Mach number at which sonic flow
is first obtained at some point on the surface of a body. For thin airfoils, the
critical Mach number can be estimated as shown in Figure 11.6.

The drag-divergence Mach number is that freestream Mach number at which
a large rise in the drag coefficient occurs, as shown in Figure 11.11.

The area rule for transonic flow states that the cross-sectional area distribu-
tion of an airplane, including fuselage, wing, and tail, should have a smooth
distribution along the axis of the airplane.

Supercritical airfoils are specially designed profiles to increase the drag-
divergence Mach number.
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11.16 INTEGRATED WORK CHALLENGE:
TRANSONIC TESTING BY THE
WING-FLOW METHOD

Concept: At the end of World War II, the speeds of fighter airplanes were ap-
proaching Mach 1, and the need for transonic aerodynamic data became paramount.
Such data, however, was in short supply. There existed no reliable transonic wind
tunnels at that time, and because the governing equations for transonic flow are
nonlinear, no accurate analytical solutions were available (see Section 11.2).
Faced with this dismal situation, engineers at the NACA Langley Memorial
Aeronautical Laboratory (now the NASA Langley Research Center) came up
with three innovative techniques for obtaining aerodynamic data in the transonic
flight regime. The first was the falling-body method, wherein a heavy aerody-
namic model was carried to 30,000 feet by a B-29 bomber and then released. On
its way down, the terminal velocity of the model became transonic, and aerody-
namic data was radioed to receivers on the ground. A somewhat related second
method involved mounting a model on a rocket that was launched from the small
NACA facility on Wallops Island, Virginia, and again transonic aerodynamic
data was radioed to receivers on the ground using telemetering instrumentation
that was originally developed for the falling-body tests. The third method, how-
ever, was the most innovative and was totally different from the others. Called the
wing-flow method, it is the subject of this Integrated Work Challenge section.

The wing-flow method involved mounting a small wing model vertically on
the surface of the wing of a P-51 Mustang fighter airplane at a location inside
the bubble of locally supersonic flow existing on the P-51 wing when the air-
plane exceeded its critical Mach number during a high-speed dive. (This locally
supersonic bubble is diagramed in Figures 11.5d and 11.11.) Aerodynamic data
such as lift, drag, moments, hinge moments, and pressure distributions on the test
model were recorded and stored by instruments housed in an empty ammunition
compartment inside the P-51 wing. Both straight- and swept-wing models were
tested. Figure 11.37 is a photograph showing a swept-wing model mounted on
the P-51 wing.

Integrated Work Challenge: Design the setup for a wing-flow test, i.e., address
the following questions:

(a) Where on the P-51 wing is the best location for mounting the test model?
(b) At this location, what are the local flow properties over the model?
(c) How far above the P-51 wing surface can the model reach, i.e., what is the

allowable span of the model?
(d) Does the boundary layer on the P-51 wing pose a problem for the model?

Solution: To decide where on the P-51 wing is the best location for the model,
we first need to know the distribution of the local flow Mach number over the
wing surface. At the time of the original NACA tests in the middle 1940s, this
determination was obtained by making static pressure measurements along the
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Figure 11.37 Photograph of a test model mounted on the wing of the P-51 used for the
NACA Wing-Flow transonic tests, circa 1946. (NASA).

surface of the P-51 in flight and by using the isentropic flow relations, obtaining
the local Mach number at points along the wing. In essence, we will carry out the
same approach here, but instead of using the older pressure data, we will obtain
the local Mach numbers from modern computational fluid dynamic calculations
of the pressure coefficients over a P-51 wing. These calculations were made by
David Lednicer and published among other places in the article “World War II
Fighter Aerodynamics,” Sport Aviation, January 1999, pp. 85–91. Figure 11.38
is a plot of the calculated pressure coefficient over the P-51 wing in cruise, based
on Lednicer’s calculations. The airfoil used on the P-51 was an NACA laminar
flow airfoil; the shape of the airfoil is also shown in Figure 11.38. In conjunction
with Figure 4.2, we noted that these airfoils in service in the field never produced
the desired amount of laminar flow, but by a stroke of serendipity they had higher
critical Mach numbers, prompted by a long favorable pressure gradient with
minimum pressure occurring far downstream of the leading edge. For example,
in Figure 11.38, the minimum pressure coefficient is −0.575, and it occurs at
about midchord along the airfoil.

Returning to our work challenge, we address the question: Where on the
wing airfoil should the test model be placed? The answer is straightforward;
it should be placed at the location where the local Mach number is maximum,
which corresponds to the location of the minimum pressure coefficient. From
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Figure 11.38 Computational fluid dynamic results for
the pressure coefficient distribution over the wing of a
P-51 at cruise condition, based on the calculations by
David Lednicer.

Figure 11.38, this location is in the region between x/c = 0.4 and 0.5, where the
minimum value of Cp is relatively flat.

To estimate the maximum local Mach number in this region, we need to know
the maximum speed of the P-51 during the test. The most definitive paper on the
NACA wing-flow tests is by Robert R. Gilruth, chief engineer of the project,
entitled “Resume and Analysis of NACA Wing-Flow Tests,” Anglo-American
Aeronautical Conference, London, 3–5 September 1947, and published by the
Royal Aeronautical Society in 1948, pp. 363–383. In this paper, Gilruth notes
that the maximum flight Mach number of the P-51 for the tests was 0.76. We
will use this value in our analysis here. Also, to obtain the maximum local Mach
number on the P-51 wing, we need to know the minimum pressure coefficient on
the wing. For this information, we will use the CFD results of Lednicer as plotted
in Figure 11.38, suitably modified for compressibility effects as follows.

Lednicer’s calculations were made for the P-51 in cruise. Loftin, in his book
Quest for Performance: The Evolution of Modern Aircraft, NASA SP-468, 1985,
gives the cruise velocity for the P-51 as 362 mph. This is a speed low enough
that compressibility effects are small, and we will interpret the Cp results in
Figure 11.38 to be “low speed results” that need to be corrected for compressibility
effects at the maximum Mach number of 0.76. We choose to use the Karman–
Tsien compressibility correction rule given in Equation (11.54), which was widely
adopted after World War II.

Repeating Equation (11.54)

C p = C p,0√
1 − M2∞ +

[
M2

∞
1 + √

1 − M2∞

]
Cp,0

2
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and using Cp,0 = −0.575 and M∞ = 0.76, we have

Cp = −0.575
√

1 − (0.76)2 +
[

(0.76)2

1 + √
1 − (0.76)2

] (−0.575

2

) = −1.0419

This is the pressure coefficient, corrected for compressibility effects, at the min-
imum pressure location on the wing.

To obtain the local Mach number at this location, we use Equation (11.58),
repeated next, recognizing that the subscript A now denotes the location of min-
imum pressure,

Cp,A = 2

γ M2∞

⎡
⎢⎢⎣

⎛
⎜⎝1 + γ − 1

2
M2

∞

1 + γ − 1

2
M2

A

⎞
⎟⎠

γ

γ−1

− 1

⎤
⎥⎥⎦

and where Cp,A = −1.0419. Inserting the numbers in this equation, we have

−1.0419 = 2

(1.4)(0.76)2

⎡
⎣(

1 + (0.2)(0.76)2

1 + (0.2)M2
A

) 1.4
.4

− 1

⎤
⎦

= 2.4733

[(
1.115

1 + (0.2)M2
A

)3.5

− 1

]

Hence,

−0.4213 =
[

1.466

(1 + 0.2M2
A)3.5

− 1
]

or,

0.5787 = 1.466

(1 + 0.2M2
A)3.5

(
1 + 0.2M2

A

)3.5 = 1.466

0.5787
= 2.53326

1 + 0.2M2
A = (2.53326)

1
3.5 = (2.53326)0.2857 = 1.30416

Thus,

0.2M2
A = 0.30416

M2
A = 0.30416

0.2
= 1.5208

MA = 1.23

Clearly, this result proves that a reasonable region of transonic and low-supersonic
flow is available for testing a model mounted on the wing of the P-51.

Gilruth, in his presentation to the Anglo-American Aeronautical Confer-
ence in 1947, states that “preliminary tests indicated that the local Mach number
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increased smoothly from about 0.40 to about 1.15 as the flight Mach number of
the airplane was increased from 0.30 to 0.76.” Those indications were based on
experimental measurements obtained in flight. Our calculated result of a local
Mach number of 1.23, based on modern CFD calculations and using a reasonable
compressibility correction for pressure coefficient, agrees with Gilruth’s data to
within 7 percent.

Other local flow field variables such as static pressure and temperature can
be calculated for the local Mach number of 1.23 using the isentropic relations
discussed in Chapter 8. These results, however, will depend on the altitude of
the airplane. The vertical extent of the supersonic bubble above the wing can be
obtained by carrying out a detailed computational fluid dynamic calculation of the
flow field over the P-51 and tracing the sonic line in the flow. We note that Gilruth
carried out measurements of the vertical gradients in Mach number and found
that they did not exceed about 1 percent per inch and “were probably somewhat
less than this figure,” thus presenting a reasonably comfortable vertical extent of
the testing region. Finally, the Reynolds numbers associated with the high speed
of the P-51 were large, resulting in a thin boundary layer thickness on the wing
surface of no real consequence on the model tests.

11.17 PROBLEMS
11.1 Consider a subsonic compressible flow in cartesian coordinates where the

velocity potential is given by

φ(x, y) = V∞x + 70 sin(2πx)√
1 − M2∞

e−2πy
√

1−M2∞

If the freestream properties are given by V∞ = 700 ft/s, p∞ = 1 atm, and
T∞ = 519◦R, calculate the following properties at the location (x, y) =
(0.2 ft, 0.2 ft): M , p, and T .

11.2 Using the Prandtl-Glauert rule, calculate the lift coefficient for an NACA
2412 airfoil at 5◦ angle of attack in a Mach 0.6 freestream. (Refer to
Figure 4.5 for the original airfoil data.)

11.3 Under low-speed incompressible flow conditions, the pressure coefficient
at a given point on an airfoil is −0.54. Calculate C p at this point when the
freestream Mach number is 0.58, using
a. The Prandtl-Glauert rule
b. The Karman-Tsien rule
c. Laitone’s rule

11.4 In low-speed incompressible flow, the peak pressure coefficient (at the
minimum pressure point) on an airfoil is −0.41. Estimate the critical
Mach number for this airfoil, using the Prandtl-Glauert rule.

11.5 For a given airfoil, the critical Mach number is 0.8. Calculate the value of
p/p∞ at the minimum pressure point when M∞ = 0.8.
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11.6 Consider an airfoil in a Mach 0.5 freestream. At a given point on the
airfoil, the local Mach number is 0.86. Using the compressible flow tables
at the back of this book, calculate the pressure coefficient at that point.
Check your answer using the appropriate analytical equation from this
chapter. [Note: This problem is analogous to an incompressible problem
where the freestream velocity and the velocity at a point are given, and
the pressure coefficient is calculated from Equation (3.38). In an
incompressible flow, the pressure coefficient at any point in the flow is a
unique function of the local velocity at that point and the freestream
velocity. In the present problem, we see that Mach number is the relevant
property for a compressible flow—not velocity. The pressure coefficient
for an inviscid compressible flow is a unique function of the local Mach
number and the freestream Mach number.]

11.7 Figure 11.5 shows four cases for the flow over the same airfoil wherein
M∞ is progressively increased from 0.3 to Mcr = 0.61. Have you
wondered where the numbers on Figure 11.5 came from? Here is your
chance to find out. Point A on the airfoil is the point of minimum pressure
(hence maximum M) on the airfoil. Assume that the minimum pressure
(maximum Mach number) continues to occur at this same point as M∞ is
increased. In part (a) of Figure 11.5, for M∞ = 0.3, the local Mach
number at point A was arbitrarily chosen as MA = 0.435, this
arbitrariness is legitimate because we have not specified the airfoil shape,
but rather are stating that, whatever the shape is, a maximum Mach
number of 0.435 occurs at point A on the airfoil surface. However, once
the numbers are given for part (a), then the numbers for parts (b), (c),
and (d) are not arbitrary. Rather, MA is a unique function of M∞ for the
remaining pictures. With all this as background information, starting
with the data shown in Figure 11.5a, calculate MA when M∞ = 0.61.
Obviously, from Figure 11.5d, your result should turn out to be MA = 1.0
because M∞ = 0.61 is said to be the critical Mach number. Said in
another way, you are being asked to prove that the critical Mach number
for this airfoil is 0.61. Hint: For simplicity, assume that the
Prandtl-Glauert rule holds for the conditions of this problem.

11.8 Consider the flow over a circular cylinder; the incompressible flow over
such a cylinder is discussed in Section 3.13. Consider also the flow over a
sphere; the incompressible flow over a sphere is described in Section 6.4.
The subsonic compressible flow over both the cylinder and the sphere is
qualitatively similar but quantitatively different from their incompressible
counterparts. Indeed, because of the “bluntness” of these bodies, their
critical Mach numbers are relatively low. In particular:

For a cylinder: Mcr = 0.404

For a sphere: Mcr = 0.57

Explain on a physical basis why the sphere has a higher Mcr than the
cylinder.
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11.9 In Problem 11.8, the critical Mach number for a circular cylinder is given
as Mcr = 0.404. This value is based on experimental measurements, and
therefore is considered reasonably accurate. Calculate Mcr for a circular
cylinder using the incompressible result for Cp and the Prandtl-Glauert
compressibility correction, and compare your result with the experimental
value. Note: The Prandtl-Glauert rule is based on linear theory assuming
small perturbations, and therefore we would not expect that it would be
valid for the case of flow over a circular cylinder. Nevertheless, when you
use it to make this calculation of Mcr , you will find your calculated result
to be within 3.5 percent of the experimental value. Interesting.



C H A P T E R 12
Linearized Supersonic Flow

With the stabilizer setting at 2◦ the speed was allowed to increase to
approximately 0.98 to 0.99 Mach number where elevator and rudder
effectiveness were regained and the airplane seemed to smooth out to normal
flying characteristics. This development lent added confidence and the airplane
was allowed to continue until an indication of 1.02 on the cockpit Mach meter
was obtained. At this indication the meter momentarily stopped and then
jumped at 1.06, and this hesitation was assumed to be caused by the effect of
shock waves on the static source. At this time the power units were cut and the
airplane allowed to decelerate back to the subsonic flight condition.

Captain Charles Yeager, describing his
flight on October 14, 1947—the first
manned flight to exceed the speed
of sound.

PREVIEW BOX

The calculation of lift and drag for an airfoil at super-
sonic speeds is about as different from that for lower-
speed airfoils as night is from day. The physics of
a supersonic flow is completely different from that
of a subsonic flow, and therefore virtually nothing
discussed in Chapter 4 or Chapter 11 can be used

to calculate the properties of an airfoil at supersonic
speeds. So what can you do? The answer is that you
can read this chapter. It is short and sweet, and it
provides some simple results that you can use to
estimate the aerodynamic properties of supersonic
airfoils.

811
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12.1 INTRODUCTION
The linearized perturbation velocity potential equation derived in Chapter 11,
Equation (11.18), is (

1 − M2
∞

)∂2φ̂

∂x2
+ ∂2φ̂

∂y2
= 0 (11.18)

and holds for both subsonic and supersonic flow. In Chapter 11, we treated the
case of subsonic flow, where 1 − M2

∞ > 0 in Equation (11.18). However, for
supersonic flow, 1− M2

∞ < 0. This seemingly innocent change in sign on the first
term of Equation (11.18) is, in reality, a very dramatic change. Mathematically,
when 1− M2

∞ > 0 for subsonic flow, Equation (11.18) is an elliptic partial differ-
ential equation, whereas when 1− M2

∞ < 0 for supersonic flow, Equation (11.18)
becomes a hyperbolic differential equation. The details of this mathematical dif-
ference are beyond the scope of this book; however, the important point is that
there is a difference. Moreover, this portends a fundamental difference in the
physical aspects of subsonic and supersonic flow—something we have already
demonstrated in previous chapters.

The purpose of this chapter is to obtain a solution of Equation (11.18) for
supersonic flow and to apply this solution to the calculation of supersonic airfoil
properties. Since our purpose is straightforward, and since this chapter is relatively
short, there is no need for a chapter road map to provide guidance on the flow of
our ideas.

12.2 DERIVATION OF THE LINEARIZED
SUPERSONIC PRESSURE COEFFICIENT
FORMULA

For the case of supersonic flow, let us write Equation (11.18) as

λ2 ∂2φ̂

∂x2
− ∂φ̂

∂y2
= 0 (12.1)

where λ = √
M2∞ − 1. A solution to this equation is the functional relation

φ̂ = f (x − λy) (12.2)

We can demonstrate this by substituting Equation (12.2) into Equation (12.1)
as follows. The partial derivative of Equation (12.2) with respect to x can be
written as

∂φ̂

∂x
= f ′(x − λy)

∂(x − λy)

∂x

or
∂φ̂

∂x
= f ′ (12.3)

In Equation (12.3), the prime denotes differentiation of f with respect to its
argument, x − λy. Differentiating Equation (12.3) again with respect to x , we
obtain

∂2φ̂

∂x2
= f ′′ (12.4)



CHAPTER 12 Linearized Supersonic Flow 813

Similarly,
∂φ̂

∂y
= f ′(x − λy)

∂(x − λy)

∂y

or ∂φ̂

∂y
= f ′(−λ) (12.5)

Differentiating Equation (12.5) again with respect to y, we have

∂2φ̂

∂y2
= λ2 f ′′ (12.6)

Substituting Equations (12.4) and (12.6) into (12.1), we obtain the identity

λ2 f ′′ − λ2 f ′′ = 0

Hence, Equation (12.2) is indeed a solution of Equation (12.1).
Examine Equation (12.2) closely. This solution is not very specific, because

f can be any function of x − λy. However, Equation (12.2) tells us something
specific about the flow, namely, that φ̂ is constant along lines of x−λy = constant.
The slope of these lines is obtained from

x − λy = const

Hence, dy

dx
= 1

λ
= 1√

M2∞ − 1
(12.7)

From Equation (9.31) and the accompanying Figure 9.25, we know that

tan μ = 1√
M2∞ − 1

(12.8)

where μ is the Mach angle. Therefore, comparing Equations (12.7) and (12.8),
we see that a line along which φ̂ is constant is a Mach line. This result is sketched
in Figure 12.1, which shows supersonic flow over a surface with a small hump
in the middle, where θ is the angle of the surface relative to the horizontal.
According to Equations (12.1) to (12.8), all disturbances created at the wall
(represented by the perturbation potential φ̂) propagate unchanged away from
the wall along Mach waves. All the Mach waves have the same slope, namely,
dy/dx = (M2

∞ − 1)−1/2. Note that the Mach waves slope downstream above the
wall. Hence, any disturbance at the wall cannot propagate upstream; its effect

1

M� > 1

M2
� � 1

(�)(�)

dy
dx

=

� = c 1

� = c 2

� = c 3

etc
.

�

�

Figure 12.1 Linearized supersonic flow.
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is limited to the region of the flow downstream of the Mach wave emanating
from the point of the disturbance. This is a further substantiation of the major dif-
ference between subsonic and supersonic flows mentioned in previous chapters,
namely, disturbances propagate everywhere throughout a subsonic flow, whereas
they cannot propagate upstream in a steady supersonic flow.

Keep in mind that the above results, as well as the picture in Figure 12.1, per-
tain to linearized supersonic flow [because Equation (12.1) is a linear equation].
Hence, these results assume small perturbations; that is, the hump in Figure 12.1
is small, and thus θ is small. Of course, we know from Chapter 9 that in reality a
shock wave will be induced by the forward part of the hump, and an expansion
wave will emanate from the remainder of the hump. These are waves of finite
strength and are not a part of linearized theory. Linearized theory is approximate;
one of the consequences of this approximation is that waves of finite strength
(shock and expansion waves) are not admitted.

The above results allow us to obtain a simple expression for the pressure
coefficient in supersonic flow, as follows. From Equation (12.3),

û = ∂φ̂

∂x
= f ′ (12.9)

and from Equation (12.5),

v̂ = ∂φ̂

∂y
= −λ f ′ (12.10)

Eliminating f ′ from Equations (12.9) and (12.10), we obtain

û = − v̂

λ
(12.11)

Recall the linearized boundary condition given by Equation (11.34), repeated
below:

v̂ = ∂φ̂

∂y
= V∞ tan θ (12.12)

We can further reduce Equation (12.12) by noting that, for small perturbations, θ
is small. Hence, tan θ ≈ θ , and Equation (12.12) becomes

v̂ = V∞θ (12.13)

Substituting Equation (12.13) into (12.11), we obtain

û = −V∞θ

λ
(12.14)

Recall the linearized pressure coefficient given by Equation (11.32):

C p = − 2û

V∞
(11.32)

Substituting Equation (12.14) into (11.32), and recalling that λ ≡ √
M2∞ − 1, we

have

Cp = 2θ√
M2∞ − 1

(12.15)
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Equation (12.15) is important. It is the linearized supersonic pressure coefficient,
and it states that Cp is directly proportional to the local surface inclination with
respect to the freestream. It holds for any slender two-dimensional body where θ

is small.
Return again to Figure 12.1. Note that θ is positive when measured above

the horizontal, and negative when measured below the horizontal. Hence, from
Equation (12.15), C p is positive on the forward portion of the hump, and negative
on the rear portion. This is denoted by the (+) and (−) signs in front of and
behind the hump shown in Figure 12.1. This is also somewhat consistent with
our discussions in Chapter 9; in the real flow over the hump, a compression wave
forms on that part of the front portion where the flow is being turned into itself,
and hence p > p∞, whereas an expansion wave occurs over that portion of the
hump where the flow is turned away from itself, and the pressure decreases. Think
about the picture shown in Figure 12.1; the pressure is higher on the front section
of the hump, and lower on the rear section. As a result, a drag force exists on the
hump. This drag is called wave drag and is a characteristic of supersonic flows.
Wave drag was discussed in Section 9.7 in conjunction with shock-expansion
theory applied to supersonic airfoils. It is interesting that linearized supersonic
theory also predicts a finite wave drag, although shock waves themselves are not
treated in such linearized theory.

Examining Equation (12.15), we note that C p ∝ (M2
∞ − 1)−1/2; hence, for

supersonic flow, Cp decreases as M∞ increases. This is in direct contrast with
subsonic flow, where Equation (11.51) shows that C p ∝ (1 − M2

∞)−1/2; hence,
for subsonic flow, Cp increases as M∞ increases. These trends are illustrated in
Figure 12.2. Note that both results predict Cp → ∞ as M∞ → 1 from either
side. However, keep in mind that neither Equation (12.15) nor (11.51) is valid in
the transonic range around Mach 1.

Figure 12.2 Variation of the linearized pressure
coefficient with Mach number (schematic).
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12.3 APPLICATION TO SUPERSONIC AIRFOILS
Equation (12.15) is very handy for estimating the lift and wave drag for thin super-
sonic airfoils, such as sketched in Figure 12.3. When applying Equation (12.15)
to any surface, one can follow a formal sign convention for θ , which is different
for regions of left-running waves (such as above the airfoil in Figure 12.3) than
for regions of right-running waves (such as below the airfoil in Figure 12.3).
This sign convention is developed in detail in Reference 21. However, for our
purpose here, there is no need to be concerned about the sign associated with θ

in Equation (12.15). Rather, keep in mind that when the surface is inclined into
the freestream direction, linearized theory predicts a positive C p. For example,
points A and B in Figure 12.3 are on surfaces inclined into the freestream, and
hence C p,A and Cp,B are positive values given by

C p,A = 2θA√
M2∞ − 1

and C p,B = 2θB√
M2∞ − 1

In contrast, when the surface is inclined away from the freestream direction, lin-
earized theory predicts a negative Cp. For example, points C and D in Figure 12.3
are on surfaces inclined away from the freestream, and hence Cp,C and Cp,D are
negative values, given by

C p,C = − 2θC√
M2∞ − 1

and C p,D = − 2θD√
M2∞ − 1

Figure 12.3 Linearized supersonic flow over an airfoil.
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Figure 12.4 A flat plate at angle of attack in a supersonic flow.

In the above expressions, θ is always treated as a positive quantity, and the sign of
Cp is determined simply by looking at the body and noting whether the surface
is inclined into or away from the freestream.

With the distribution of C p over the airfoil surface given by Equation (12.15),
the lift and drag coefficients, cl and cd , respectively, can be obtained from the
integrals given by Equations (1.15) to (1.19).

Let us consider the simplest possible airfoil, namely, a flat plate at a small
angle of attack α as shown in Figure 12.4. Looking at this picture, the lower
surface of the plate is a compression surface inclined at the angle α into the
freestream, and from Equation (12.15),

C p,l = 2α√
M2∞ − 1

(12.16)

Since the surface inclination angle is constant along the entire lower surface,
Cp,l is a constant value over the lower surface. Similarly, the top surface is an
expansion surface inclined at the angle α away from the freestream, and from
Equation (12.15),

Cp,u = − 2α√
M2∞ − 1

(12.17)

C p,u is constant over the upper surface. The normal force coefficient for the flat
plate can be obtained from Equation (1.15):

cn = 1

c

∫ c

0
(Cp,l − Cp,u) dx (12.18)

Substituting Equations (12.16) and (12.17) into (12.18), we obtain

cn = 4α√
M2∞ − 1

1

c

∫ c

0
dx = 4α√

M2∞ − 1
(12.19)

The axial force coefficient is given by Equation (1.16):

ca = 1

c

∫ TE

LE
(Cp,u − Cp,l) dy (12.20)

However, the flat plate has (theoretically) zero thickness. Hence, in Equa-
tion (12.20), dy = 0, and as a result, ca = 0. This is also clearly seen in
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Figure 12.4; the pressures act normal to the surface, and hence there is no compo-
nent of the pressure force in the x direction. From Equations (1.18) and (1.19),

cl = cn cos α − ca sin α (1.18)

cd = cn sin α + ca cos α (1.19)

and, along with the assumption that α is small and hence cos α ≈ 1 and sin α ≈ α,
we have

cl = cn − caα (12.21)

cd = cnα + ca (12.22)

Substituting Equation (12.19) and the fact that ca = 0 into Equations (12.21) and
(12.22), we obtain

cl = 4α√
M2∞ − 1

(12.23)

cd = 4α2√
M2∞ − 1

(12.24)

Equations (12.23) and (12.24) give the lift and wave-drag coefficients, respec-
tively, for the supersonic flow over a flat plate. Keep in mind that they are results
from linearized theory and therefore are valid only for small α.

For a thin airfoil of arbitrary shape at small angle of attack, linearized theory
gives an expression for cl identical to Equation (12.23); that is,

cl = 4α√
M2∞ − 1

Within the approximation of linearized theory, cl depends only on α and is inde-
pendent of the airfoil shape and thickness. However, the same linearized theory
gives a wave-drag coefficient in the form of

cd = 4√
M2∞ − 1

(α2 + g2
c + g2

t )

where gc and gt are functions of the airfoil camber and thickness, respectively.
For more details, see References 25 and 26.

EXAMPLE 12.1

Using linearized theory, calculate the lift and drag coefficients for a flat plate at a 5◦ angle
of attack in a Mach 3 flow. Compare with the exact results obtained in Example 9.11.

■ Solution

α = 5◦ = 0.087 rad
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From Equation (12.23),

cl = 4α√
M2∞ − 1

= (4)(0.087)√
(3)2 − 1

= 0.123

From Equation (12.24),

cd = 4α2√
M2∞ − 1

= 4(0.087)√
(3)2 − 1

= 0.011

The results calculated in Example 9.11 for the same problem are exact results, utilizing the
exact oblique shock theory and the exact Prandtl-Meyer expansion-wave analysis. These
results were

cl = 0.125

cd = 0.011

}
exact results from Example 9.11

Note that, for the relatively small angle of attack of 5◦, the linearized theory results are
quite accurate—to within 1.6 percent.

EXAMPLE 12.2

The Lockheed F-104 supersonic fighter, shown in Figure 12.5, was the first fighter designed
for sustained flight at Mach 2. The F-104 embodies good supersonic aircraft design—
long slender fuselage, sharp pointed nose, and a wing with an extremely thin airfoil of
3.4 percent thickness and a razor sharp leading edge (so sharp that a protective covering is
placed on the leading edge for ground handling). All these features have one purpose—to
reduce supersonic wave drag. The planform area of the wing is 18.21 m2. Consider the
case of the F-104 in steady, level flight at Mach 2 at 11 km altitude. The weight of the
airplane is at its combat weight of 9400 kgf. Assume that all the lift of the airplane comes
from the lift on the wings (i.e., ignore the lift of the fuselage and tail). Calculate the angle
of attack of the wing relative to the freestream.

Figure 12.5 Lockheed F-104.
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■ Solution
We first calculate the lift coefficient associated with the given flight conditions, recognizing
that for level flight, the lift of the airplane must equal its weight:

CL = L

q∞S
= W

q∞S

At an altitude of 11 km, from Appendix D, ρ∞ = 0.3648 kg/m3 and T∞ = 216.78 K.
Hence,

a∞ =
√

γ RT∞ =
√

(1.4)(287)(216.78) = 295 m/s

V∞ = M∞a∞ = (2)(295) = 590 m/s

q∞ = 1
2ρ∞V 2

∞ = 1
2 (0.3648)(590)2 = 6.35 × 104 m/s

Also, the weight is given as 9400 kgf. This is an inconsistent unit of force; a newton is the
consistent unit of force in the SI system. Since 1 kgf = 9.8 N, we have

W = (9400)(9.8) = 9.212 × 104 N

CL = W

q∞S
= 9.212 × 104

(6.35 × 104)(18.21)
= 0.08

We make the assumption that the lift coefficient of the wing, CL , is the same as the lift
coefficient for the airfoil section making up the wing, cl . For subsonic flight, we know
from our discussion in Chapter 5 that such is not the case. For supersonic flight, such is
also not the case. For a straight wing in supersonic inviscid flight, however, the wing tip
effects are effectively limited to the region inside the Mach cone with its vertex at the tip
leading edge. At Mach 2, the semivertex angle of the Mach cone is μ = sin−1 1

2 = 30◦.
Therefore, much of the wing is unaffected by the tip effects, and experiences the two-
dimensional flow discussed in this chapter. The airfoil section of the F-104 is thin, and as
we will soon see, is at a small angle of attack. We conclude, therefore, that Equation (12.23)
should be a good approximation for the lift coefficient of the wing of the F-104. Thus, in
Equation (12.23), we use cl = CL = 0.08. From Equation (12.23),

cl = 4α√
M2∞ − 1

or, α = cl

4

√
M2∞ − 1 = 0.08

4

√
(2)2 − 1 = 0.035 rad

In degrees, the wing angle of attack is

α = (0.035)(57.3) = 1.98◦

This is a small angle of attack, and clearly satisfies the small-angle approximation em-
bodied in Equation (12.23).

This result, which reflects actual flight conditions of supersonic airplanes, indicates
that such airplanes fly at small angles of attack, for which Equations (12.23) and (12.24)
are valid. Thus, the linear supersonic theory discussed in this chapter clearly has a practical
application.
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DESIGN BOX

The area rule discussed in Section 11.8 can be labeled
the transonic area rule, because its proper application
in an airplane design will reduce the peak drag in the
transonic flight regime, allowing the airplane to more
readily achieve supersonic flight. The transonic area
rule calls for a smooth variation of the cross-sectional
area of the airplane measured normal to the freestream
direction. For example, the transonic area ruling of the
F-16 fighter is shown in Figure 12.6; here, the cross-
sectional area normal to the freestream is plotted ver-
sus distance along the fuselage.

The area rule also applies at supersonic speeds;
here, however, the relevant cross-sectional area is not
that perpendicular to the freestream relative wind, but
rather the area cut by an oblique plane at the freestream
Mach angle. For reduced supersonic wave drag, the
supersonic area rule calls for a smooth distribution of
this oblique section area. For example, consider the
F-16 flying at M∞ = 1.6, for which the Mach angle
is μ = sin−1(1/M∞) = sin−1(1/1.6) = 38.7 deg. In
Figure 12.7a, a side view of the F-16 is shown, with the
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Figure 12.6 Transonic area ruling for the F-16. Variation of normal
cross-sectional area as a function of location along the fuselage axis.

oblique cross sections drawn at the angle μ =
38.7 deg. The variation of this oblique cross-sectional
area with distance along the fuselage is shown at the
top of Figure 12.7b. Note that this area distribution
is quite smooth; the F-16 design satisfies the super-
sonic area rule at M∞ = 1.6. The same holds true
for M∞ = 1.2. The oblique cross-sectional area for
μ = sin−1(1/1.2) = 56.4 deg as a function of dis-
tance along the fuselage is plotted at the bottom of
Figure 12.7b; a smooth distribution holds for this case
as well. Figures 12.6 and 12.7 show that the design-
ers of the F-16 incorporated both the transonic and
supersonic area rules.

The solid curves in Figure 12.7 show the actual
area distributions for the F-16. The adjacent dashed
curves illustrate the area distributions proposed in the
early stage of the F-16 design process; based on wind
tunnel tests the final configuration was obtained by
filling and shaving areas from parts of the airplane
(see Figure 12.7a) in order to more faithfully obey the
supersonic area rule.
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Figure 12.7 Supersonic area ruling for the F-16. Variation for oblique
cross-sectional area as a function of location along the fuselage axis.
Comparison between the actual area distribution and that proposed in an
early design study.

The supersonic area rule was first conceived by
the famous NACA and NASA aerodynamicist, R. T.
Jones, and his work on this subject was first pub-
lished in “Theory of Wing-Body Drag at Supersonic

Speeds,” NACA TR 1284, July 8, 1953 (printed in the
NACA Annual Report for 1956). This report should
be consulted for more details on the application of the
supersonic area rule.

12.4 VISCOUS FLOW: SUPERSONIC AIRFOIL DRAG
Drag for an airfoil in low-speed flow was discussed in Section 4.12. Amazingly
enough, the influence of compressibility, even supersonic flow, does not change
the fundamental approach to the estimation of skin-friction drag as outlined in
Section 4.12—only the numbers are different. The details behind the change in
numbers are given in Chapters 18 and 19. Basically, the story goes as follows. For
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laminar incompressible flow the flat plate skin-friction drag coefficient is given
by Equation (4.86) as

C f = 1.328√
Rec

(laminar incompressible)

And for turbulent incompressible flow approximately by Equation (4.88) as

C f = 0.074

Re1/5
c

(turbulent incompressible)

For compressible flow, the numerators of these equations are no longer constants,
but rather can be viewed as functions of Mach number, the ratio of wall tem-
perature to the temperature at the outer edge of the boundary layer Tw/Te, and
Prandtl number Pr. The Prandtl number is defined as Pr = μcp/k, where μ, cp,
and k are the viscosity coefficient, specific heat at constant pressure, and ther-
mal conductivity, respectively. The importance of Prandtl number is discussed at
length in Chapter 15. In essence, for compressible laminar flow we have

C f = F(Me, Pr, Tw/Te)√
Rec

(12.25)

and for compressible turbulent flow we have approximately

C f = G(Me, Pr, Tw/Te)

(Rec)1/5
(12.26)

For a given set of values of Me, Pr, and Tw/Te, the numerical value of the numer-
ators in Equations (12.25) and (12.26) are obtained from numerical solutions of
the boundary layer equations as discussed in Chapters 18 and 19. Some classic
results are given in Figure 19.1; leap ahead and examine this figure. The results in
Figure 19.1 are presented for Pr = 0.75 and for the ratio Tw/Te corresponding to
that for no heat transfer at the wall (an adiabatic wall). The most important phe-
nomenon to observe in this figure is that C f decreases as M∞ increases, and that
the decrease is more dramatic for a turbulent boundary layer than for a laminar
boundary layer.

Keep in mind that, in addition to the skin-friction drag, a supersonic airfoil
also experiences supersonic wave drag as discussed in Sections 9.7 and 12.3. The
source of wave drag is the pressure distribution exerted over the airfoil surface
and is a result of the shock-wave and expansion-wave pattern in the flow over
the airfoil. The source of skin-friction drag is, of course, the shear stress exerted
over the airfoil surface and is the result of friction in the flow. The physical
mechanisms of wave drag and skin-friction drag clearly are quite different. How
do these two types of drag compare in a practical flow situation? The following
example addresses this question.

EXAMPLE 12.3

Consider the same Lockheed F-104 supersonic fighter described in Example 12.2, with the
same flight conditions of Mach 2 at an altitude of 11 km. As calculated in Example 12.2,
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for these conditions the wing angle of attack is α = 0.035 rad = 1.98◦. Assume the
chord length of the airfoil is 2.2 m, which is approximately the mean chord length for
the wing. Also, assume fully turbulent flow over the airfoil. Calculate: (a) the airfoil skin
friction drag coefficient, and (b) the airfoil wave-drag coefficient. Compare the two values
of drag.

■ Solution
(a) To calculate the skin-friction drag coefficient, C f , we need the Reynolds number.
From Appendix D at 11 km, ρ∞ = 0.3648 kg/m3 and T∞ = 216.78 K. The speed of
sound at 11 km is therefore

a∞ =
√

γ RT∞ =
√

(1.4)(287)(216.78) = 295 m/s

Thus, V∞ = M∞a∞ = (2)(295) = 590 m/s

As discussed in Sections 1.11 and 15.3, the viscosity coefficient is a function of tempera-
ture. We borrow Equation (15.3), which is Sutherland’s law for the temperature variation
of viscosity coefficient, given by

μ

μ0
=

(
T

T0

)3/2 T0 + 110

T + 110

where T is in Kelvin, and μ0 is a reference viscosity at a reference temperature, T0.
We choose reference conditions to be the standard sea level values of μ0 = 1.7894 ×
10−5 kg/(m)(s) and T0 = 288.16 K. Thus, from Sutherland’s law, the value of μ at
T = 216.78 K is

μ = (1.7894 × 10−5)

(
216.78

288.16

)3/2 (
288.16 + 110

216.78 + 110

)
= 1.4226 × 10−5 kg/(m)(s)

The Reynolds number is

Re = ρ∞V∞c

μ∞
= (0.3648)(590)(2.2)

1.4226 × 10−5 = 3.33 × 107

Reading Figure 19.1 very carefully, for a turbulent boundary at Mach 2 with Re = 3.33 ×
107, we have C f = 2.15 × 10−3. This is for one side of a flat plate. As we have done
before, we assume the skin-friction drag of the thin airfoil (and recall that the airfoil on the
F-104 is really thin) to be represented by that on a flat plate. Since the skin-friction drag
acts on both the upper and lower surface of the airfoil, we have, for the net skin-friction
drag coefficient for the F-104 airfoil,

Net C f = 2(2.15 × 10−3) = 4.3 × 10−3

(b) The wave-drag coefficient is given by Equation (12.24) as

cd = 4α2√
M2∞ − 1
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Here, α = 0.035 rad, and M∞ = 2. Hence

cd = 4(0.035)2√
(2)2 − 1

= 2.83 × 10−3

From Example 12.3, we see that the total drag coefficient for the supersonic airfoil
is cd +C f = 2.83×10−3 +4.3×10−3 = 7.13×10−3. The skin friction is 60 per-
cent of the total drag. At the low angle of attack for the airfoil in Example 12.3,
the supersonic wave drag is reasonably small, in this case smaller than the skin
friction drag. The wave drag, however, varies as the square of the angle of at-
tack. For the conditions of Example 12.3, the wave drag would equal the skin-
friction drag at an angle of attack of 2.47◦, and as the angle of attack increases
above this value, the wave drag would rapidly become the dominant type of
drag.

Let us take a look at the lift-to-drag ratio, L/D, of the airfoil in Example 12.3.
First of all, for an inviscid flow (i.e., no friction drag), the results of Examples 12.2
and 12.3 show that

L

D
= cl

cd
= 0.08

2.83 × 10−3
= 28.3 (inviscid)

By including the skin friction drag, we have

L

D
= cl

(cd)total
= 0.08

7.13 × 10−3
= 11.2

Clearly, the skin-friction drag greatly diminishes the lift-to-drag ratio of the air-
foil. Since the value of L/D is an important measure of aerodynamic efficiency,
we see the importance of trying to reduce the skin-friction drag, say by encour-
aging laminar rather than turbulent boundary layers on the airfoil. Indeed, this
is essentially a generic statement that holds true across all parts of the Mach
number spectrum, from low-speed subsonic flow to hypersonic flow. In our dis-
cussion of supersonic airfoils in this section, we can clearly see the importance
of skin-friction drag on aerodynamic performance.

12.5 SUMMARY

In linearized supersonic flow, information is propagated along Mach lines
where the Mach angle μ = sin−1(1/M∞). Since these Mach lines are all
based on M∞, they are straight, parallel lines which propagate away from and
downstream of a body. For this reason, disturbances cannot propagate upstream
in a steady supersonic flow.
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The pressure coefficient, based on linearized theory, on a surface inclined at a
small angle θ to the freestream is

C p = 2θ√
M2∞ − 1

(12.15)

If the surface is inclined into the freestream, C p is positive; if the surface is
inclined away from the freestream, C p is negative.

Based on linearized supersonic theory, the lift and wave-drag coefficients for
a flat plate at an angle of attack are

cl = 4α√
M2∞ − 1

(12.23)

and cd = 4α2√
M2∞ − 1

(12.24)

Equation (12.23) also holds for a thin airfoil of arbitrary shape. However, for
such an airfoil, the wave-drag coefficient depends on both the shape of the
mean camber line and the airfoil thickness.

12.6 PROBLEMS
12.1 Using the results of linearized theory, calculate the lift and wave-drag

coefficients for an infinitely thin flat plate in a Mach 2.6 freestream at
angles of attack of
(a) α = 5◦ (b) α = 15◦ (c) α = 30◦

Compare these approximate results with those from the exact shock-
expansion theory obtained in Problem 9.13. What can you conclude
about the accuracy of linearized theory in this case?

12.2 For the conditions of Problem 12.1, calculate the pressures (in the form of
p/p∞) on the top and bottom surfaces of the flat plate, using linearized
theory. Compare these approximate results with those obtained from
exact shock-expansion theory in Problem 9.13. Make some appropriate
conclusions regarding the accuracy of linearized theory for the calculation
of pressures.

12.3 Consider a diamond-wedge airfoil such as shown in Figure 9.37, with a
half-angle ε = 10◦. The airfoil is at an angle of attack α = 15◦ to a Mach
3 freestream. Using linear theory, calculate the lift and wave-drag
coefficients for the airfoil. Compare these approximate results with those
from the exact shock-expansion theory obtained in Problem 9.14.

12.4 Equation (12.24), from linear supersonic theory, predicts that cd for a flat
plate decreases as M∞ increases? Does this mean that the drag force itself
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decreases as M∞ increases? To answer this question, derive an equation
for drag as a function of M∞, and evaluate this equation.

12.5 Consider a flat plate at an angle of attack in an inviscid supersonic flow.
From linear theory, what is the value of the maximum lift-to-drag ratio,
and at what angle of attack does it occur?

12.6 Consider a flat plate at an angle of attack in a viscous supersonic flow; i.e.,
there is both skin friction drag and wave drag on the plate. Use linear
theory for the lift and wave-drag coefficients. Denote the total skin friction
drag coefficient by C f , and assume that it does not change with angle of
attack. (a) Derive the expression for the angle of attack at which maximum
lift-to-drag ratio occurs as a function of C f and freestream Mach number.
(b) Derive the expression for the maximum lift-to-drag ratio as a function
of C f and freestream Mach number M .

Answers: (a) α = (C f )
1/2(M2 − 1)1/4/2;

(b) (cl/cd)max = (C f )
−1/2(M2 − 1)−1/4

12.7 Using the same flight conditions and the same value of the skin-friction
coefficient from Example 12.3, and the results of Problem 12.6, calculate
the maximum lift-to-drag ratio of the flat plate that is used to simulate the
F-104 wing and the angle of attack at which it occurs.

12.8 The result from Problem 12.6 demonstrates that maximum lift-to-drag
ratio decreases as the Mach number increases. This is a fact of nature that
progressively causes designers of supersonic airplanes grief as they strive
toward aerodynamically efficient airplanes at higher supersonic Mach
numbers. What physics is nature using against the airplane designer in this
case, and how might the designer meet this challenge?





C H A P T E R 13
Introduction to Numerical
Techniques for Nonlinear
Supersonic Flow

Regarding computing as a straightforward routine, some theoreticians still tend
to underestimate its intellectual value and challenge, while practitioners often
ignore its accuracy and overrate its validity.

C. K. Chu, 1978
Columbia University

PREVIEW BOX

Our discussions of compressible flow have involved
algebra (Chapters 7–10) and linear partial differential
equations (Chapters 11 and 12)—all tractable mathe-
matics. In the process, we dealt with a number of prac-
tical applications. But this is about as far as we can
go with our analytical solutions allowed by tractable
mathematics. For all other applications, encompass-
ing the vast majority of all other real-world applica-
tions, the flows are governed by the more complete
nonlinear equations of motion, for which there are no
closed-form analytical solutions.

Do we throw up our hands and quit? From the
title of this chapter, obviously not. Instead, we leave
the world of analytical solutions and enter the rela-
tively new world of numerical solutions. Instead of

finding nice, neat equations to solve our flows, we are
going to crunch numbers for our flows. But we are go-
ing to crunch numbers in an intelligent, often elegant
fashion. We are going to start with the fundamental
nonlinear flow equations of continuity, momentum,
and energy obtained in Chapter 2, and solve them nu-
merically for some important practical problems that
could not be solved in any other way.

Two such practical problems are addressed in this
chapter. The first is the design of the proper contour,
the proper shape, of a supersonic nozzle. In Chapter 10
we studied the flow properties of nozzle flows, but the
shape (i.e., the area-ratio distribution) of the nozzle
was always given. Look again at the rocket engine
shown in Figure 10.1. How was the actual shape of

829
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that divergent nozzle actually designed? This is an
extremely important question; if the contour of that
divergent nozzle is not just right, undesirable shock
waves may form inside the nozzle—shock waves that
will reduce the performance of the rocket engine. And
if you were designing the nozzle for a supersonic wind
tunnel, any shock waves formed inside the nozzle are
going to ruin the type of high-quality flow you want
in the test section. So the design of the proper con-
tour of a supersonic nozzle is extremely important.
How do you do it? You will find the answers in this
chapter.

The second problem is the solution of the flow
around a blunt-nosed body in a supersonic flow. Leap
ahead in this book and look at the Space Shuttle shown
in Figure 14.17. What you see is a high-speed vehicle

that has a blunt nose and a wing with a blunt leading
edge. The fundamental reason for these blunt shapes
was discussed in Section 1.1 (if you have forgotten,
take a quick peak at Section 1.1). In the early days
of high-speed flight, the solution of the flow around a
blunt-nosed body in supersonic flight was impossible
to obtain. And yet, it was, and still is, one of the most
important problems in supersonic aerodynamics. We
call it the “supersonic blunt body problem.” Today, we
can readily solve this problem. How? You will find the
answer in this chapter.

The material in this chapter is serious business.
It reflects modern aspects of compressible flow, and
gives some idea of how solutions for complex prob-
lems are carried out today. Read on, and see what all
this is about.

13.1 INTRODUCTION: PHILOSOPHY OF
COMPUTATIONAL FLUID DYNAMICS

The above quotation underscores the phenomenally rapid increase in computer
power available to engineers and scientists during the two decades between 1960
and 1980. This explosion in computer capability is still going on, with no specific
limits in sight. As a result, an entirely new discipline in aerodynamics has evolved
over the past three decades, namely, computational fluid dynamics (CFD). CFD
is a new “third dimension” in aerodynamics, complementing the previous dimen-
sions of both pure experiment and pure theory. It allows us to obtain answers to
fluid dynamic problems which heretofore were intractable by classical analytical
methods. Consequently, CFD is revolutionizing the airplane design process, and in
many ways is modifying the way we conduct modern aeronautical research and
development. For these reasons, every modern student of aerodynamics should be
aware of the overall philosophy of CFD, because you are bound to be affected by
it to some greater or lesser degree in your education and professional life.

The philosophy of computational fluid dynamics was introduced in Sec-
tion 2.17, where it was compared with the theoretical approach leading to closed-
form analytical solutions. Please stop here, return to Section 2.17, and re-read the
material presented there; now that you have progressed this far and have seen a
number of analytical solutions for both incompressible and compressible flows in
the preceding chapters, the philosophy discussed in Section 2.17 will mean much
more to you. Do this now, because the present chapter almost exclusively deals
with numerical solutions with reference to Section 2.17.2, whereas Chapters 3–12
have dealt almost exclusively with analytical solutions with reference to Section
2.17.1.
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In the present chapter we will experience the true essence of computational
fluid dynamics for the first time in this book; we will actually see what is meant
by the definition of CFD given in Section 2.17.2 as “the art of replacing the
integrals or the partial derivatives (as the case may be) in the governing equations
of fluid motion with discretized algebraic forms, which in turn are solved to
obtain numbers for the flow field values at discrete points in time and/or space.”
However, because modern CFD is such a sophisticated discipline that is usually
the subject of graduate level studies, and which rests squarely on the foundations
of applied mathematics, we can only hope to give you an elementary treatment in
the present chapter, but a treatment significant enough to represent some of the
essence of CFD. For your next step in learning CFD beyond the present book,
you are recommended to read Anderson, Computational Fluid Dynamics: The
Basics with Applications (Reference 60), which the author has written to help
undergraduates understand the nature of CFD before going on to more advanced
studies of the discipline.

The purpose of this chapter is to provide an introduction to some of the basic
ideas of CFD as applied to inviscid supersonic flows. More details are given in
Reference 21. Because CFD has developed so rapidly in recent years, we can
only scratch the surface here. Indeed, the present chapter is intended to give you
only some basic background as well as the incentive to pursue the subject further
in the modern literature.

The road map for this chapter is given in Figure 13.1. We begin by introduc-
ing the classical method of characteristics—a numerical technique that has been
available in aerodynamics since 1929, but which had to wait on the modern com-
puter for practical, everyday implementation. For this reason, the author classifies
the method of characteristics under the general heading of numerical techniques,

Figure 13.1 Road map for Chapter 13.
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Figure 13.2 Grid points.

although others may prefer to list it under a more classical heading. We also
show how the method of characteristics is applied to design the divergent contour
of a supersonic nozzle. Then we move to a discussion of the finite-difference
approach, which we will use to illustrate the application of CFD to nozzle flows
and the flow over a supersonic blunt body.

In contrast to the linearized solutions discussed in Chapters 11 and 12, CFD
represents numerical solutions to the exact nonlinear governing equations, that is,
the equations without simplifying assumptions such as small perturbations, and
which apply to all speed regimes, transonic and hypersonic as well as subsonic
and supersonic. Although numerical roundoff and truncation errors are always
present in any numerical representation of the governing equations, we still think
of CFD solutions as being “exact solutions.”

Both the method of characteristics and finite-difference methods have one
thing in common: They represent a continuous flow field by a series of distinct
grid points in space, as shown in Figure 13.2. The flow-field properties (u, v, p,
T , etc.) are calculated at each one of these grid points. The mesh generated by
these grid points is generally skewed for the method of characteristics, as shown
in Figure 13.2a, but is usually rectangular for finite-difference solutions, as shown
in Figure 13.2b. We will soon appreciate why these different meshes occur.

13.2 ELEMENTS OF THE METHOD
OF CHARACTERISTICS

In this section, we only introduce the basic elements of the method of character-
istics. A full discussion is beyond the scope of this book; see References 21, 25,
and 32 for more details.

Consider a two-dimensional, steady, inviscid, supersonic flow in xy space, as
given in Figure 13.2a. The flow variables (p, u, T , etc.) are continuous throughout
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this space. However, there are certain lines in xy space along which the derivatives
of the flow field variables (∂p/∂x , ∂u/∂y, etc.) are indeterminate and across
which may even be discontinuous. Such lines are called characteristic lines.
This may sound strange at first; however, let us prove that such lines exist, and
let us find their precise directions in the xy plane.

In addition to the flow being supersonic, steady, inviscid, and two-dimensional,
assume that it is also irrotational. The exact governing equation for such a flow
is given by Equation (11.12):[

1 − 1

a2

(
∂φ

∂x

)2
]

∂2φ

∂x2
+

[
1 − 1

a2

(
∂φ

∂y

)2
]

∂2φ

∂y2
− 2

a2

∂φ

∂x

∂φ

∂y

∂2φ

∂x ∂y
= 0

(11.12)
[Keep in mind that we are dealing with the full velocity potential φ in Equa-
tion (11.12), not the perturbation potential.] Since ∂φ/∂x = u and ∂φ/∂y = v,
Equation (11.12) can be written as(

1 − u2

a2

)
∂2φ

∂x2
+

(
1 − v2

a2

)
∂2φ

∂y2
− 2uv

a2

∂2φ

∂x ∂y
= 0 (13.1)

The velocity potential and its derivatives are functions of x and y, for example,

∂φ

∂x
= f (x, y)

Hence, from the relation for an exact differential,

d f = ∂ f

∂x
dx + ∂ f

∂y
dy

we have d
(

∂φ

∂x

)
= du = ∂2φ

∂x2
dx + ∂2φ

∂x ∂y
dy (13.2)

Similarly, d
(

∂φ

∂y

)
= dv = ∂2φ

∂x ∂y
dx + ∂2φ

∂y2
dy (13.3)

Examine Equations (13.1) to (13.3) closely. Note that they contain the second
derivatives ∂2φ/∂x2, ∂2φ/∂y2, and ∂2φ/∂x ∂y. If we imagine these derivatives as
“unknowns,” then Equations (13.1), (13.2), and (13.3) represent three equations
with three unknowns. For example, to solve for ∂2φ/∂x ∂y, use Cramer’s rule
as follows:

∂2φ

∂x ∂y
=

∣∣∣∣∣∣∣∣
1 − u2

a2
0 1 − v2

a2

dx du 0
0 dv dy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 − u2

a2
−2uv

a2
1 − v2

a2

dx dy 0
0 dx dy

∣∣∣∣∣∣∣∣∣

= N

D
(13.4)
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Figure 13.3 An arbitrary direction ds away
from point A.

where N and D represent the numerator and denominator determinants, respec-
tively. The physical meaning of Equation (13.4) can be seen by considering point A
and its surrounding neighborhood in the flow, as sketched in Figure 13.3. The
derivative ∂2φ/∂x ∂y has a specific value at point A. Equation (13.4) gives the
solution for ∂2φ/∂x ∂y for an arbitrary choice of dx and dy. The combination
of dx and dy defines an arbitrary direction ds away from point A as shown in
Figure 13.3. In general, this direction is different from the streamline direction
going through point A. In Equation (13.4), the differentials du and dv represent
the changes in velocity that take place over the increments dx and dy. Hence,
although the choice of dx and dy is arbitrary, the values of du and dv in Equa-
tion (13.4) must correspond to this choice. No matter what values of dx and dy
are arbitrarily chosen, the corresponding values of du and dv will always ensure
obtaining the same value of ∂2φ/∂x ∂y at point A from Equation (13.4).

The single exception to the above comments occurs when dx and dy are cho-
sen so that D = 0 in Equation (13.4). In this case, ∂2φ/∂x ∂y is not defined. This
situation will occur for a specific direction ds away from point A in Figure 13.3,
defined for that specific combination of dx and dy for which D = 0. However,
we know that ∂2φ/∂x ∂y has a specific defined value at point A. Therefore, the
only consistent result associated with D = 0 is that N = 0, also; that is,

∂2φ

∂x ∂y
= N

D
= 0

0
(13.5)

Here, ∂2φ/∂x ∂y is an indeterminate form, which is allowed to be a finite value,
that is, that value of ∂2φ/∂x ∂y which we know exists at point A. The important
conclusion here is that there is some direction (or directions) through point A
along which ∂2φ/∂x ∂y is indeterminate. Since ∂2φ/∂x ∂y = ∂u/∂y = ∂v/∂x ,
this implies that the derivatives of the flow variables are indeterminate along
these lines. Hence, we have proven that lines do exist in the flow field along
which derivatives of the flow variables are indeterminate; earlier, we defined such
lines as characteristic lines.

Consider again point A in Figure 13.3. From our previous discussion, there are
one or more characteristic lines through point A. Question: How can we calculate
the precise direction of these characteristic lines? The answer can be obtained by
setting D = 0 in Equation (13.4). Expanding the denominator determinant in
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Equation (13.4), and setting it equal to zero, we have(
1 − u2

a2

)
(dy)2 + 2uv

a2
dx dy +

(
1 − v2

a2

)
(dx)2 = 0

or
(

1 − u2

a2

) (
dy

dx

)2

char
+ 2uv

a2

(
dy

dx

)
char

+
(

1 − v2

a2

)
= 0 (13.6)

In Equation (13.6), dy/dx is the slope of the characteristic lines; hence, the
subscript “char” has been added to emphasize this fact. Solving Equation (13.6)
for (dy/dx)char by means of the quadratic formula, we obtain(

dy

dx

)
char

= −2uv/a2 ± √
(2uv/a2)2 − 4(1 − u2/a2)(1 − v2/a2)

2(1 − u2/a2)

or
(

dy

dx

)
char

= −uv/a2 ± √
(u2 + v2)/a2 − 1

1 − u2/a2
(13.7)

From Figure 13.3, we see that u = V cos θ and v = V sin θ . Hence, Equa-
tion (13.7) becomes

(
dy

dx

)
char

= (−V 2 cos θ sin θ)/a2 ±
√

(V 2/a2)(cos2 θ + sin2 θ) − 1

1 − [(V 2/a2) cos2 θ ]
(13.8)

Recall that the local Mach angle μ is given by μ = sin−1(1/M), or sin μ = 1/M .
Thus, V 2/a2 = M2 = 1/ sin2 μ, and Equation (13.8) becomes

(
dy

dx

)
char

= (− cos θ sin θ)/ sin2 μ ±
√

(cos2 θ + sin2 θ)/ sin2 μ − 1

1 − (cos2 θ)/ sin2 μ
(13.9)

After considerable algebraic and trigonometric manipulation, Equation (13.9)
reduces to (

dy

dx

)
char

= tan(θ ∓ μ) (13.10)

Equation (13.10) is an important result; it states that two characteristic lines run
through point A in Figure 13.3, namely, one line with a slope equal to tan(θ −μ)

and the other with a slope equal to tan(θ + μ). The physical significance of this
result is illustrated in Figure 13.4. Here, a streamline through point A is inclined
at the angle θ with respect to the horizontal. The velocity at point A is V , which
also makes the angle θ with respect to the horizontal. Equation (13.10) states
that one characteristic line at point A is inclined below the streamline direction
by the angle μ; this characteristic line is labeled as C− in Figure 13.4. Equa-
tion (13.10) also states that the other characteristic line at point A is inclined above
the streamline direction by the angle μ; this characteristic line is labeled as C+ in
Figure 13.4. Examining Figure 13.4, we see that the characteristic lines through
point A are simply the left- and right-running Mach waves through point A. Hence,
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Figure 13.4 Left- and right-running characteristic lines through
point A.

the characteristic lines are Mach lines. In Figure 13.4, the left-running Mach wave
is denoted by C+, and the right-running Mach wave is denoted by C−. Hence,
returning to Figure 13.2a, the characteristics mesh consists of left- and right-
running Mach waves that crisscross the flow field. There are an infinite number
of these waves; however, for practical calculations we deal with a finite number
of waves, the intersections of which define the grid points shown in Figure 13.2a.
Note that the characteristic lines are curved in space because (1) the local Mach
angle depends on the local Mach number, which is a function of x and y, and (2)
the local streamline direction θ varies throughout the flow.

The characteristic lines in Figure 13.2a are of no use to us by themselves.
The practical consequence of these lines is that the governing partial differential
equations that describe the flow reduce to ordinary differential equations along
the characteristic lines. These equations are called the compatibility equations,
which can be found by setting N = 0 in Equation (13.4), as follows. When N = 0,
the numerator determinant yields(

1 − u2

a2

)
du dy +

(
1 − v2

a2

)
dx dv = 0

or
dv

du
= −(1 − u2/a2)

1 − v2/a2

dy

dx
(13.11)

Keep in mind that N is set to zero only when D = 0 in order to keep the
flow-field derivatives finite, albeit of the indeterminate form 0/0. When D = 0,
we are restricted to considering directions only along the characteristic lines,
as explained earlier. Hence, when N = 0, we are held to the same restriction.
Therefore, Equation (13.11) holds only along the characteristic lines. Therefore,



CHAPTER 13 Introduction to Numerical Techniques for Nonlinear Supersonic Flow 837

in Equation (13.11),

dy

dx
≡

(
dy

dx

)
char

(13.12)

Substituting Equations (13.12) and (13.7) into (13.11), we obtain

dv

du
= −1 − u2/a2

1 − v2/a2

−uv/a2 ± √
(u2 + v2)/a2 − 1

1 − u2/a2

or dv

du
= uv/a2 ∓ √

(u2 + v2)/a2 − 1

1 − v2/a2
(13.13)

Recall from Figure 13.3 that u = V cos θ and v = V sin θ . Also, (u2 + v2)/a2 =
V 2/a2 = M2. Hence, Equation (13.13) becomes

d(V sin θ)

d(V cos θ)
= M2 cos θ sin θ ∓ √

M2 − 1

1 − M2 sin2 θ

which, after some algebraic manipulations, reduces to

dθ = ∓
√

M2 − 1
dV

V
(13.14)

Examine Equation (13.14). It is an ordinary differential equation obtained from
the original governing partial differential equation, Equation (13.1). However,
Equation (13.14) contains the restriction given by Equation (13.12); that is, Equa-
tion (13.14) holds only along the characteristic lines. Hence, Equation (13.14)
gives the compatibility relations along the characteristic lines. In particular, com-
paring Equation (13.14) with Equation (13.10), we see that

dθ = −
√

M2 − 1
dV

V
(applies along the C− characteristic) (13.15)

dθ =
√

M2 − 1
dV

V
(applies along the C+ characteristic) (13.16)

Examine Equation (13.14) further. It should look familiar; indeed, Equa-
tion (13.14) is identical to the expression obtained for Prandtl-Meyer flow in
Section 9.6, namely, Equation (9.32). Hence, Equation (13.14) can be integrated
to obtain a result in terms of the Prandtl-Meyer function, given by Equation (9.42).
In particular, the integration of Equations (13.15) and (13.16) yields

θ + ν(M) = const = K− (along the C− characteristic) (13.17)

θ − ν(M) = const = K+ (along the C+ characteristic) (13.18)

In Equation (13.17), K− is a constant along a given C− characteristic; it has differ-
ent values for different C− characteristics. In Equation (13.18), K+ is a constant
along a given C+ characteristic; it has different values for different C+ characteris-
tics. Note that our compatibility relations are now given by Equations (13.17) and
(13.18), which are algebraic equations which hold only along the characteristic
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lines. In a general inviscid, supersonic, steady flow, the compatibility equations are
ordinary differential equations; only in the case of two-dimensional irrotational
flow do they further reduce to algebraic equations.

What is the advantage of the characteristic lines and their associated compat-
ibility equations discussed above? Simply this—to solve the nonlinear supersonic
flow, we need deal only with ordinary differential equations (or in the present case,
algebraic equations) instead of the original partial differential equations. Finding
the solution of such ordinary differential equations is usually much simpler than
dealing with partial differential equations.

How do we use the above results to solve a practical problem? The purpose
of the next section is to give such an example, namely, the calculation of the
supersonic flow inside a nozzle and the determination of a proper wall contour so
that shock waves do not appear inside the nozzle. To carry out this calculation,
we deal with two types of grid points: (1) internal points, away from the wall, and
(2) wall points. Characteristics calculations at these two sets of points are carried
out as follows.

13.2.1 Internal Points

Consider the internal grid points 1, 2, and 3 as shown in Figure 13.5. Assume
that we know the location of points 1 and 2, as well as the flow properties at
these points. Define point 3 as the intersection of the C− characteristic through
point 1 and the C+ characteristic through point 2. From our previous discussion,
(K−)1 = (K−)3 because K− is constant along a given C− characteristic. The
value of (K−)1 = (K−)3 is obtained from Equation (13.17) evaluated at point 1:

(K−)3 = (K−)1 = θ1 + ν1 (13.19)

Similarly, (K+)2 = (K+)3 because K+ is constant along a given C+ character-
istic. The value of (K+)2 = (K+)3 is obtained from Equation (13.18) evaluated
at point 2:

(K+)3 = (K+)2 = θ2 − ν2 (13.20)

Figure 13.5 Characteristic mesh
used for the location of point 3
and the calculation of flow
conditions at point 3, knowing the
locations and flow properties at
points 1 and 2.
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Now evaluate Equations (13.17) and (13.18) at point 3:

θ3 + ν3 = (K−)3 (13.21)

and θ3 − ν3 = (K+)3 (13.22)

In Equations (13.21) and (13.22), (K−)3 and (K+)3 are known values, obtained
from Equations (13.19) and (13.20). Hence, Equations (13.21) and (13.22) are
two algebraic equations for the two unknowns θ3 and ν3. Solving these equations,
we obtain

θ3 = 1
2 [(K−)1 + (K+)2] (13.23)

ν3 = 1
2 [(K−)1 − (K+)2] (13.24)

Knowing θ3 and ν3, all other flow properties at point 3 can be obtained as follows:

1. From ν3, obtain the associated M3 from Appendix C.
2. From M3 and the known p0 and T0 for the flow (recall that for inviscid,

adiabatic flow, the total pressure and total temperature are constants
throughout the flow), find p3 and T3 from Appendix A.

3. Knowing T3, compute a3 = √
γ RT3. In turn, V3 = M3a3.

As stated earlier, point 3 is located by the intersection of the C− and C+ char-
acteristics through points 1 and 2, respectively. These characteristics are curved
lines; however, for purposes of calculation, we assume that the characteristics are
straight-line segments between points 1 and 3 and between points 2 and 3. For ex-
ample, the slope of the C− characteristic between points 1 and 3 is assumed to be
the average value between these two points, that is, 1

2 (θ1 +θ3)− 1
2 (μ1 +μ3). Sim-

ilarly, the slope of the C+ characteristic between points 2 and 3 is approximated
by 1

2 (θ2 + θ3) + 1
2 (μ2 + μ3).

13.2.2 Wall Points

In Figure 13.6, point 4 is an internal flow point near a wall. Assume that we know
all the flow properties at point 4. The C− characteristic through point 4 intersects
the wall at point 5. At point 5, the slope of the wall θ5 is known. The flow properties
at the wall point, point 5, can be obtained from the known properties at point 4
as follows. Along the C− characteristic, K− is constant. Hence, (K−)4 = (K−)5.

C�

�5

5

4

Figure 13.6 Wall point.
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Moreover, the value of K− is known from Equation (13.17) evaluated at point 4:

(K−)4 = (K−)5 = θ4 + ν4 (13.25)

Evaluating Equation (13.17) at point 5, we have

(K−)5 = θ5 + ν5 (13.26)

In Equation (13.26), (K−)5 and θ5 are known; thus ν5 follows directly. In turn, all
other flow variables at point 5 can be obtained from ν5 as explained earlier. The
characteristic line between points 4 and 5 is assumed to be a straight-line segment
with average slope given by 1

2 (θ4 + θ5) − 1
2 (μ4 + μ5).

From the above discussion of both internal and wall points, we see that
properties at the grid points are calculated from known properties at other grid
points. Hence, in order to start a calculation using the method of characteristics,
we have to know the flow properties along some initial data line. Then we piece
together the characteristics mesh and associated flow properties by “marching
downstream” from the initial data line. This is illustrated in the next section.

We emphasize again that the method of characteristics is an exact solution
of inviscid, nonlinear supersonic flow. However, in practice, there are numerical
errors associated with the finite grid; the approximation of the characteristics mesh
by straight-line segments between grid points is one such example. In principle,
the method of characteristics is truly exact only in the limit of an infinite number
of characteristic lines.

We have discussed the method of characteristics for two-dimensional, irrota-
tional, steady flow. The method of characteristics can also be used for rotational
and three-dimensional flows, as well as unsteady flows. See Reference 21 for
more details.

13.3 SUPERSONIC NOZZLE DESIGN
In Chapter 10, we demonstrated that a nozzle designed to expand a gas from rest to
supersonic speeds must have a convergent-divergent shape. Moreover, the quasi-
one-dimensional analysis of Chapter 10 led to the prediction of flow properties as
a function of x through a nozzle of specified shape (see, e.g., Figure 10.10). The
flow properties at any x station obtained from the quasi-one-dimensional analysis
represent an average of the flow over the given nozzle cross section. The beauty
of the quasi-one-dimensional approach is its simplicity. On the other hand, its
disadvantages are (1) it cannot predict the details of the actual three-dimensional
flow in a convergent-divergent nozzle and (2) it gives no information on the proper
wall contour of such nozzles.

The purpose of the present section is to describe how the method of char-
acteristics can supply the above information which is missing from a quasi-one-
dimensional analysis. For simplicity, we treat a two-dimensional flow, as sketched
in Figure 13.7. Here, the flow properties are a function of x and y. Such a two-
dimensional flow is applicable to supersonic nozzles of rectangular cross sec-
tion, such as sketched in the insert at the top of Figure 13.7. Two-dimensional
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Figure 13.7 Schematic of supersonic nozzle design by the method of characteristics.

(rectangular) nozzles are used in many supersonic wind tunnels. They are also
the heart of gas-dynamic lasers (see Reference 1). In addition, there is current
discussion of employing rectangular exhaust nozzles on advanced military jet
airplanes envisaged for the future.

Consider the following problem. We wish to design a convergent-divergent
nozzle to expand a gas from rest to a given supersonic Mach number at the exit
Me. How do we design the proper contour so that we have shock-free, isentropic
flow in the nozzle? The answer to this question is discussed in the remainder of
this section.

For the convergent, subsonic section, there is no specific contour which is
better than any other. There are rules of thumb based on experience and guided
by subsonic flow theory; however, we are not concerned with the details here. We
simply assume that we have a reasonable contour for the subsonic section.

Due to the two-dimensional nature of the flow in the throat region, the sonic
line is generally curved, as sketched in Figure 13.7. A line called the limiting
characteristic is sketched just downstream of the sonic line. The limiting charac-
teristic is defined such that any characteristic line originating downstream of the
limiting characteristic does not intersect the sonic line; in contrast, a characteristic
line originating in the small region between the sonic line and the limiting charac-
teristic can intersect the sonic line (for more details on the limiting characteristic,
see Reference 21). To begin a method of characteristics solution, we must use an
initial data line which is downstream of the limiting characteristic.
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Let us assume that by independent calculation of the subsonic-transonic flow
in the throat region, we know the flow properties at all points on the limiting
characteristic. That is, we use the limiting characteristic as our initial data line.
For example, we know the flow properties at points 1 and 2 on the limiting char-
acteristic in Figure 13.7. Moreover, consider the nozzle contour just downstream
of the throat. Letting θ denote the angle between a tangent to the wall and the
horizontal, the section of the divergent nozzle where θ is increasing is called the
expansion section, as shown in Figure 13.7. The end of the expansion section
occurs where θ = θmax (point 8 in Figure 13.7). Downstream of this point, θ

decreases until it equals zero at the nozzle exit. The portion of the contour where
θ decreases is called the straightening section. The shape of the expansion sec-
tion is somewhat arbitrary; typically, a circular arc of large radius is used for
the expansion section of many wind-tunnel nozzles. Consequently, in addition
to knowing the flow properties along the limiting characteristic, we also have an
expansion section of specified shape; that is, we know θ1, θ5, and θ8 in Figure 13.7.
The purpose of our application of the method of characteristics now becomes the
proper design of the contour of the straightening section (from points 8 to 13 in
Figure 13.7).

The characteristics mesh sketched in Figure 13.7 is very coarse—this is done
intentionally to keep our discussion simple. In an actual calculation, the mesh
should be much finer. The characteristics mesh and the flow properties at the
associated grid points are calculated as follows:

1. Draw a C− characteristic from point 2, intersecting the centerline at point 3.
Evaluating Equation (13.17) at point 3, we have

θ3 + ν3 = (K−)3

In the above equation, θ3 = 0 (the flow is horizontal along the centerline).
Also, (K−)3 is known because (K−)3 = (K−)2. Hence, the above equation
can be solved for ν3.

2. Point 4 is located by the intersection of the C− characteristic from point 1
and the C+ characteristic from point 3. In turn, the flow properties at the
internal point 4 are determined as discussed in the last part of Section 13.2.

3. Point 5 is located by the intersection of the C+ characteristic from point 4
with the wall. Since θ5 is known, the flow properties at point 5 are
determined as discussed in Section 13.2 for wall points.

4. Points 6 through 11 are located in a manner similar to the above, and the
flow properties at these points are determined as discussed before, using the
internal point or wall point method as appropriate.

5. Point 12 is a wall point on the straightening section of the contour. The
purpose of the straightening section is to cancel the expansion waves
generated by the expansion section. Hence, there are no waves which are
reflected from the straightening section. In turn, no right-running waves
cross the characteristic line between points 9 and 12. As a result, the
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characteristic line between points 9 and 12 is a straight line, along which θ

is constant, that is, θ12 = θ9. The section of the wall contour between points
8 and 12 is approximated by a straight line with an average slope of
1
2 (θ8 + θ12).

6. Along the centerline, the Mach number continuously increases. Let us
assume that at point 11, the design exit Mach number Me is reached. The
characteristic line from points 11 to 13 is the last line of the calculation.
Again, θ13 = θ11, and the contour from point 12 to point 13 is approximated
by a straight-line segment with an average slope of 1

2 (θ12 + θ13).

The above description is intended to give you a “feel” for the application of
the method of characteristics. If you wish to carry out an actual nozzle design,
and/or if you are interested in more details, read the more complete treatments in
References 21 and 32.

Note in Figure 13.7 that the nozzle flow is symmetrical about the centerline.
Hence, the points below the centerline (1′, 2′, 3′, etc.) are simply mirror images
of the corresponding points above the centerline. In making a calculation of the
flow through the nozzle, we need to concern ourselves only with those points in
the upper half of Figure 13.7, above and on the centerline.

13.4 ELEMENTS OF FINITE-DIFFERENCE
METHODS

The method of characteristics described in the previous section legitimately can
be considered a part of computational fluid dynamics because it uses discrete al-
gebraic forms of the governing equations [such as Equations (13.17) and (13.18)]
which are solved at discrete points in the flow (the characteristic mesh illustrated in
Figure 13.5). However, most authors consider that CFD is represented by mainly
finite difference and finite volume techniques, such as are discussed in Refer-
ence 60, and the method of characteristics is usually not included in the study
of CFD. The purpose of this section is to give you the flavor of finite-difference
techniques by describing one particular method that is readily applicable to a num-
ber of compressible flow problems. The method discussed here is representative
of mainstream CFD, but it is just the tip of the iceberg of CFD. The intensive
research in CFD since 1960 has produced a multitude of different algorithms
and philosophies, and it is far beyond the scope of this book to go into the de-
tails of such work. See Reference 60 for an in-depth presentation of CFD at the
introductory level. In addition, you are strongly encouraged to read the current
literature in this regard, in particular the AIAA Journal, Computers and Fluids,
and the Journal of Computational Physics. Finally, in this chapter we are dealing
with numerical solutions of inviscid supersonic flows. See Reference 21 for an
expanded discussion of finite difference methods applied to supersonic flows.

First, recall the discrete finite difference representations for partial derivatives
that were derived in Section 2.17.2 using Taylors series. In particular, we recall
Equations (2.168), (2.171), and (2.174), repeated and renumbered, respectively,



844 PART 3 Inviscid, Compressible Flow

below for convenience:(
∂u

∂x

)
i, j

= ui+1, j − ui, j

�x
(forward difference) (13.27)

(
∂u

∂x

)
i, j

= ui, j − ui−1, j

�x
(rearward difference) (13.28)

(
∂u

∂x

)
i, j

= ui+1, j − ui−1, j

2�x
(central difference) (13.29)

Analogous expressions for the derivatives in the y direction are as follows:

(
∂u

∂y

)
i, j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui, j+1 − ui, j

�y
(forward difference)

ui, j − ui, j−1

�y
(rearward difference)

ui, j+1 − ui, j−1

2�y
(central difference)

How do we use the finite differences obtained here? Imagine that a flow in
xy space is covered by the mesh shown in Figure 13.2b. Assume there are N
grid points. At each one of these grid points, evaluate the continuity, momen-
tum, and energy equations with their partial derivatives replaced by the finite-
difference expressions derived above. For example, replacing the derivatives in
Equations (7.40), (7.42a and b), and (7.44) with finite differences, along with
Equations (7.1) and (7.6a), we obtain a system (over all N grid points) of 6N si-
multaneous nonlinear algebraic equations in terms of the 6N unknowns, namely,
ρ, u, v, p, T , and e, at each of the N grid points. In principle, we could solve this
system for the unknown flow variables at all the grid points. In practice, this is
easier said than done. There are severe problems in solving such a large number
of simultaneous nonlinear equations. Moreover, we have to deal with problems
associated with numerical instabilities that sometimes cause such attempted so-
lutions to “blow up” on the computer. Finally, and most importantly, we must
properly account for the boundary conditions. These considerations make all
finite-difference solutions a nontrivial endeavor. As a result, a number of special-
ized finite-difference techniques have evolved, directed at solving different types
of flow problems and attempting to increase computational efficiency and accu-
racy. It is beyond the scope of this book to describe these difference techniques
in detail. However, one technique in particular was widely used during the 1970s
and 1980s. This is an approach developed in 1969 by Robert MacCormack at
the NASA Ames Research Center. Because of its widespread use and acceptance
at the time, as well as its relative simplicity, we will describe MacCormack’s
technique in enough detail to give you a reasonable understanding of the method.
This description will be carried out in the context of the following example.

Consider the two-dimensional supersonic flow through the divergent duct
shown in Figure 13.8a. Assume the flow is supersonic at the inlet, and that all
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Figure 13.8 Finite-difference meshes in both the physical
and computational planes.

properties are known at the inlet. That is, the flow-field variables at grid points
(1, 1), (1, 2), (1, 3), (1, 4), and (1, 5) are known. The duct is formed by a flat
surface at the bottom and a specified contour, ys = f (x), at the top. In addition,
assume that the flow is inviscid, adiabatic, and steady, and with no body forces.
It can be rotational or irrotational—the method of solution is the same. The
governing equations are obtained from Equations (7.40), (7.42a and b), (7.44),
(7.1), and (7.6a), which yield

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (13.30)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
(13.31)

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
(13.32)

ρu
∂(e + V 2/2)

∂x
+ ρv

∂(e + V 2/2)

∂y
= −∂(pu)

∂x
− ∂(pv)

∂y
(13.33)

p = ρRT (13.34)

e = cvT (13.35)
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Let us express these equations in slightly different form, as follows. Multiplying
Equation (13.30) by u, and adding the results to Equation (13.31), we have

u
∂(ρu)

∂x
+ ρu

∂u

∂x
+ u

∂(ρv)

∂y
+ ρv

∂u

∂y
= −∂p

∂x

or
∂(ρu2)

∂x
+ ∂(ρuv)

∂y
= −∂p

∂x

or
∂

∂x
(ρu2 + p) = −∂(ρuv)

∂y
(13.36)

Similarly, multiplying Equation (13.30) by v, and adding the result to Equa-
tion (13.32), we obtain

∂(ρuv)

∂x
= −∂(ρv2 + p)

∂y
(13.37)

Multiplying Equation (13.30) by e + V 2/2, and adding the result to Equa-
tion (13.33), we obtain

∂

∂x

[
ρu

(
e + V 2

2

)
+ pu

]
= − ∂

∂y

[
ρv

(
e + V 2

2

)
+ pv

]
(13.38)

Define the following symbols:

F = ρu (13.39a)

G = ρu2 + p (13.39b)

H = ρuv (13.39c)

K = ρu
(

e + V 2

2

)
+ pu (13.39d)

Then, Equations (13.30) and (13.36) to (13.38) become

∂ F

∂x
= −∂(ρv)

∂y
(13.40)

∂G

∂x
= −∂(ρuv)

∂y
(13.41)

∂ H

∂x
= −∂(ρv2 + p)

∂y
(13.42)

∂K

∂x
= − ∂

∂y

[
ρv

(
e + V 2

2

)
+ pv

]
(13.43)

Equations (13.40) to (13.43) are the continuity, x and y momentum, and energy
equations, respectively—but in a slightly different form from those we are used
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to seeing. The above form of these equations is frequently called the conservation
form. Let us now treat F , G, H , and K as our primary dependent variables; these
quantities are called flux variables, in contrast to the usual p, ρ, T , u, v, e, etc.,
which are called primitive variables. It is important to note that once the values
of F , G, H , and K are known at a given grid point, the primitive variables at that
point can be found from Equations (13.39a to d) and

p = ρRT (13.44)

e = cvT (13.45)

V 2 = u2 + v2 (13.46)

That is, Equations (13.39a to d) and (13.44) to (13.46) constitute seven algebraic
equations for the seven primitive variables, ρ, u, v, p, e, T , and V .

Let us return to the physical problem given in Figure 13.8a. Because the
duct diverges, it is difficult to deal with an orthogonal, rectangular mesh; rather,
a mesh which conforms to the boundary of the system will be curved, as shown
in Figure 13.8a. On the other hand, to use our finite-difference quotients as given
in Equation (13.27), (13.28), or (13.29), we desire a rectangular computational
mesh. Therefore, we must transform the curved mesh shown in Figure 13.8a,
known as the physical plane, to a rectangular mesh shown in Figure 13.8b, known
as the computational plane. This transformation can be carried out as follows.
Define

ξ = x (13.47a)

η = y

ys

where ys = f (x) (13.47b)

In the above transformation, η ranges from 0 at the bottom wall to 1.0 at the
top wall. In the computational plane (Figure 13.8b), η = constant is a straight
horizontal line, whereas in the physical plane, η = constant corresponds to the
curved line shown in Figure 13.8. Because we wish to apply our finite differences
in the computational plane, we need the governing equations in terms of ξ and
η rather than x and y. To accomplish this transformation, apply the chain rule of
differentiation, using Equations (13.47a and b) as follows:

∂

∂x
= ∂

∂ξ

∂ξ

∂x
+ ∂

∂η

∂η

∂x
= ∂

∂ξ
− y

y2
s

dys

dx

∂

∂η

or
∂

∂x
= ∂

∂ξ
−

(
η

ys

dys

dx

)
∂

∂η
(13.48)

and
∂

∂y
= ∂

∂ξ

∂ξ

∂y
+ ∂

∂η

∂η

∂y
= 1

ys

∂

∂η
(13.49)
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Using Equations (13.48) and (13.49), we see that Equations (13.40) to (13.43)
become

∂ F

∂ξ
=

(
η

ys

dys

dx

) (
∂ F

∂η

)
− 1

ys

∂(ρv)

∂η
(13.50)

∂G

∂ξ
=

(
η

ys

dys

dx

)
∂G

∂η
− 1

ys

∂(ρuv)

∂η
(13.51)

∂ H

∂ξ
=

(
η

ys

dys

dx

)
∂ H

∂η
− 1

ys

∂(ρv2 + p)

∂η
(13.52)

∂K

∂ξ
=

(
η

ys

dys

dx

)
∂K

∂η
− 1

ys

∂

∂η

[
ρv

(
e + V 2

2

)
+ pv

]
(13.53)

Note in the above equations that the ξ derivatives are on the left and the η deriva-
tives are all grouped on the right.

Let us now concentrate on obtaining a numerical, finite-difference solution of
the problem shown in Figure 13.8. We will deal exclusively with the computational
plane, Figure 13.8b, where the governing continuity, x and y momentum, and
energy equations are given by Equations (13.50) to (13.53), respectively. Grid
points (1, 1), (2, 1), (1, 2), (2, 2), etc., in the computational plane are the same
as grid points (1, 1), (2, 1), (1, 2), (2, 2), etc., in the physical plane. All the flow
variables are known at the inlet, including F , G, H , and K . The solution for
the flow variables downstream of the inlet can be found by using MacCormack’s
method, which is based on Taylor’s series expansions for F , G, H , and K as
follows:

Fi+1, j = Fi, j +
(

∂ F

∂ξ

)
ave

�ξ (13.54a)

Gi+1, j = Gi, j +
(

∂G

∂ξ

)
ave

�ξ (13.54b)

Hi+1, j = Hi, j +
(

∂ H

∂ξ

)
ave

�ξ (13.54c)

Ki+1, j = Ki, j +
(

∂K

∂ξ

)
ave

�ξ (13.54d)

In Equations (13.54a to d), F , G, H , and K at point (i, j) are considered known,
and these equations are used to find F , G, H , and K at point (i + 1, j) assum-
ing that we can calculate the values of (∂ F/∂ξ)ave, (∂G/∂ξ)ave, etc. The main
thrust of MacCormack’s method is the calculation of these average derivatives.
Examining Equations (13.54a to d), we find that this finite-difference method is
clearly a “down-stream marching” method; given the flow at point (i, j) we use
Equations (13.54a to d) to find the flow at point (i + 1, j). Then the process is
repeated to find the flow at point (i + 2, j), etc. This downstream marching is
similar to that performed with the method of characteristics.
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The average derivatives in Equations (13.54a to d) are found by means of a
straightforward “predictor-corrector” approach, outlined below. In carrying out
this approach, we assume that the flow properties are known at grid point (i, j),
as well as at all points directly above and below (i, j), namely, at (i, j + 1),
(i, j + 2), (i, j − 1), (i, j − 2), etc.

13.4.1 Predictor Step

First, predict the value of Fi+1, j by using a Taylor series where ∂ F/∂ξ is evaluated
at point (i, j). Denote this predicted value by F̄i+1, j :

F̄i+1, j = Fi, j +
(

∂ F

∂ξ

)
i, j

�ξ (13.55)

In Equation (13.55), (∂ F/∂ξ)i, j is obtained from the continuity equation, Equa-
tion (13.50), using forward differences for the η derivatives; that is,(

∂ F

∂ξ

)
i, j

=
(

η

ys

dys

dx

)
i, j

(
Fi, j+1 − Fi, j

�η

)
− 1

ys

[
(ρv)i, j+1 − (ρv)i, j

�η

]
(13.56)

In Equation (13.56), all quantities on the right-hand side are known and allow
the calculation of (∂ F/∂ξ)i, j which is, in turn, inserted into Equation (13.55). A
similar procedure is used to find predicted values of G, H , and K , namely, Ḡi+1, j ,
H̄i+1, j , and K̄i+1, j , using forward differences in Equations (13.51) to (13.53). In
turn, predicted values of the primitive variables, p̄i+1, j , ρ̄i+1, j , etc., can be obtained
from Equations (13.39a to d) and (13.44) to (13.46).

13.4.2 Corrector Step

The predicted values obtained above are used to obtain predicted values of the
derivative (∂ F/∂ξ)i+1, j , using rearward differences in Equation (13.50):(

∂ F

∂ξ

)
i+1, j

=
(

η

ys

dys

dx

)
i+1, j

F̄i+1, j − F̄i+1, j−1

�η
− 1

ys

(ρv)i+1, j − (ρv)i+1, j−1

�η

(13.57)
In turn, the results from Equations (13.56) and (13.57) allow the calculation of
the average derivative(

∂ F

∂ξ

)
ave

= 1

2

⎡
⎣(

∂ F

∂ξ

)
i, j

+
(

∂ F

∂ξ

)
i+1, j

⎤
⎦ (13.58)

Finally, this average derivative is used in Equation (13.54a) to obtain the corrected
value of Fi+1, j . The same process is followed to find the corrected values of Gi+1, j ,
Hi+1, j , and Ki+1, j using rearward differences in Equations (13.51) to (13.53)
and calculating the average derivatives (∂G/∂ξ)ave, etc., in the same manner as
Equation (13.58).

The above finite-difference procedure allows the step-by-step calculation of
the flow field, marching downstream from some initial data line. In the flow given
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in Figure 13.8, the initial data line is the inlet, where properties are considered
known. Although all the calculations are carried out in the transformed, com-
putational plane, the flow-field results obtained at points (2, 1), (2, 2), etc., in
the computational plane are the same values at points (2, 1), (2, 2), etc., in the
physical plane.

There are other aspects of the finite-difference solution which have not been
described above. For example, what values of �η and �ξ in Equations (13.54a
to d), (13.55), (13.56), and (13.57) are allowed in order to maintain numerical
stability? How is the flow-tangency condition at the walls imposed on the finite-
difference calculations? These are important matters, but we do not take the
additional space to discuss them here. See Chapter 11 of Reference 21 for details
on these questions. Our purpose here has been to give you only a feeling for the
nature of the finite-difference method.

13.5 THE TIME-DEPENDENT TECHNIQUE:
APPLICATION TO SUPERSONIC BLUNT
BODIES

The method of characteristics described in Section 13.2 is applicable only to su-
personic flows; the characteristic lines are not defined in a practical fashion for
steady, subsonic flow. Also, the particular finite-difference method outlined in
Section 13.4 applies only to supersonic flows; if it were to be used in a locally
subsonic region, the calculation would blow up. The reason for both of the above
comments is that the method of characteristics and the steady flow, forward-
marching finite-difference technique depend on the governing equations being
mathematically “hyperbolic.” In contrast, the equations for steady subsonic flow
are “elliptic.” (See Reference 21 for a description of these mathematical classifi-
cations.) The fact that the governing equations change their mathematical nature
in going from locally supersonic to locally subsonic flow has historically caused
theoretical aerodynamicists much grief. One problem in particular, namely, the
mixed subsonic-supersonic flow over a supersonic blunt body as described in
Section 9.5, was a major research area until a breakthrough was made in the
late 1960s for its proper numerical solution. The purpose of this section is to de-
scribe a numerical finite-difference solution which readily allows the calculation
of mixed subsonic-supersonic flows—the time-dependent method—and to show
how it is used to solve supersonic blunt-body flows. Time-dependent techniques
are very common in modern computational fluid dynamics, and as a student of
aerodynamics, you should be familiar with their philosophy. These techniques
are also called time-marching techniques because the solutions are obtained by
marching in steps of time.

Consider a blunt body in a supersonic stream, as sketched in Figure 13.9a.
The shape of the body is known and is given by b = b(y). For a given freestream
Mach number M∞, we wish to calculate the shape and location of the detached
shock wave, as well as the flow-field properties between the shock and the body.
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Figure 13.9 Blunt-body flow field in both the physical
and computational planes.

The physical aspects of this flow field were described in Section 9.5, which you
should review before progressing further.

The flow around a blunt body in a supersonic stream is rotational. Why?
Examine Figure 13.10, which illustrates several streamlines around the blunt
body. The flow is inviscid and adiabatic. In the uniform freestream ahead of the
shock wave, the entropy is the same for each streamline. However, in crossing
the shock wave, each streamline traverses a different part of the wave, and hence
experiences a different increase in entropy. That is, the streamline at point a in
Figure 13.10 crosses a normal shock, and hence experiences a large increase in
entropy, whereas the streamline at point b crosses a weaker, oblique shock, and
therefore experiences a smaller increase in entropy, sb < sa . The streamline at
point c experiences an even weaker portion of the shock, and hence sc < sb < sa .
The net result is that in the flow between the shock and the body, the entropy along
a given streamline is constant, whereas the entropy changes from one streamline
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Figure 13.10 In a supersonic blunt-body flow field, the
entropy is different for different streamlines.

to the next; that is, an entropy gradient exists normal to the streamlines. It can
readily be shown (see Section 9.5.1) that an adiabatic flow with entropy gradients
is rotational. Hence, the flow field over a supersonic blunt body is rotational.

In light of the above, we cannot use the velocity potential equation to analyze
the blunt-body flow. Rather, the basic continuity, momentum, and energy equa-
tions must be employed in their fundamental form, given by Equations (7.40),
(7.42a and b), and (7.44). With no body forces, these equations are

Continuity:
∂ρ

∂t
= −

(
∂(ρu)

∂x
+ ∂(ρv)

∂y

)
(13.59)

x momentum:
∂u

∂t
= −

(
u

∂u

∂x
+ v

∂u

∂y
+ 1

ρ

∂p

∂x

)
(13.60)

y momentum:
∂v

∂t
= −

(
u

∂v

∂x
+ v

∂v

∂y
+ 1

ρ

∂p

∂y

)
(13.61)

Energy:
∂(e + V 2/2)

∂t
= −

(
u

∂(e + V 2/2)

∂x
+ v

∂(e + V 2/2)

∂y
(13.62)

+ 1

ρ

∂(pu)

∂x
+ 1

ρ

∂(pv)

∂y

)
Notice the form of the above equations; the time derivatives are on the left, and
all spatial derivatives are on the right. These equations are in the form necessary
for a time-dependent finite-difference solution, as described below.

Return to Figure 13.9a. Recall that the body shape and freestream conditions
are given, and we wish to calculate the shape and location of the shock wave as
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Figure 13.11 Schematic of the time variation of a typical
flow variable—the time-dependent method.

well as the flow field between the shock and body. We are interested in the steady
flow over the blunt body; however, we use a time-dependent method to obtain the
steady flow. The basic philosophy of this method is as follows. First, assume a
shock-wave shape and location. Also, cover the flow field between the shock and
body with a series of grid points, as sketched in Figure 13.9a. At each of these grid
points, assume values of all the flow variables, ρ, u, v, etc. These assumed values
are identified as initial conditions at time t = 0. With these assumed values, the
spatial derivatives on the right sides of Equations (13.59) to (13.62) are known
values (obtained from finite differences). Hence, Equations (13.59) to (13.62)
allow the calculation of the time derivatives ∂ρ/∂t , ∂u/∂t , etc. In turn, these time
derivatives allow us to calculate the flow properties at each grid point at a later
instant in time, say, �t . The flow properties at time t = �t are different from at
t = 0. A repetition of this cycle gives the flow-field variables at all grid points at
time t = 2�t . As this cycle is repeated many hundreds of times, the flow-field
properties at each grid point are calculated as a function of time. For example,
the time variation of ui, j is sketched in Figure 13.11. At each time step, the value
of ui, j is different; however, at large times the changes in ui, j from one time
step to another become small, and ui, j approaches a steady-state value, as shown
in Figure 13.11. It is this steady-state value that we want; the time-dependent
approach is simply a means to that end. Moreover, the shock-wave shape and
location will change with time; the new shock location and shape at each time
step are calculated so as to satisfy the shock relations across the wave at each
of the grid points immediately behind the wave. At large times, as the flow-field
variables approach a steady state, the shock shape and location also approach a
steady state. Because of the time-dependent motion of the shock wave, the wave
shape is a function of both t and y as shown in Figure 13.9a, s = s(y, t).

Given this philosophy, let us examine a few details of the method. First, note
that the finite-difference grid in Figure 13.9a is curved. We would like to apply
our finite differences in a rectangular grid; hence, in Equations (13.59) to (13.62)
the independent variables can be transformed as

ξ = x − b

s − b
and η = y
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where b = b(y) gives the abscissa of the body and s = s(y, t) gives the abscissa
of the shock. The above transformation produces a rectangular grid in the compu-
tational plane, shown in Figure 13.9b, where the body corresponds to ξ = 0 and
the shock corresponds to ξ = 1. All calculations are made in this transformed,
computational plane.

The finite-difference calculations themselves can be carried out using
MacCormack’s method (see Section 13.4) applied as follows. The flow-field vari-
ables can be advanced in time using a Taylor series in time; for example,

ρi, j (t + �t) = ρi, j (t) +
[(

∂ρ

∂t

)
i, j

]
ave

�t (13.63)

In Equation (13.63), we know the density at grid point (i, j) at time t ; that is,
we know ρi, j (t). Then Equation (13.63) allows us to calculate the density at the
same grid point at time t + �t , that is, ρi, j (t + �t), if we know a value of the
average time derivative [(∂ρ/∂t)i, j ]ave. This time derivative is an average between
times t and t + �t and is obtained from a predictor-corrector process as follows.

13.5.1 Predictor Step

All the flow variables are known at time t at all the grid points. This allows us to
replace the spatial derivatives on the right of Equations (13.59) to (13.62) (suitably
transformed into ξη space) with known forward differences. These equations then
give values of the time derivatives at time t , which are used to obtain predicted
values of the flow-field variables at time t + �t ; for example,

ρ̄i, j (t + �t) = ρi, j (t) +
[(

∂ρ

∂t

)
i, j

]
t

�t

where ρi, j (t) is known, [(∂ρ/∂t)i, j ]t is obtained from the governing equation,
Equation (13.59) (suitably transformed), using forward differences for the spatial
derivatives, and ρ̄i, j (t + �t) is the predicted density at time t + �t . Predicted
values of all other flow variables ūi, j (t + �t), etc., are obtained at all the grid
points in a likewise fashion.

13.5.2 Corrector Step

Inserting the flow variables obtained above into the governing equations, Equa-
tions (13.59) to (13.62), using rearward differences for the spatial derivatives,
predicted values of the time derivatives at t + �t are obtained, for example,
[(∂ρ/∂t)i, j ](t+�t). In turn, these are averaged with the time derivatives from the
predictor step to obtain; for example,[(

∂ρ

∂t

)
i, j

]
ave

= 1

2

⎧⎨
⎩

[(
∂ρ

∂t

)
i, j

]
t

+
⎡
⎣(

∂ρ

∂t

)
i, j

⎤
⎦

(t+�t)

⎫⎬
⎭ (13.64)
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Finally, the average time derivative obtained from Equation (13.64) is inserted
into Equation (13.63) to yield the corrected value of density at time t + �t . The
same procedure is used for all the dependent variables, u, v, etc.

Starting from the assumed initial conditions at t = 0, the repeated appli-
cation of Equation (13.63) along with the above predictor-corrector algorithm
at each time step allows the calculation of the flow-field variables and shock
shape and location as a function of time. As stated above, after a large number
of time steps, the calculated flow-field variables approach a steady state, where
[(∂ρ/∂t)i, j ]ave → 0 in Equation (13.63). Once again, we emphasize that we are
interested in the steady-state answer, and the time-dependent technique is simply
a means to that end.

Note that the applications of MacCormack’s technique to both the steady
flow calculations described in Section 13.4 and the time-dependent calculations
described in the present section are analogous; in the former, we march forward
in the spatial coordinate x , starting with known values along with a constant y
line, whereas in the latter, we march forward in time starting with a known flow
field at t = 0.

Why do we bother with a time-dependent solution? Is it not an added com-
plication to deal with an extra independent variable t in addition to the spatial
variables x and y? The answers to these questions are as follows. The governing
unsteady flow equations given by Equations (13.59) to (13.62) are hyperbolic with
respect to time, independent of whether the flow is locally subsonic or supersonic.
In Figure 13.9a, some of the grid points are in the subsonic region and others are
in the supersonic region. However, the time-dependent solution progresses in the
same manner at all these points, independent of the local Mach number. Hence,
the time-dependent technique is the only approach known today which allows the
uniform calculation of a mixed subsonic-supersonic flow field of arbitrary extent.
For this reason, the application of the time-dependent technique, although it adds
one additional independent variable, allows the straightforward solution of a flow
field which is extremely difficult to solve by a purely steady-state approach.

A much more detailed description of the time-dependent technique is given
in Chapter 12 of Reference 21, and especially in Reference 7, which you should
study before attempting to apply this technique to a specific problem. The intent
of our description here has been to give you simply a “feeling” for the philosophy
and general approach of the technique.

Some typical results for supersonic blunt-body flow fields are given in Fig-
ures 13.12 to 13.15. These results were obtained with a time-dependent solution
described in Reference 33. Figures 13.12 and 13.13 illustrate the behavior of a
time-dependent solution during its approach to the steady state. In Figure 13.12,
the time-dependent motion of the shock wave is shown for a parabolic cylinder
in a Mach 4 freestream. The shock labeled 0 �t is the initially assumed shock
wave at t = 0. At early times, the shock wave rapidly moves away from the body;
however, after about 300 time steps, it has slowed considerably, and between
300 and 500 time steps, the shock wave is virtually motionless—it has reached
its steady-state shape and location. The time variation of the stagnation point
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Sonic point
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Figure 13.12 Time-dependent shock-wave motion, parabolic cylinder, M∞ = 4.

Figure 13.13 Time variation of stagnation point pressure, parabolic cylinder,
M∞ = 4.

pressure is given in Figure 13.13. Note that the pressure shows strong timewise
oscillations at early times, but then it asymptotically approaches a steady value
at large times. Again, it is this asymptotic steady state that we want, and the
intermediate transient results are just a means to that end. Concentrating on just
the steady-state results, Figure 13.14 gives the pressure distribution (nondimen-
sionalized by stagnation point pressure) over the body surface for the cases of
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Figure 13.14 Surface pressure distributions, parabolic cylinder.

Figure 13.15 Shock shapes and sonic lines, parabolic cylinder.

both M∞ = 4 and 8. The time-dependent numerical results are shown as the solid
curves, whereas the open symbols are from newtonian theory, to be discussed
in Chapter 14. Note that the pressure is a maximum at the stagnation point and
decreases as a function of distance away from the stagnation point—a variation
that we most certainly would expect based on our previous aerodynamic experi-
ence. The steady shock shapes and sonic lines are shown in Figure 13.15 for the
cases of M∞ = 4 and 8. Note that as the Mach number increases, the shock wave
moves closer to the body.
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13.6 FLOW OVER CONES
Return to Section 9.3 and review the comparison between the supersonic flow
over a wedge and that over a right-circular cone at zero angle of attack. In par-
ticular, examine again Figure 9.16, which illustrates the Mach 2 flow over a 20◦

half-angle wedge and over a 20◦ half-angle cone. Recall that the flow over the
cone experiences a three-dimensional relieving effect that results in a weaker
shock wave, a lower surface pressure, and curved streamlines behind the shock in
comparison to the purely two-dimensional flow over the wedge. This flow over
the cone is a special degenerate case of three-dimensional flow, and is governed by
nonlinear differential equations that must be solved numerically. For this reason,
and also because of the fundamental importance of conical flow in supersonic
aerodynamics, we conclude this chapter on numerical techniques with a detailed
discussion of such flow. Moreover, the results of this section will carry over to
the next chapter when we discuss the design of hypersonic waveriders.

Consider a body of revolution (a body generated by rotating a given planar
curve about a fixed axis) at zero angle of attack as shown in Figure 13.16. A
cylindrical coordinate system (r , �, z) is drawn, with the z axis as the axis of
symmetry aligned in the direction of V∞. By inspection of Figure 13.16, the flow
field must be symmetric about the z axis; i.e., all properties are independent of �:

∂

∂φ
≡ 0

The flowfield depends only on r and z. As first introduced at the end of Section 6.3,
such a flow is defined as axisymmetric flow. It is a flow that takes place in three-
dimensional space; however, because there are only two independent variables,
r and z, axisymmetric flow is sometimes called “quasi-two-dimensional” flow.

In this section, we will further specialize to the case of a sharp right-circular
cone in a supersonic flow, as sketched in Figure 13.17. This case is important for
three reasons.

1. The nonlinear equations of motion lend themselves to a straightforward
exact, albeit numerical, solution for this case.

2. The supersonic flow over a cone is of great practical importance in applied
aerodynamics; the nose cones of many high-speed missiles and projectiles
are approximately conical, as are the nose regions of the fuselages of most
supersonic airplanes.

Figure 13.16 Cylindrical coordinate system for an axisymmetric body.
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Figure 13.17 Supersonic flow over a cone.

3. The first solution for the supersonic flow over a cone was obtained by A.
Busemann in 1929, long before supersonic flow became fashionable (see
Reference 93). This solution was essentially graphical, and illustrated some
of the important physical phenomena. A few years later, in 1933, G. I.
Taylor and J. W. Macoll (see Reference 94) presented a numerical solution
that is a hallmark in the evolution of compressible flow. Therefore, the
study of conical flow is of historical significance. Moreover, the
Taylor-Maccoll solution for the supersonic flow over a cone is a classic case
in inviscid supersonic aerodynamics.

13.6.1 Physical Aspects of Conical Flow

Consider a sharp cone of semivertex angle θc, sketched in Figure 13.17. Assume
this cone extends to infinity in the downstream direction (a semi-infinite cone).
The cone is in a supersonic flow, and hence an oblique shock wave is attached
at the vertex. The shape of this shock wave is also conical. A streamline from
the supersonic freestream discontinuously defects as it traverses the shock, and
then curves continuously downstream of the shock, becoming parallel to the
cone surface asymptotically at infinity. Contrast this flow with that over a two-
dimensional wedge (Figure 9.16a) where all streamlines behind the shock are
immediately parallel to the wedge surface.

Because the cone extends to infinity, distance along the cone becomes mean-
ingless: If the pressure were different at the 1- and 10-m stations along the surface
of the cone, then what would it become at infinity? This presents a dilemma that
can be reconciled only by assuming that the pressure is constant along the surface
of the cone, as well as that all other flow properties are also constant. Since the
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cone surface is simply a ray from the vertex, consider other such rays between the
cone surface and the shock wave, as illustrated by the dashed line in Figure 13.17.
It only makes sense to assume that the flow properties are constant along these
rays as well. Indeed, the definition of conical flow is where all flow properties are
constant along rays from a given vertex. The properties vary from one ray to the
next. This aspect of conical flow has been experimentally proven. Theoretically,
it results from the lack of a meaningful scale length for a semi-infinite cone.

13.6.2 Quantitative Formulation

Consider the superimposed cartesian and spherical coordinate systems sketched
in Figure 13.18a. The z axis is the axis of symmetry for the right-circular cone,
and V∞ is oriented in the z direction. The flow is axisymmetric; properties are
independent of �. Therefore, the picture can be reoriented as shown in Fig-
ure 13.18b, where r and θ are the two independent variables and V∞ is now
horizontal. At any point e in the flow field, the radial and normal components of
velocity are Vr and Vθ , respectively. Our objective is to solve for the flow field
between the body and the shock wave. Recall that for axisymmetric conical flow

∂

∂θ
≡ 0 (axisymmetric flow)

∂

∂r
≡ 0 (flow properties are constant along a ray from the vertex)

The continuity equation for steady flow is Equation (2.54):

∇ · (ρV) = 0

The divergence of a vector in spherical coordinates is given by Equation 2.21.
Thus, in terms of spherical coordinates, Equation (2.54) becomes

∇ · (ρV) = 1

r 2

∂

∂r
(r 2ρVr ) + 1

r sin θ

∂

∂θ
(ρVθ sin θ) + 1

r sin θ

∂(ρVφ)

∂φ
= 0 (13.65)

Evaluating the derivatives, and applying the above conditions for axisymmetric
conical flow, we see that Equation (13.65) becomes

1

r 2

[
r 2 ∂(ρVr )

∂r
+ ρVr (2r)

]
+ 1

r sin θ

[
ρVθ cos θ + sin θ

∂(ρVθ )

∂θ

]
+ 1

r sin θ

∂(ρVθ )

∂φ
= 0

2ρVr

r
+ ρVθ

r
cot θ + 1

r

(
ρ

∂Vθ

∂θ
+ Vθ

∂ρ

∂θ

)
= 0

2ρVr + ρVθ cot θ + ρ
∂Vθ

∂θ
+ Vθ

∂ρ

∂θ
= 0

(13.66)

Equation (13.66) is the continuity equation for axisymmetric conical flow.
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Figure 13.18 Spherical coordinate system for a cone.

Return to the conical flow field sketched in Figures 13.17 and 13.18. The
shock wave is straight, and hence the increase in entropy across the shock is the
same for all streamlines. Consequently, throughout the conical flow field, ∇s = 0.
Moreover, the flow is adiabatic and steady, and hence Equation 7.55 dictates that
�ho = 0. In an inviscid compressible flow, entropy gradients ∇s, gradients in
total enthalpy �ho, and vorticity ∇ × V, are related through Crocco’s theorem,
derived in Reference 21, and given here without proof:

T ∇s = ∇ho − V × (∇ × V) (13.67)
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For the conical flow considered here, since ∇s = ∇ho = 0, Equation (13.67)
gives

∇ × V = 0

Hence, the conical flow field is irrotational. Crocco’s theorem is derived on
the basis of both the momentum and energy equations. Therefore, the relation
∇ × V = 0 can be used in place of either one. In spherical coordinates,

∇ × V = 1

r 2 sin θ

∣∣∣∣∣∣∣∣∣
er reθ (r sin θ)eφ

∂

∂r

∂

∂θ

∂

∂φ

Vr r Vθ (r sin θ)Vφ

∣∣∣∣∣∣∣∣∣
= 0 (13.68)

where er , eθ , and eφ are unit vectors in the r , θ , and φ directions, respectively.
Expanded, Equation (13.68) becomes

∇ × V = 1

r 2 sin θ

{
er

[
∂

∂θ
(r Vφ sin θ) − ∂

∂φ
(r Vθ )

]

− reθ

[
∂

∂r
(r Vφ sin θ) − ∂

∂φ
(Vr )

]

+ (r sin θ)eφ

[
∂

∂r
(r Vθ − ∂Vr

∂θ

]}
= 0 (13.69)

Applying the axisymmetric conical flow conditions, Equation (13.69) dramati-
cally simplifies to

Vθ ≡ ∂Vr

∂θ
(13.70)

Equation (13.70) is the irrotationality condition for axisymmetric conical flow.
Since the flow is irrotational, we can apply Euler’s equation in any direction

in the form of Equation (3.12):

dp = −ρV dV

where

V 2 = V 2
r + V 2

θ

Hence, Equation (3.12) becomes

dp = −ρ(Vr dVr + Vθ dVθ ) (13.71)

Recall that, for isentropic flow,

dp

dρ
≡

(
∂p

∂ρ

)
s

= a2
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Thus, Equation (13.71) becomes

dρ

ρ
= − 1

a2
(Vr dVr + Vθ dVθ ) (13.72)

From Equation (7.55), and defining a new reference velocity Vmax as the maximum
theoretical velocity obtainable from a fixed reservoir condition (when V = Vmax,
the flow has expanded theoretically to zero temperature, hence h = 0), we have

ho = const = h + V2

2
= V 2

max

2

Note that Vmax is a constant for the flow and is equal to
√

2ho. For a calorically
perfect gas, the above becomes

a2

γ − 1
+ V 2

2
= V 2

max

2

or

a2 = γ − 1

2

(
V 2

max − V 2) = γ − 1

2

(
V 2

max − V 2
r − V 2

θ

)
(13.73)

Substituting Equation (13.73) into (13.72),

dρ

ρ
= − 2

γ − 1

(
Vr dVr + Vθ dVθ

V 2
max − V 2

r − V 2
θ

)
(13.74)

Equation (13.74) is essentially Euler’s equation in a form useful for studying
conical flow.

Equations (13.66), (13.70), and (13.74) are three equations with three depen-
dent variables: ρ, Vr , and Vθ . Due to the axisymmetric conical flow conditions,
there is only one independent variable, namely θ . Hence, the partial derivatives in
Equations (13.66) and (13.70) are more properly written as ordinary derivatives.
From Equation (13.66),

2Vr + Vθ cot θ + dVθ

dθ
+ Vθ

ρ

dρ

dθ
= 0 (13.75)

From Equation (13.74),

dρ

dθ
= − 2ρ

γ − 1

⎛
⎜⎜⎝ Vr

dVr

dθ
+ Vθ

dVθ

dθ
V 2

max − V 2
r − V 2

θ

⎞
⎟⎟⎠ (13.76)

Substituting Equation (13.76) into Equation (13.75),

2Vr + Vθ cot θ + dVθ

dθ
− 2Vθ

γ − 1

⎛
⎜⎜⎝ Vr

dVr

dθ
+ Vθ

dVθ

dθ
V 2

max − V 2
r − V 2

θ

⎞
⎟⎟⎠ = 0
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or

γ − 1

2

(
V 2

max − V 2
r − V 2

θ

) (
2Vr + Vθ cot θ + dVθ

dθ

)
− Vθ

(
Vr

dVr

dθ
+ Vθ

dVθ

dθ

)
= 0

(13.77)

Recall from Equation (13.70)

Vθ = dVr

dθ

Hence,

dVθ

dθ
= d2Vr

dθ2

Substituting this result into Equation (13.77), we have

γ − 1

2

[
V 2

max − V 2
r −

(
dVr

dθ

)2
] [

2Vr + dVr

dθ
cot θ + d2Vr

dθ2

]

− dVr

dθ

[
Vr

dVr

dθ
+ dVr

dθ

(
d2Vr

dθ2

)]
= 0

(13.78)

Equation (13.78) is the Taylor-Maccoll equation for the solution of conical flows.
Note that it is an ordinary differential equation, with only one dependent variable,
Vr . Its solution gives Vr = f (θ); Vθ follows from Equation (13.70), namely,

Vθ = dVr

dθ
(13.79)

There is no closed-form solution to Equation (13.78); it must be solved numeri-
cally. To expedite the numerical solution, define the nondimensional velocity V ′

as

V ′ ≡ V

Vmax

Then, Equation (13.78) becomes

γ − 1

2

[
1 − V ′2

r −
(

dV ′
r

dθ

)2
] [

2V ′
r + dV ′

r

dθ
cot θ + d2V ′

r

dθ2

]

− dV ′
r

dθ

[
V ′

r

dV ′
r

dθ
+ dV ′

r

dθ

(
d2V ′

r

dθ2

)]
= 0 (13.80)
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The nondimensional velocity V ′ is a function of Mach number only. To see this
more clearly recall that

h + V 2

2
= V 2

max

2
a2

γ − 1
+ V 2

2
= V 2

max

2

1

γ − 1
+

(
a

V

)2

+ 1

2
= 1

2

(
Vmax

V

)2

2

γ − 1
+

(
1

M

)2

+ 1 =
(

Vmax

V

)2

V

Vmax
≡ V ′ =

[
2

(γ − 1)M2
+ 1

]−1/2

(13.81)

Clearly, from Equation (13.81), V ′ = f (M); given M , we can always find V ′, or
vice versa.

13.6.3 Numerical Procedure

For the numerical solution of the supersonic flow over a right-circular cone, we
will employ an inverse approach. By this, we mean that a given shock wave will be
assumed, and the particular cone that supports the given shock will be calculated.
This is in contrast to the direct approach, where the cone is given and the flow
field and shock wave are calculated. The numerical procedure is as follows:

1. Assume a shock wave angle θs and a freestream Mach number M∞, as
sketched in Figure 13.19. From this, the Mach number and flow deflection
angle, M2 and δ, respectively, immediately behind the shock can be found
from the oblique shock relations. Note that, contrary to our previous
practice, the flow deflection angle is here denoted by δ so as not to confuse
it with the polar coordinate θ .

2. From M2 and δ, the radial and normal components of flow velocity, V ′
r

and V ′
θ , respectively, directly behind the shock can be found from the

geometry of Figure 13.19. Note that V ′ is obtained by inserting M2 into
Equation (10.16).

3. Using the above value of V ′
r directly behind the shock as a boundary

value, solve Equation (13.81) for V ′
r numerically in steps of θ , marching

away from the shock. Here, the flow field is divided into incremental angles
�θ , as sketched in Figure 13.19. The ordinary differential equation
[Equation (13.80)] can be solved at each �θ using any standard numerical
solution technique, such as the Runge-Kutta method.

4. At each increment in θ , the value of V ′
θ is calculated from Equation (13.79).

At some value of θ , namely θ = θc, we will find V ′
θ = 0. The normal

component of velocity at an impermeable surface is zero. Hence, when
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Figure 13.19 Geometry for the numerical solution of flow over a cone.

V ′
θ = 0 at θ = θc then θc must represent the surface of the particular cone

that supports the shock wave of given wave angle θs at the given Mach
number M∞ as assumed in step 1. That is, the cone angle compatible with
M∞ and θs is θc. The value of V ′

r at θc gives the Mach number along the
cone surface via Equation (13.81).

5. In the process of steps 1 through 4 here, the complete velocity flow field
between the shock and the body has been obtained. Note that, at each point
(or ray), V ′ = √

(V ′
r )

2 + (V ′
θ )

2 and M follow from Equation (13.81). The
pressure, density, and temperature along each ray can then be obtained from
the isentropic relations, Equations (8.42), (8.43), and (8.40).

If a different value of M∞ and/or θs is assumed in step 1, a different flow
field and cone angle θc will be obtained from steps 1 through 5. By a repeated
series of these calculations, tables or graphs of supersonic cone properties can
be generated. Such tables exist in the literature, the most common being those of
Kopal (Reference 95) and Sims (Reference 96).

13.6.4 Physical Aspects of Supersonic Flow over Cones

Some typical numerical results obtained from the solution in Section 13.6.3 are
illustrated in Figure 13.20, which gives the shock wave angle θs as a function of
cone angle θc with M∞ as a parameter. Figure 13.20 for cones is analogous to
Figure 9.9 for two-dimensional wedges; the two figures are qualitatively similar,
but the numbers are different.
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Figure 13.20 θc-θs-M diagram for cones in supersonic flow. (The top
portion of the curves curls back for the strong-shock solution, which is
not shown here.)

Examine Figure 13.20 closely. Note that, for a given cone angle θc and given
M∞, there are two possible oblique shock waves—the strong- and weak-shock
solutions. This is directly analogous to the two-dimensional case discussed in
Chapter 9. The weak solution is almost always observed in practice on real finite
cones; however, it is possible to force the strong-shock solution by independently
increasing the back pressure near the base of the cone.

Also note from Figure 13.20 that, for a given M∞, there is a maximum cone
angle θcmax , beyond which the shock becomes detached. This is illustrated in Fig-
ure 13.21. When θc > θcmax , there exists no Taylor-Maccoll solution as given here;
instead, the flow field with a detached shock must be solved by techniques such
as those discussed in Section 13.5.

In comparison to the two-dimensional flow over a wedge, the three-
dimensional flow over a cone has an extra dimension in which to expand. This
“three-dimensional relieving effect” was discussed in Section 9.3, which should
now be reviewed by the reader. In particular, recall from Figure 9.16 that the shock
wave on a cone of given angle is weaker than the shock wave on a wedge of the
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Figure 13.21 Attached and detached shock waves on cones.

same angle. It therefore follows that the cone experiences a lower surface pressure,
temperature, density, and entropy than the wedge. It also follows that, for a given
M∞, the maximum allowable cone angle for an attached shock solution is greater
than the maximum wedge angle. This is clearly demonstrated in Figure 13.22.

Figure 13.22 Comaparison of shock wave angles for
wedges and cones at Mach 2.
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Figure 13.23 Some supersonic conical flow fields are characterized by an
isentropic compression to subsonic velocities near the cone surface.

Finally, the numerical results show that any given streamline between the
shock wave and cone surface is curved, as sketched in Figure 13.23, and asymp-
totically becomes parallel to the cone surface at infinity. Also, for most cases,
the complete flow field between the shock and the cone is supersonic. However,
if the cone angle is large enough, but still less than θcmax , there are some cases
where the flow becomes subsonic near the surface. This case is illustrated in Fig-
ure 13.23, where one of the rays in the flow field becomes a sonic line. In this
case, we see one of the few instances in nature where a supersonic flow field
is actually isentropically compressed from supersonic to subsonic velocities. A
transition from supersonic to subsonic flow is almost invariably accompanied by
shock waves, as discussed in Chapter 8. However, flow over a cone can be an
exception to this observation.

13.7 SUMMARY
We have now completed both branches of our road map shown in Figure 13.1.
Make certain that you feel comfortable with all the material represented by this
road map. A short summary of the highlights is given below:

For a steady, two-dimensional, irrotational, supersonic flow, the characteristic
lines are Mach lines, and the compatibility equations which hold along these
characteristic lines are

θ + ν = K− (along a C− characteristic)

and θ − ν = K+ (along a C+ characteristic)

The numerical solution of such a flow can be carried out by solving the compat-
ibility equation along the characteristic lines in a step-by-step fashion, starting
from an appropriate initial data line.



870 PART 3 Inviscid, Compressible Flow

The contour of a supersonic nozzle can be obtained by applying the method
of characteristics downstream of the limiting characteristic (which is usually
downstream of the geometric throat).

The essence of finite-difference methods is to replace the partial derivatives in
the governing flow equations with finite-difference quotients. For supersonic
steady flows, this allows us to march downstream, starting from known data
along an initial data line in the supersonic flow. For the solution of mixed
subsonic-supersonic flows, a time-dependent technique can be used which
allows us to march forward in time, starting with assumed initial conditions at
time t = 0 and achieving a steady-state result in the limit of large times.

A popular technique for carrying out finite-difference solutions, whether for
supersonic steady flow or for a time-dependent solution of mixed subsonic
and supersonic flow, is the straightforward predictor-corrector technique by
MacCormack.

13.8 PROBLEM
Note: The purpose of the following problem is to provide an exercise in carrying
out a unit process for the method of characteristics. A more extensive application
to a complete flow field is left to your specific desires. Also, an extensive practical
problem utilizing the finite-difference method requires a large number of arith-
metic operations and is practical only on a digital computer. You are encouraged
to set up such a problem at your leisure. The main purpose of the present chapter is
to present the essence of several numerical methods, not to burden the reader with
a lot of calculations or the requirement to write an extensive computer program.

13.1 Consider two points in a supersonic flow. These points are located in a
cartesian coordinate system at (x1, y1) = (0, 0.0684) and (x2, y2) =
(0.0121, 0), where the units are meters. At point (x1, y1): u1 = 639 m/s,
v1 = 232.6 m/s, p1 = 1 atm, T1 = 288 K. At point (x2, y2): u2 = 680 m/s,
v2 = 0, p2 = 1 atm, T2 = 288 K. Consider point 3 downstream of points 1
and 2 located by the intersection of the C+ characteristic through point 2
and the C− characteristic through point 1. At point 3, calculate: u3, v3,
p3, and T3. Also, calculate the location of point 3, assuming the
characteristics between these points are straight lines.



C H A P T E R 14
Elements of Hypersonic Flow

Almost everyone has their own definition of the term hypersonic. If we were to
conduct something like a public opinion poll among those present, and asked
everyone to name a Mach number above which the flow of a gas should properly
be described as hypersonic there would be a majority of answers round about 5
or 6, but it would be quite possible for someone to advocate, and defend,
numbers as small as 3, or as high as 12.

P. L. Roe,
comment made in a lecture
at the von Karman Institute, Belgium
January 1970

PREVIEW BOX

Airbreathing hypersonic flight is held by many
(including this author) to be the last frontier of air-
vehicle design. Some progress has been made, but
much needs to be done. The practical design of hy-
personic vehicles for sustained hypersonic flight in
the atmosphere will be a major challenge to the next
generation of aerospace engineers.

Aeronautical history was made in March 2004
when the X-43 Hyper-X test vehicle, shown in Fig-
ure 14.1, achieved sustained flight for 11 s at Mach 6.9
powered by a supersonic combustion ramjet engine
(SCRAMjet). In November, another X-43 achieved
sustained flight at nearly Mach 10, making it the
fastest airplane in history to date. At these speeds,

aerodynamic heating becomes a major problem, and
the vehicle must be fabricated from special high-
temperature materials. The X-43 thermal protection
design is shown in Figure 14.2. The two successful
flights of the X-43 in 2004 made aerospace engineer-
ing history; for the first time a SCRAMjet engine oper-
ated successfully for a sustained period in atmospheric
flight. After more than 40 years of research and tech-
nical development, enough progress had been made to
allow a successful test of the design methodology. But
so much more needs to be done to achieve truly prac-
tical devices and flight vehicles. That is where some
of you come into the picture; perhaps you will be the
ones to tackle this last frontier.

871
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Figure 14.1 X-43 hypersonic test vehicle (NASA).

TUFI/AETB
Carbon-Carbon
Haynes Alloy
Tungsten

Figure 14.2 X-43 thermal protection system.

Hypersonic flight of other human-made vehicles
has been a reality since 1949, when a WAC Corporal
rocket, boosted to high altitudes on top of a captured
German V-2 rocket, powered itself back into the at-
mosphere at over 5000 mph at White Sands Proving
Ground in New Mexico (see Reference 52). Since
then, a whole host of space vehicles, such as the space
shuttle and the Apollo return module have returned to
Earth after entering and flying through the atmosphere
at large hypersonic Mach numbers, from Mach 26

to Mach 36. So hypersonic aerodynamics has been
around for a relatively long time, but for all practical
purposes it is still a young, developing discipline.

Hypersonic aerodynamics is the subject of this
chapter. What is it about hypersonic flows that make
them any different from supersonic flows? Why is it
that they justify a separate chapter in this book? After
all, hypersonic flow is flow with velocities greater than
the speed of sound, which is the definition of super-
sonic flow, except that hypersonic flows are moving
at velocities generally a lot larger than the speed of
sound. Indeed, an old rule of thumb defines hyper-
sonic flow as flow at Mach 5 or greater. However,
there is nothing magic about Mach 5. If you were fly-
ing at Mach 4.99, and you accelerate to Mach 5.01,
nothing new is going to happen—the flow will not
change from green to red, and there will be no clap of
thunder. (In contrast, if you were flying at Mach 0.99
and accelerated to Mach 1.01, the flow would “change
from green to red,” i.e., the physics of the flow would
change drastically as we have already seen, and there
would be a “clap of thunder,” the sudden occurrence
of shock waves.) So why is a distinction made be-
tween hypersonic and supersonic flows? The answer
is that certain physical phenomena that are not so im-
portant at supersonic speeds become dominant at hy-
personic speeds. These phenomena are described in
Section 14.2, which basically constitutes a four-page
definition of hypersonic flow. Read on, and find out
for yourself what this is all about.

Hypersonic aerodynamics is state-of-the-art
aerodynamics. It is exciting, and it is fun. This chapter
introduces you to some of the special aspects and anal-
yses of hypersonic flow. It is just a beginning for you,
but I predict that it will be an enjoyable beginning.

14.1 INTRODUCTION
The history of aviation has always been driven by the philosophy of “faster
and higher,” starting with the Wright brothers’ sea level flights at 35 mi/h in
1903, and progressing exponentially to the manned space flight missions of the
1960s and 1970s. The current altitude and speed records for manned flight are the
moon and 36,000 ft/s—more than 36 times the speed of sound—set by the Apollo
lunar capsule in 1969. Although most of the flight of the Apollo took place in
space, outside the earth’s atmosphere, one of its most critical aspects was reentry
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into the atmosphere after completion of the lunar mission. The aerodynamic
phenomena associated with very high-speed flight, such as encountered during
atmospheric reentry, are classified as hypersonic aerodynamics—the subject of
this chapter. In addition to reentry vehicles, both manned and unmanned, there are
other hypersonic applications on the horizon, such as ramjet-powered hypersonic
missiles now under consideration by the military and the concept of a hypersonic
transport, the basic technology of which is now being studied by NASA. There-
fore, although hypersonic aerodynamics is at one extreme end of the whole flight
spectrum (see Section 1.10), it is important enough to justify one small chapter
in our presentation of the fundamentals of aerodynamics.

This chapter is short; its purpose is simply to introduce some basic consid-
erations of hypersonic flow. Therefore, we have no need for a chapter road map
or a summary at the end. Also, before progressing further, return to Chapter 1
and review the short discussion on hypersonic flow given in Section 1.10. For an
in-depth study of hypersonic flow, see the author’s book listed as Reference 52.

14.2 QUALITATIVE ASPECTS OF
HYPERSONIC FLOW

Consider a 15◦ half-angle wedge flying at M∞ = 36. From Figure 9.9, we see that
the wave angle of the oblique shock is only 18◦; that is, the oblique shock wave
is very close to the surface of the body. This situation is sketched in Figure 14.3.
Clearly, the shock layer between the shock wave and the body is very thin. Such
thin shock layers are one characteristic of hypersonic flow. A practical conse-
quence of a thin shock layer is that a major interaction frequently occurs between
the inviscid flow behind the shock and the viscous boundary layer on the surface.
Indeed, hypersonic vehicles generally fly at high altitudes where the density, hence
Reynolds number, is low, and therefore the boundary layers are thick. Moreover,
at hypersonic speeds, the boundary-layer thickness on slender bodies is approxi-
mately proportional to M2

∞; hence, the high Mach numbers further contribute to

Shock wave

Thin viscous shock layer

Body surface

15�
M� � 36

18�

Figure 14.3 For hypersonic flow, the shock layers are thin and
viscous.
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Figure 14.4 The viscous interaction on a flat plate at hypersonic speeds.

a thickening of the boundary layer. In many cases, the boundary-layer thickness
is of the same magnitude as the shock-layer thickness, such as sketched in the
insert at the top of Figure 14.3. Here, the shock layer is fully viscous, and the
shock-wave shape and surface pressure distribution are affected by such viscous
effects. These phenomena are called viscous interaction phenomena—where the
viscous flow greatly affects the external inviscid flow, and, of course, the external
inviscid flow affects the boundary layer. A graphic example of such viscous in-
teraction occurs on a flat plate at hypersonic speeds, as sketched in Figure 14.4.
If the flow were completely inviscid, then we would have the case shown in Fig-
ure 14.4a, where a Mach wave trails downstream from the leading edge. Since
there is no deflection of the flow, the pressure distribution over the surface of
the plate is constant and equal to p∞. In contrast, in real life there is a bound-
ary layer over the flat plate, and at hypersonic conditions this boundary layer
can be thick, as sketched in Figure 14.4b. The thick boundary layer deflects the
external, inviscid flow, creating a comparably strong, curved shock wave which
trails downstream from the leading edge. In turn, the surface pressure from the
leading edge is considerably higher than p∞, and only approaches p∞ far down-
stream of the leading edge, as shown in Figure 14.4b. In addition to influencing
the aerodynamic force, such high pressures increase the aerodynamic heating
at the leading edge. Therefore, hypersonic viscous interaction can be important,
and this has been one of the major areas of modern hypersonic aerodynamic
research.

There is a second and frequently more dominant aspect of hypersonic flow,
namely, high temperatures in the shock layer, along with large aerodynamic heat-
ing of the vehicle. For example, consider a blunt body reentering the atmosphere
at Mach 36, as sketched in Figure 14.5. Let us calculate the temperature in the
shock layer immediately behind the normal portion of the bow shock wave. From
Appendix B, we find that the static temperature ratio across a normal shock wave
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Figure 14.5 High-temperature shock layer.

with M∞ = 36 is 252.9; this is denoted by Ts/T∞ in Figure 14.5. Moreover, at a
standard altitude of 59 km, T∞ = 258 K. Hence, we obtain Ts = 65,248 K—an
incredibly high temperature, which is more than six times hotter than the surface
of the sun! This is, in reality, an incorrect value, because we have used Appendix B
which is good only for a calorically perfect gas with γ = 1.4. However, at high
temperatures, the gas will become chemically reacting; γ will no longer equal
1.4 and will no longer be constant. Nevertheless, we get the impression from
this calculation that the temperature in the shock layer will be very high, albeit
something less than 65,248 K. Indeed, if a proper calculation of Ts is made taking
into account the chemically reacting gas, we would find that Ts ≈ 11,000 K—
still a very high value. Clearly, high-temperature effects are very important in
hypersonic flow.

Let us examine these high-temperature effects in more detail. If we consider
air at p = 1 atm and T = 288 K (standard sea level), the chemical composition
is essentially 20 percent O2 and 80 percent N2 by volume. The temperature is too
low for any significant chemical reaction to take place. However, if we were to
increase T to 2000 K, we would observe that the O2 begins to dissociate; that is,

O2 → 2O 2000 K < T < 4000 K

If the temperature were increased to 4000 K, most of the O2 would be dissociated,
and N2 dissociation would commence:

N2 → 2N 4000 K < T < 9000 K

If the temperature were increased to 9000 K, most of the N2 would be dissociated,
and ionization would commence:

N → N+ + e−

O → O+ + e− T > 9000 K

Hence, returning to Figure 14.5, the shock layer in the nose region of the body is
a partially ionized plasma, consisting of the atoms N and O, the ions N+ and O+,
and electrons, e−. Indeed, the presence of these free electrons in the shock layer
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is responsible for the “communications blackout” experienced over portions of
the trajectory of a reentry vehicle.

One consequence of these high-temperature effects is that all our equations
and tables obtained in Chapters 7 to 13 that depended on a constant γ = 1.4 are no
longer valid. Indeed, the governing equations for the high-temperature, chemically
reacting shock layer in Figure 14.5 must be solved numerically, taking into account
the proper physics and chemistry of the gas itself. The analysis of aerodynamic
flows with such real physical effects is discussed in detail in Chapters 16 and 17
of Reference 21; such matters are beyond the scope of this book.

Associated with the high-temperature shock layers is a large amount of heat
transfer to the surface of a hypersonic vehicle. Indeed, for reentry velocities, aero-
dynamic heating dominates the design of the vehicle, as explained at the end of
Section 1.1. (Recall that the third historical example discussed in Section 1.1 was
the evolution of the blunt-body concept to reduce aerodynamic heating; review
this material before progressing further.) The usual mode of aerodynamic heating
is the transfer of energy from the hot shock layer to the surface by means of thermal
conduction at the surface; that is, if ∂T/∂n represents the temperature gradient in
the gas normal to the surface, then qc = −k(∂T/∂n) is the heat transfer into the
surface. Because ∂T/∂n is a flow-field property generated by the flow of the gas
over the body, qc is called convective heating. For reentry velocities associated
with ICBMs (about 28,000 ft/s), this is the only meaningful mode of heat transfer
to the body. However, at higher velocities, the shock-layer temperature becomes
even hotter. From experience, we know that all bodies emit thermal radiation, and
from physics you know that blackbody radiation varies as T 4; hence, radiation
becomes a dominant mode of heat transfer at high temperatures. (For example, the
heat you feel by standing beside a fire in a fireplace is radiative heating from the
flames and the hot walls.) When the shock layer reaches temperatures on the order
of 11,000 K, as for the case given in Figure 14.5, thermal radiation from the hot
gas becomes a substantial portion of the total heat transfer to the body surface.
Denoting radiative heating by qr , we can express the total aerodynamic heating q
as the sum of convective and radiative heating; q = qc + qr . For Apollo reentry,
qr/q ≈ 0.3, and hence radiative heating was an important consideration in the
design of the Apollo heat shield. For the entry of a space probe into the atmosphere
of Jupiter, the velocities will be so high and the shock-layer temperatures so
large that the convective heating is negligible, and in this case q ≈ qr . For such a
vehicle, radiative heating becomes the dominant aspect in its design. Figure 14.6
illustrates the relative importance of qc and qr for a typical manned reentry vehicle
in the earth’s atmosphere; note how rapidly qr dominates the aerodynamic heating
of the body as velocities increase above 36,000 ft/s. The details of shock-layer
radiative heating are interesting and important; however, they are beyond the
scope of this book. For a thorough survey of the engineering aspects of shock-
layer radiative heat transfer, see Reference 34.

In summary, the aspects of thin shock-layer viscous interaction and high-
temperature, chemically reacting and radiative effects distinguish hypersonic flow
from the more moderate supersonic regime. Hypersonic flow has been the subject
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Figure 14.6 Convective and radiative heating rates of a
blunt reentry vehicle as a function of flight velocity.
(Source: Anderson, J. D., Jr.: “An Engineering Survey of
Radiating Shock Layers,” AIAA J., vol. 7, no. 9,
September 1969, pp. 1665–1675).

of several complete books; see, for example, References 35 to 39. In particular,
see Reference 52 for a modern textbook on the subject.

14.3 NEWTONIAN THEORY
Return to Figure 14.3; note how close the shock wave lies to the body surface.
This figure is redrawn in Figure 14.7 with the streamlines added to the sketch.
When viewed from afar, the straight, horizontal streamlines in the freestream
appear to almost impact the body, and then move tangentially along the body.
Return to Figure 1.6, which illustrates Isaac Newton’s model for fluid flow, and
compare it with the hypersonic flow field shown in Figure 14.7; they have certain
distinct similarities. (Also, review the discussion surrounding Figure 1.6 before
progressing further.) Indeed, the thin shock layers around hypersonic bodies are
the closest example in fluid mechanics to Newton’s model. Therefore, we might
expect that results based on Newton’s model would have some applicability in
hypersonic flows. This is indeed the case; newtonian theory is used frequently
to estimate the pressure distribution over the surface of a hypersonic body. The
purpose of this section is to derive the famous newtonian sine-squared law first
mentioned in Section 1.1 and to show how it is applied to hypersonic flows.

Consider a surface inclined at the angle θ to the freestream, as sketched in
Figure 14.8. According to the newtonian model, the flow consists of a large number
of individual particles which impact the surface and then move tangentially to
the surface. During collision with the surface, the particles lose their component
of momentum normal to the surface, but the tangential component is preserved.
The time rate of change of the normal component of momentum equals the force
exerted on the surface by the particle impacts. To quantify this model, examine
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Shock

Body

Figure 14.7 Streamlines in a hypersonic flow.

Figure 14.8 Schematic for newtonian impact theory.

Figure 14.8. The component of the freestream velocity normal to the surface is
V∞ sin θ . If the area of the surface is A, the mass flow incident on the surface is
ρ∞(A sin θ)V∞. Hence, the time rate of change of momentum is

Mass flow × change in normal component of velocity

or (ρ∞V∞ A sin θ)(V∞ sin θ) = ρ∞V 2
∞ A sin2 θ

In turn, from Newton’s second law, the force on the surface is

N = ρ∞V 2
∞ A sin2 θ (14.1)

This force acts along the same line as the time rate of change of momentum (i.e.,
normal to the surface), as sketched in Figure 14.8. From Equation (14.1), the
normal force per unit area is

N

A
= ρ∞V 2

∞ sin2 θ (14.2)

Let us now interpret the physical meaning of the normal force per unit area
in Equation (14.2), N/A, in terms of our modern knowledge of aerodynamics.
Newton’s model assumes a stream of individual particles all moving in straight,
parallel paths toward the surface; that is, the particles have a completely directed,
rectilinear motion. There is no random motion of the particles—it is simply a
stream of particles such as pellets from a shotgun. In terms of our modern concepts,
we know that a moving gas has molecular motion that is a composite of random
motion of the molecules as well as a directed motion. Moreover, we know that the
freestream static pressure p∞ is simply a measure of the purely random motion
of the molecules. Therefore, when the purely directed motion of the particles in
Newton’s model results in the normal force per unit area, N/A in Equation (14.2),
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Figure 14.9 Definition of angles for newtonian theory.

this normal force per unit area must be construed as the pressure difference above
p∞, namely, p − p∞ on the surface. Hence, Equation (14.2) becomes

p − p∞ = ρ∞V 2
∞ sin2 θ (14.3)

Equation (14.3) can be written in terms of the pressure coefficient Cp = (p−p∞)/
1
2ρ∞V 2

∞, as follows

p − p∞
1
2ρ∞V 2∞

= 2 sin2 θ

or Cp = 2 sin2 θ (14.4)

Equation (14.4) is Newton’s sine-squared law; it states that the pressure coefficient
is proportional to the sine square of the angle between a tangent to the surface
and the direction of the freestream. This angle θ is illustrated in Figure 14.9.
Frequently, the results of newtonian theory are expressed in terms of the angle
between a normal to the surface and the freestream direction, denoted by φ as
shown in Figure 14.9. In terms of φ, Equation (14.4) becomes

Cp = 2 cos2 φ (14.5)

which is an equally valid expression of newtonian theory.
Consider the blunt body sketched in Figure 14.9. Clearly, the maximum

pressure, hence the maximum value of Cp, occurs at the stagnation point, where
θ = π/2 and φ = 0. Equation (14.4) predicts Cp = 2 at the stagnation point.
Contrast this hypersonic result with the result obtained for incompressible flow
theory in Chapter 3, where Cp = 1 at a stagnation point. Indeed, the stagnation
pressure coefficient increases continuously from 1.0 at M∞ = 0 to 1.28 at M∞ =
1.0 to 1.86 for γ = 1.4 as M∞ → ∞. (Prove this to yourself.)

The result that the maximum pressure coefficient approaches 2 at M∞ → ∞
can be obtained independently from the one-dimensional momentum equation,
namely, Equation (8.6). Consider a normal shock wave at hypersonic speeds, as
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Figure 14.10 Hypersonic flow across a
normal shock wave.

sketched in Figure 14.10. For this flow, Equation (8.6) gives

p∞ + ρ∞V 2
∞ = p2 + ρ2V 2

2 (14.6)

Recall that across a normal shock wave the flow velocity decreases, V2 < V∞;
indeed, the flow behind the normal shock is subsonic. This change becomes
more severe as M∞ increases. Hence, at hypersonic speeds, we can assume that
(ρ∞V 2

∞) � (ρ2V 2
2 ), and we can neglect the latter term in Equation (14.6). As

a result, Equation (14.6) becomes, at hypersonic speeds in the limiting case as
M∞ → ∞,

p2 − p∞ = ρ∞V 2
∞

or Cp = p2 − p∞
1
2ρ∞V 2∞

= 2

thus confirming the newtonian results from Equation (14.4).
As stated above, the result that C p = 2 at a stagnation point is a limiting

value as M∞ → ∞. For large but finite Mach numbers, the value of C p at a
stagnation point is less than 2. Return again to the blunt body shown in Figure 14.9.
Considering the distribution of C p as a function of distance s along the surface,
the largest value of Cp will occur at the stagnation point. Denote the stagnation
point value of Cp by Cp,max, as shown in Figure 14.9. C p,max for a given M∞ can
be readily calculated from normal shock-wave theory. [If γ = 1.4, then Cp,max

can be obtained from p0,2/p1 = p0,2/p∞, tabulated in Appendix B. Recall from
Equation (11.22) that Cp,max = (2/γ M2

∞)(p0,2/p∞ − 1).] Downstream of the
stagnation point, C p can be assumed to follow the sine-squared variation predicted
by newtonian theory; that is,

Cp = Cp,max sin2 θ (14.7)

Equation (14.7) is called the modified newtonian law. For the calculation of the
Cp distribution around blunt bodies, Equation (14.7) is more accurate than Equa-
tion (14.4).
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Figure 14.11 Surface pressure distribution, paraboloid,
M∞ = 4. Comparison of modified newtonian theory
and time-dependent finite-difference calculations.

Return to Figure 13.14, which gives the numerical results for the pressure
distributions around a blunt, parabolic cylinder at M∞ = 4 and 8. The open
symbols in this figure represent the results of modified newtonian theory, namely,
Equation (14.7). For this two-dimensional body, modified newtonian theory is
reasonably accurate only in the nose region, although the comparison improves
at the higher Mach numbers. It is generally true that newtonian theory is more
accurate at larger values of both M∞ and θ . The case for an axisymmetric body, a
paraboloid at M∞ = 4, is given in Figure 14.11. Here, although M∞ is relatively
low, the agreement between the time-dependent numerical solution (see Chap-
ter 13) and newtonian theory is much better. It is generally true that newtonian
theory works better for three-dimensional bodies. In general, the modified newto-
nian law, Equation (14.7), is sufficiently accurate that it is used very frequently in
the preliminary design of hypersonic vehicles. Indeed, extensive computer codes
have been developed to apply Equation (14.7) to three-dimensional hypersonic
bodies of general shape. Therefore, we can be thankful to Isaac Newton for sup-
plying us with a law which holds reasonably well at hypersonic speeds, although
such an application most likely never crossed his mind. Nevertheless, it is fitting
that three centuries later, Newton’s fluid mechanics has finally found a reasonable
application.

14.4 THE LIFT AND DRAG OF WINGS AT
HYPERSONIC SPEEDS: NEWTONIAN RESULTS
FOR A FLAT PLATE AT ANGLE OF ATTACK

Question: At subsonic speeds, how do the lift coefficient CL and drag coefficient
CD for a wing vary with angle of attack α?

Answer: As shown in Chapter 5, we know that:

1. The lift coefficient varies linearly with angle of attack, at least up to the
stall; see, for example, Figure 5.24.
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2. The drag coefficient is given by the drag polar, as expressed in
Equation (5.63), repeated below:

CD = cd + C2
L

πeAR
(5.63)

Since CL is proportional to α, then CD varies as the square of α.
Question: At supersonic speeds, how do CL and CD for a wing vary with α?
Answer: In Chapter 12, we demonstrated for an airfoil at supersonic speeds
that:

1. Lift coefficient varies linearly with α, as seen from Equation (12.23),
repeated below:

cl = 4α√
M2∞ − 1

(12.23)

2. Drag coefficient varies as the square of α, as seen from Equation (12.24) for
the flat plate, repeated below:

cd = 4α2√
M2∞ − 1

(12.24)

The characteristics of a finite wing at supersonic speeds follow essentially the
same functional variation with the angle of attack, namely, CL is proportional to
α and CD is proportional to α2.

Question: At hypersonic speeds, how do CL and CD for a wing vary with
α? We have shown that CL is proportional to α for both subsonic and supersonic
speeds—does the same proportionality hold for hypersonic speeds? We have
shown that CD is proportional to α2 for both subsonic and supersonic speeds—
does the same proportionality hold for hypersonic speeds? The purpose of the
present section is to address these questions.

In an approximate fashion, the lift and drag characteristics of a wing in hy-
personic flow can be modeled by a flat plate at an angle of attack, as sketched in
Figure 14.12. The exact flow field over the flat plate involves a series of expansion

Figure 14.12 Wave system on a flat plate in hypersonic flow.
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Figure 14.13 Flat plate at angle of attack. Illustration of
aerodynamic forces.

and shock waves as shown in Figure 14.12; the exact lift- and wave-drag coef-
ficients can be obtained from the shock-expansion method as described in Sec-
tion 9.7. However, for hypersonic speeds, the lift- and wave-drag coefficients
can be further approximated by the use of newtonian theory, as described in this
equation.

Consider Figure 14.13. Here, a two-dimensional flat plate with chord length c
is at an angle of attack α to the freestream. Since we are not including friction,
and because surface pressure always acts normal to the surface, the resultant
aerodynamic force is perpendicular to the plate; that is, in this case, the normal
force N is the resultant aerodynamic force. (For an infinitely thin flat plate, this
is a general result that is not limited to newtonian theory, or even to hypersonic
flow.) In turn, N is resolved into lift and drag, denoted by L and D, respectively,
as shown in Figure 14.13. According to newtonian theory, the pressure coefficient
on the lower surface is

Cp,l = 2 sin2 α (14.8)

The upper surface of the flat plate shown in Figure 14.13, in the spirit of newtonian
theory, receives no direct “impact” of the freestream particles; the upper surface
is said to be in the “shadow” of the flow. Hence, consistent with the basic model
of newtonian flow, only freestream pressure acts on the upper surface, and we
have

Cp,u = 0 (14.9)

Returning to the discussion of aerodynamic force coefficients in Section 1.5,
we note that the normal force coefficient is given by Equation (1.15). Neglecting
friction, this becomes

cn = 1

c

∫ c

0
(Cp,l − Cp,u) dx (14.10)
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where x is the distance along the chord from the leading edge. (Please note: In
this section, we treat a flat plate as an airfoil section; hence, we will use lowercase
letters to denote the force coefficients, as first described in Chapter 1.) Substituting
Equations (14.8) and (14.9) into (14.10), we obtain

cn = 1

c
(2 sin2 α)c

or = 2 sin2 α (14.11)

From the geometry of Figure 14.13, we see that the lift and drag coefficients,
defined as cl = L/q∞S and cd = D/q∞S, respectively, where S = (c)(l), are
given by

cl = cn cos α (14.12)

and cd = cn sin α (14.13)

Substituting Equation (14.11) into Equations (14.12) and (14.13), we obtain

cl = 2 sin2 α cos α (14.14)

cd = 2 sin3 α (14.15)

Finally, from the geometry of Figure 14.13, the lift-to-drag ratio is given by

L

D
= cot α (14.16)

[Note: Equation (14.16) is a general result for inviscid supersonic or hypersonic
flow over a flat plate. For such flows, the resultant aerodynamic force is the nor-
mal force N . From the geometry shown in Figure 14.13, the resultant aerodynamic
force makes the angle α with respect to lift, and clearly, from the right triangle
between L , D, and N , we have L/D = cot α. Hence, Equation (14.16) is not
limited to newtonian theory.]

The aerodynamic characteristics of a flat plate based on newtonian theory
are shown in Figure 14.14. Although an infinitely thin flat plate, by itself, is not
a practical aerodynamic configuration, its aerodynamic behavior at hypersonic
speeds is consistent with some of the basic characteristics of other hypersonic
shapes. For example, consider the variation of cl shown in Figure 14.14. First,
note that, at a small angle of attack, say, in the range of α from 0 to 15◦, cl varies
in a nonlinear fashion; that is, the slope of the lift curve is not constant. This is
in direct contrast to the subsonic case we studied in Chapters 4 and 5, where the
lift coefficient for an airfoil or a finite wing was shown to vary linearly with α at
small angles of attack, up to the stalling angle. This is also in contrast with the
results from linearized supersonic theory as itemized in Section 12.3, leading to
Equation (12.23) where a linear variation of cl with α for a flat plate is indicated.
However, the nonlinear lift curve shown in Figure 14.14 is totally consistent with
the results discussed in Section 11.3, where hypersonic flow was shown to be
governed by the nonlinear velocity potential equation, not by the linear equation
expressed by Equation (11.18). In that section, we noted that both transonic and
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Figure 14.14 Aerodynamic properties of a flat plate based on
newtonian theory.

hypersonic flow cannot be described by a linear theory—both these flows are
inherently nonlinear regimes, even for low angles of attack. Once again, the flat-
plate lift curve shown in Figure 14.14 certainly demonstrates the nonlinearity of
hypersonic flow.

Also, note from the lift curve in Figure 14.14 that cl first increases as α in-
creases, reaches a maximum value at an angle of attack of about 55◦ (54.7◦ to be
exact), and then decreases, reaching zero at α = 90◦. However, the attainment
of cl,max (point A) in Figure 14.14 is not due to any viscous, separated flow phe-
nomenon analogous to that which occurs in subsonic flow. Rather, in Figure 14.14,
the attainment of a maximum cl is purely a geometric effect. To understand this
better, return to Figure 14.13. Note that, as α increases, C p continues to increase
via the newtonian expression

Cp = 2 sin2 α

That is, C p reaches a maximum value at α = 90◦. In turn, the normal force N
shown in Figure 14.13 continues to increase as α increases, also reaching a max-
imum value at α = 90◦. However, recall from Equation (14.12) that the vertical
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component of the aerodynamic force, namely, the lift, is given by

L = N cos α (14.17)

Hence, as α increases to 90◦, although N continues to increase monotonically, the
value of L reaches a maximum value around α = 55◦, and then begins to decrease
at higher α due to the effect of the cosine variation shown in Equation (14.17)—
strictly a geometric effect. In other words, in Figure 14.13, although N is increas-
ing with α, it eventually becomes inclined enough relative to the vertical that its
vertical component (lift) begins to decrease gradually. It is interesting to note that
a large number of practical hypersonic configurations achieve a maximum CL at
an angle of attack in the neighborhood of that shown in Figure 14.14, namely,
around 55◦.

The maximum lift coefficient for a hypersonic flat plate, and the angle at
which it occurs, is easily quantified using newtonian theory. Differentiating Equa-
tion (14.14) with respect to α, and setting the derivative equal to zero (for the
condition of maximum cl), we have

dcl

dα
= (2 sin2 2)(− sin α) + 4 cos2 α sin α = 0

or sin2 α = 2 cos2 α = 2(1 − sin2 α)

or sin2 α = 2
3

Hence, α = 54.7◦

This is the angle of attack at which cl is a maximum. The maximum value of cl

is obtained by substituting the above result for α into Equation (14.14):

cl,max = 2 sin2(54.7◦) cos(54.7◦) = 0.77

Note, although cl increases over a wide latitude in the angle of attack (cl increases
in the range from α = 0 to α = 54.7◦), its rate of increase is small (that is, the
effective lift slope is small). In turn, the resulting value for the maximum lift
coefficient is relatively small—at least in comparison to the much higher cl,max

values associated with low-speed flows (see Figures 4.25 and 4.28). Returning to
Figure 14.14, we now note the precise values associated with the peak of the lift
curve (point A), namely, the peak value of cl is 0.77, and it occurs at an angle of
attack of 54.7◦.

Examining the variation of drag coefficient cd in Figure 14.14, we note that it
monotonically increases from zero at α = 0 to a maximum of 2 at α = 90◦. The
newtonian result for drag is essentially wave drag at hypersonic speeds because
we are dealing with an inviscid flow, hence no friction drag. The variation of cd

with α for the low angle of attack in Figure 14.14 is essentially a cubic variation, in
contrast to the result from linearized supersonic flow, namely, Equation (12.24),
which shows that cd varies as the square angle of attack. The hypersonic re-
sult that cd varies as α3 is easily obtained from Equation (14.15), which for
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small α becomes

cd = 2α3 (14.18)

The variation of the lift-to-drag ratio as predicted by newtonian theory is also
shown in Figure 14.14. The solid curve is the pure newtonian result; it shows that
L/D is infinitely large at α = 0 and monotonically decreases to zero at α = 90◦.
The infinite value of L/D at α = 0 is purely fictional—it is due to the neglect of
skin friction. When skin friction is added to the picture, denoted by the dashed
curve in Figure 14.14, L/D reaches a maximum value at a small angle of attack
(point B in Figure 14.14) and is equal to zero at α = 0. (At α = 0, no lift is
produced, but there is a finite drag due to friction; hence, L/D = 0 at α = 0.)

Let us examine the conditions associated with (L/D)max more closely. The
value of (L/D)max and the angle of attack at which it occurs (i.e., the coordinates
of point B in Figure 14.14) are strictly a function of the zero-lift drag coefficient,
denoted by cd,0. The zero-lift drag coefficient is simply due to the integrated
effect of skin friction over the plate surface at zero angle of attack. At small
angles of attack, the skin friction exerted on the plate should be essentially that
at zero angle of attack; hence, we can write the total drag coefficient [referring to
Equation (14.15)] as

cd = 2 sin3 α + cd,0 (14.19)

Furthermore, when α is small, we can write Equations (14.14) and (14.19) as

cl = 2α2 (14.20)

and cd = 2α3 + cd,0 (14.21)

Dividing Equation (14.20) by (14.21), we have

cl

cd
= 2α2

2α3 + cd,0
(14.22)

The conditions associated with maximum lift-to-drag ratio can be found by dif-
ferentiating Equation (14.22) and setting the result equal to zero:

d(cl/cd)

dα
= (2α3 + cd,0)4α − 2α2(6α2)

(2α3 + cd,0)
= 0

or 8α4 + 4αcd,0 − 12α4 = 0

4α3 = 4cd,0

Hence, α = (cd,0)
1/3 (14.23)

Substituting Equation (14.23) into Equation (14.21), we obtain(
cl

cd

)
max

= 2(cd,0)
2/3

2cd,0 + cd,0
= 2/3

(cd,0)1/3
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or

(
L

D

)
max

=
(

cl

cd

)
max

= 0.67/(cd,0)
1/3 (14.24)

Equations (14.23) and (14.24) are important results. They clearly state that the
coordinates of the maximum L/D point in Figure 14.14, when friction is included
(point B in Figure 14.14), are strictly a function of cd,0. In particular, note the
expected trend that (L/D)max decreases as cd,0 increases—the higher the friction
drag, the lower is L/D. Also, the angle of attack at which maximum L/D occurs
increases as cd,0 increases. There is yet another interesting aerodynamic condition
that holds at (L/D)max, derived as follows. Substituting Equation (14.23) into
(14.21), we have

cd = 2cd,0 + cd,0 = 3cd,0 (14.25)

Since the total drag coefficient is the sum of the wave-drag coefficient cd,w and
the friction-drag coefficient cd,0 we can write

cd = cd,w + cd,0 (14.26)

However, at the point of maximum L/D (point B in Figure 14.14), we know from
Equation (14.25) that cd = 3cd,0. Substituting this result into Equation (14.26),
we obtain

3cd,0 = cd,w + cd,0

or cd,w = 2cd,0 (14.27)

This clearly shows that, for the hypersonic flat plate using newtonian theory, at the
flight condition associated with maximum lift-to-drag ratio, wave drag is twice
the friction drag.

This brings to an end our short discussion of the lift and drag of wings at
hypersonic speeds as modeled by the newtonian flat-plate problem. The quan-
titative and qualitative results presented here are reasonable representations of
the hypersonic aerodynamic characteristics of a number of practical hypersonic
vehicles; the flat-plate problem is simply a straightforward way of demonstrating
these characteristics.

14.4.1 Accuracy Considerations

How accurate is newtonian theory in the prediction of pressure distributions over
hypersonic bodies? The comparison shown in Figure 14.11 indicates that Equa-
tion (14.7) leads to a reasonably accurate pressure distribution over the surface
of a blunt body. Indeed, for “back-of-the-envelope” estimates of the pressure dis-
tributions over blunt bodies at hypersonic speeds, modified newtonian is quite
satisfactory. However, what about relatively thin bodies at small angles of attack?
We can provide an answer by using the newtonian flat-plate relations derived in
the present section, and compare these results with exact shock-expansion theory
(Section 9.7), for flat plates at small angles of attack. This is the purpose of the
following worked example.
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EXAMPLE 14.1

Consider an infinitely thin flat plate at an angle of attack of 15◦ in a Mach 8 flow. Calculate
the pressure coefficients on the top and bottom surface, the lift and drag coefficients, and
the lift-to-drag ratio using (a) exact shock-expansion theory, and (b) newtonian theory.
Compare the results.

■ Solution
(a) Using the diagram in Figure 9.35 showing a flat plate at angle of attack, and following
the shock-expansion technique given in Example 9.11, we have for the upper surface, for
M1 = 8 and ν1 = 95.62◦,

ν2 = ν1 + θ = 95.62 + 15 = 110.62◦

From Appendix C, interpolating between entries,

M2 = 14.32

From Appendix A, for M1 = 8, p01/p1 = 0.9763 × 104, and for M2 = 14.32, p02/p2 =
0.4808 × 106. Since p01 = p02 ,

p2

p1
= p01

p1

/
p02

p2
= 0.9763 × 104

0.4808 × 106 = 0.0203

The pressure coefficient is given by Equation (11.22), and the freestream static pressure
in Figure 9.28 is denoted by p1. Hence

C p2 = 2

γ M2
1

(
p2

p1
− 1

)
= 2

(1.4)(8)2 (0.0203 − 1) = −0.0219

To obtain the pressure coefficient on the bottom surface from the oblique shock theory,
we have from the θ -β-M for M1 = 8 and θ = 15◦, β = 21◦:

Mn,1 = M1 sin β = 8 sin 21◦ = 2.87

Interpolating from Appendix B, for Mn,1 = 2.87, p3/p1 = 9.443. Hence the pressure
coefficient on the bottom surface is

C p3 = 2

γ M2
1

(
p3

p2
− 1

)
= 2

(1.4)(8)2 (9.443 − 1) = 0.1885

The lift coefficient can be obtained from the pressure coefficients via Equations (1.15),
(1.16), and (1.18).

cn = 1

c

∫ c

0
(C p,� − C p,u) dx = C p3 − C p2 = 0.1885 − (−0.0219) = 0.2104

The axial force on the plate is zero, because the pressure acts only perpendicular to the
plate. On a formal basis, dy/dx in Equation (1.16) is zero for a flat plate. Hence, from
Equation (1.18),

c� = cn cos α = 0.2104 cos 15◦ = 0.2032
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From Equation (1.19),

cd = cn sin α = 0.2104 sin 15◦ = 0.0545

Hence,
L

D
= c�

cd
= 0.2032

0.0545
= 3.73

(b) From newtonian theory, the pressure coefficient is given by Equation (14.4), where
θ ≡ α. This is the pressure coefficient on the lower surface, hence

C p3 = 2 sin2 α = 2 sin2 15◦ = 0.134

From Equation (14.9), we have for the upper surface

C p2 = 0

Hence, c� = (C p3 − C p2) cos α = 0.134 cos 15◦ = 0.1294

and cd = (C p3 − C p2) sin α = 0.134 sin 15◦ = 0.03468

and
L

D
= c�

cd
= 0.1294

0.3468
= 3.73

Discussion. From the above worked example, we see that newtonian theory
underpredicts the pressure coefficient on the bottom surface by 29 percent, and
of course predicts a value of zero for the pressure coefficient on the upper surface
in comparison to −0.0219 from exact theory—an error of 100 percent. Also,
newtonian theory underpredicts c� and cd by 36.6 percent. However, the value of
L/D from newtonian theory is exactly correct. This is no surprise, for two reasons.
First, the newtonian values of c� and cd are both underpredicted by the same
amount, hence their ratio is not affected. Second, the value of L/D for supersonic
or hypersonic inviscid flow over a flat plate, no matter what theory is used to obtain
the pressures on the top and bottom surfaces, is simply a matter of geometry.
Because the pressure acts normal to the surface, the resultant aerodynamic force
is perpendicular to the plate (i.e., the resultant force is the normal force N ).
Examining Figure 1.16, we see that when this is the case, the vectors R and N are
the same vectors, and L/D is geometrically given by

L

D
= cot α

For the above worked example, where α = 15◦, we have

L

D
= cot 15◦ = 3.73
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which agrees with the above calculations where c� and cd were first obtained, and
L/D is found from the ratio, L/D = c�/cd . So, Equation (14.16), derived in our
discussion of newtonian theory applied to a flat plate, is not unique to newtonian
theory; it is a general result when the resultant aerodynamic force is perpendicular
to the plate.

We induce from Example 14.1 the general fact that the newtonian sine-
squared law, Equation (14.4), does not accurately predict the hypersonic pressure
distribution on the surface of two-dimensional bodies with local tangent lines that
are at small or moderate angles to the flow, such as the bi-convex airfoil shape
shown in Figure 12.3. On the other hand, it generally turns out that the newtonian
prediction of the lift-to-drag ratio for slender shapes at small to moderate angles
of attack is reasonably accurate. These statements apply to a gas with the ratio of
specific heats substantially greater than one, such as the case of air with γ = 1.4
treated in Example 14.1. In the next section, we will see that newtonian theory
becomes more accurate as M∞ → ∞ and γ → 1. For more information on
the accuracy of newtonian theory applied to two-dimensional slender shapes, see
Reference 73 which is a study of this specific matter.

Finally, we note that newtonian theory does a better job of predicting the
pressure on axisymmetric slender bodies, such as the 15◦ half-angle cone shown
in Figure 14.15.

Figure 14.15 Comparison between newtonian and exact results for
the pressure coefficient on a sharp wedge and a sharp cone. Also, an
illustration of Mach number independence at high Mach numbers.
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14.5 HYPERSONIC SHOCK-WAVE RELATIONS AND
ANOTHER LOOK AT NEWTONIAN THEORY

The basic oblique shock relations are derived and discussed in Chapter 9. These are
exact shock relations and hold for all Mach numbers greater than unity, supersonic
or hypersonic (assuming a calorically perfect gas). However, some interesting
approximate and simplified forms of these shock relations are obtained in the
limit of a high Mach number. These limiting forms are called the hypersonic
shock relations; they are obtained below.

Consider the flow through a straight oblique shock wave. (See, e.g., Fig-
ure 9.2.) Upstream and downstream conditions are denoted by subscripts 1 and
2, respectively. For a calorically perfect gas, the classical results for changes
across the shock are given in Chapter 9. To begin with, the exact oblique shock
relation for pressure ratio across the wave is given by Equation (9.16). Since
Mn,1 = M1 sin β, this equation becomes

Exact:
p2

p1
= 1 + 2γ

γ + 1

(
M2

1 sin2 β − 1
)

(14.28)

where β is the wave angle. In the limit as M1 goes to infinity, the term M2
1 sin2 β �

1, and hence Equation (14.28) becomes

as M1 → ∞:
p2

p1
= 2γ

γ + 1
M2

1 sin2 β (14.29)

In a similar vein, the density and temperature ratios are given by Equations (9.15)
and (9.17), respectively. These can be written as follows:

Exact:
ρ2

ρ1
= (γ + 1)M2

1 sin2 β

(γ − 1)M2
1 sin2 β + 2

(14.30)

as M1 → ∞: ρ2

ρ1
= γ + 1

γ − 1
(14.31)

T2

T1
= (p2/p1)

(ρ2/ρ1)
(from the equation of state: p = ρRT )

as M1 → ∞: T2

T1
= 2γ (γ − 1)

(γ + 1)2
M2

1 sin2 β (14.32)

The relationship among Mach number M1, shock angle β, and deflection angle θ

is expressed by the so-called θ -β-M relation given by Equation (9.23), repeated
below:

Exact: tan θ = 2 cot β

[
M2

1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

]
(9.23)
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This relation is plotted in Figure 9.9, which is a standard plot of the wave angle
versus the deflection angle, with the Mach number as a parameter. Returning
to Figure 9.9, we note that, in the hypersonic limit, where θ is small, β is also
small. Hence, in this limit, we can insert the usual small-angle approximation into
Equation (9.23):

sin β ≈ β

cos 2β ≈ 1

tan θ ≈ sin θ ≈ θ

resulting in

θ = 2

β

[
M2

1 β2 − 1

M2
1 (γ + 1) + 2

]
(14.33)

Applying the high Mach number limit to Equation (14.33), we have

θ = 2

β

[
M2

1 β2

M2
1 (γ + 1)

]
(14.34)

In Equation (14.34), M1 cancels, and we finally obtain in both the small-angle
and hypersonic limits,

as M1 → ∞ and θ, hence β is small: β

θ
= γ + 1

2
(14.35)

Note that, for γ = 1.4,

β = 1.2θ (14.36)

It is interesting to observe that, in the hypersonic limit for a slender wedge, the
wave angle is only 20 percent larger than the wedge angle—a graphic demon-
stration of a thin shock layer in hypersonic flow.

In aerodynamics, pressure distributions are usually quoted in terms of the
nondimensional pressure coefficient Cp, rather than the pressure itself. The pres-
sure coefficient is defined as

C p = p2 − p1

q1
(14.37)

where p1 and q1 are the upstream (freestream) static pressure and dynamic pres-
sure, respectively. Recall from Section 11.3 that Equation (14.37) can also be
written as Equation (11.22), repeated below:

Cp = 2

γ M2
1

(
p2

p1
− 1

)
(11.22)

Combining Equations (11.22) and (14.28), we obtain an exact relation for Cp

behind an oblique shock wave as follows:

Exact: Cp = 4

γ + 1

(
sin2 β − 1

M2
1

)
(14.38)



894 PART 3 Inviscid, Compressible Flow

In the hypersonic limit,

as M1 → ∞: Cp =
(

4

γ + 1

)
sin2 β (14.39)

Pause for a moment, and review our results. We have obtained limiting forms
of the oblique shock equations, valid for the case when the upstream Mach number
becomes very large. These limiting forms, called the hypersonic shock-wave rela-
tions, are given by Equations (14.29), (14.31), and (14.32), which yield the pres-
sure ratio, density ratio, and temperature ratio across the shock when M1 → ∞.
Furthermore, in the limit of both M1 → ∞ and small θ (such as the hypersonic
flow over a slender airfoil shape), the limiting relation for the wave angle as a
function of the deflection angle is given by Equation (14.35). Finally, the form of
the pressure coefficient behind an oblique shock is given in the limit of hypersonic
Mach numbers by Equation (14.39). Note that the limiting forms of the equations
are always simpler than their corresponding exact counterparts.

In terms of actual quantitative results, it is always recommended that the exact
oblique shock equations be used, even for hypersonic flow. This is particularly
convenient because the exact results are tabulated in Appendix B. The value
of the relations obtained in the hypersonic limit (as described above) is more
for theoretical analysis rather than for the calculation of actual numbers. For
example, in this section, we use the hypersonic shock relations to shed additional
understanding of the significance of newtonian theory. In the next section, we
will examine the same hypersonic shock relations to demonstrate the principle of
Mach number independence.

Newtonian theory was discussed at length in Sections 14.3 and 14.4. For our
purposes here, temporarily discard any thoughts of newtonian theory, and simply
recall the exact oblique shock relation for C p as given by Equation (14.38),
repeated below (with freestream conditions now denoted by a subscript ∞ rather
than a subscript 1, as used earlier):

Cp = 4

γ + 1

[
sin2 β − 1

M2∞

]
(14.38)

Equation (14.39) gave the limiting value of Cp as M∞ → ∞, repeated below:

as M∞ → ∞: Cp → 4

γ + 1
sin2 β (14.39)

Now take the additional limit of γ → 1.0. From Equation (14.39), in both limits
as M∞ → ∞ and γ → 1.0, we have

Cp → 2 sin2 β (14.40)

Equation (14.40) is a result from exact oblique shock theory; it has nothing to do
with newtonian theory (as yet). Keep in mind that β in Equation (14.40) is the
wave angle, not the deflection angle.

Let us go further. Consider the exact oblique shock relation for the density
ratio, ρ/ρ∞, given by Equation (14.30), repeated below (again with a subscript ∞
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replacing the subscript 1):

ρ2

ρ∞
= (γ + 1)M2

∞ sin2 β

(γ − 1)M2∞ sin2 β + 2
(14.41)

Equation (14.31) was obtained as the limit where M∞ → ∞, namely,

as M∞ → ∞:
ρ2

ρ∞
→ γ + 1

γ − 1
(14.42)

In the additional limit as γ → 1, we find

as γ → 1 and M∞ → ∞: ρ2

ρ∞
→ ∞ (14.43)

that is, the density behind the shock is infinitely large. In turn, mass flow con-
siderations then dictate that the shock wave is coincident with the body surface.
This is further substantiated by Equation (14.35), which is good for M∞ → ∞
and small deflection angles:

β

θ
→ γ + 1

2
(14.35)

In the additional limit as γ → 1, we have

as γ → 1 and M∞ → ∞ and θ and β are small: β = θ

that is, the shock wave lies on the body. In light of this result, Equation (14.40)
is written as

Cp = 2 sin2 θ (14.44)

Examine Equation (14.44). It is a result from exact oblique shock theory, taken
in the combined limit of M∞ → ∞ and γ → 1. However, it is also precisely
the newtonian results given by Equation (14.4). Therefore, we make the follow-
ing conclusion. The closer the actual hypersonic flow problem is to the limits
M∞ → ∞ and γ → 1, the closer it should be physically described by newto-
nian flow. In this regard, we gain a better appreciation of the true significance
of newtonian theory. We can also state that the application of newtonian theory
to practical hypersonic flow problems, where γ is always greater than unity, is
theoretically not proper, and the agreement that is frequently obtained with exper-
imental data has to be viewed as somewhat fortuitous. Nevertheless, the simplicity
of newtonian theory along with its (sometimes) reasonable results (no matter how
fortuitous) has made it a widely used and popular engineering method for the es-
timation of surface pressure distributions, hence lift- and wave-drag coefficients,
for hypersonic bodies.
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14.6 MACH NUMBER INDEPENDENCE
Examine again the hypersonic shock-wave relation for pressure ratio as given
by Equation (14.29); note that, as the freestream Mach number approaches in-
finity, the pressure ratio itself also becomes infinitely large. On the other hand,
the pressure coefficient behind the shock, given in the hypersonic limit by Equa-
tion (14.39), is a constant value at high values of the Mach number. This hints
strongly of a situation where certain aspects of a hypersonic flow do not depend
on Mach number, as long as the Mach number is sufficiently high. This is a type
of “independence” from the Mach number, formally called the hypersonic Mach
number independence principle. From the above argument, Cp clearly demon-
strates Mach number independence. In turn, recall that the lift- and wave-drag
coefficients for a body shape are obtained by integrating the local C p, as shown
by Equations (1.15), (1.16), (1.18), and (1.19). These equations demonstrate that,
since Cp is independent of the Mach number at high values of M∞, the lift and drag
coefficients are also Mach number independent. Keep in mind that these conclu-
sions are theoretical, based on the limiting form of the hypersonic shock relations.

Let us examine an example that clearly illustrates the Mach number inde-
pendence principle. In Figure 14.15, the pressure coefficients for a 15◦ half-angle
wedge and a 15◦ half-angle cone are plotted versus freestream Mach number for
γ = 1.4. The exact wedge results are obtained from Equation (14.38), and the
exact cone results are obtained from the solution of the classical Taylor-Maccoll
equation. (See Reference 21 for a detailed discussion of the solution of the su-
personic flow over a cone. There, you will find that the governing continuity,
momentum, and energy equations for a conical flow cascade into a single differ-
ential equation called the Taylor-Maccoll equation. In turn, this equation allows
the exact solution of this conical flow field.) Both sets of results are compared
with newtonian theory, C p = 2 sin2 θ , shown as the dashed line in Figure 14.15.
This comparison demonstrates two general aspects of newtonian results:

1. The accuracy of the newtonian results improves as M∞ increases. This is
to be expected from our discussion in Section 14.5. Note from Figure 14.15
that below M∞ = 5 the newtonian results are not even close, but the
comparison becomes much closer as M∞ increases above 5.

2. Newtonian theory is usually more accurate for three-dimensional bodies
(e.g., the cone) than for two-dimensional bodies (e.g., the wedge). This is
clearly evident in Figure 14.15 where the newtonian result is much closer
to the cone results than to the wedge results.

However, more to the point of Mach number independence, Figure 14.15 also
shows the following trends. For both the wedge and the cone, the exact results
show that, at low supersonic Mach numbers, Cp decreases rapidly as M∞ is
increased. However, at hypersonic speeds, the rate of decrease diminishes con-
siderably, and Cp appears to reach a plateau as M∞ becomes large; that is, C p

becomes relatively independent of M∞ at high values of the Mach number. This is
the essence of the Mach number independence principle; at high Mach numbers,
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56
55 57

Figure 14.16 Drag coefficient for a sphere and a cone cylinder from
ballistic range measurements; an example of Mach number
independence at hypersonic speeds. (Data Source: Cox, R. N., and
L. F. Crabtree: Elements of Hypersonic Aerodynamics, Academic
Press, New York, 1965).

certain aerodynamic quantities such as pressure coefficient, lift- and wave-drag
coefficients, and flow-field structure (such as shock-wave shapes and Mach wave
patterns) become essentially independent of the Mach number. Indeed, newtonian
theory gives results that are totally independent of the Mach number, as clearly
demonstrated by Equation (14.4).

Another example of Mach number independence is shown in Figure 14.16.
Here, the measured drag coefficients for spheres and for a large-angle cone cylin-
der are plotted versus the Mach number, cutting across the subsonic, supersonic,
and hypersonic regimes. Note the large drag rise in the subsonic regime associated
with the drag-divergence phenomenon near Mach 1 and the decrease in CD in
the supersonic regime beyond Mach 1. Both of these variations are expected and
well understood. For our purposes in the present section, note, in particular, the
variation of CD in the hypersonic regime; for both the sphere and cone cylinder,
CD approaches a plateau and becomes relatively independent of the Mach number
as M∞ becomes large. Note also that the sphere data appear to achieve “Mach
number independence” at lower Mach numbers than the cone cylinder.

Keep in mind from the above analysis that it is the nondimensional variables
that become Mach number independent. Some of the dimensional variables, such
as p, are not Mach number independent; indeed, p → ∞ and M∞ → ∞.

Finally, the Mach number independence principle is well grounded mathe-
matically. The governing inviscid flow equations (the Euler equations) expressed
in terms of suitable nondimensional quantities, along with the boundary conditions
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for the limiting hypersonic case, do not have the Mach number appearing in
them—hence, by definition, the solution to these equations is independent of the
Mach number. See References 21 and 52 for more details.

14.7 HYPERSONICS AND COMPUTATIONAL
FLUID DYNAMICS

The design of hypersonic vehicles today is greatly dependent on the use of com-
putational fluid dynamics, much more so than the design of vehicles for any other
flight regime. The primary reason for this is the lack of experimental ground test
facilities that can simultaneously simulate the Mach numbers, Reynolds num-
bers, and high-temperature levels associated with hypersonic flight. For such
simulation, CFD is the primary tool. Reflecting once again on the philosophy
illustrated in Figure 2.46, in the realm of hypersonic flow the three partners are
not quite equal. Pure experimental work in hypersonics usually involves tests at
either the desired Mach number, the desired Reynolds number, or the desired
temperature level, but not all at the same time nor in the same test facilities. As
a result, experimental data for the design of hypersonic vehicles is a patchwork
of different data taken in different facilities under different conditions. Moreover,
the data are usually incomplete, especially for the high-temperature effects, which
are difficult to simulate in a wind tunnel. The designer must then do his or her best
to piece together the information for the specified design conditions. The next
partner shown in Figure 2.46, pure theory, is greatly hampered by the nonlinear
nature of hypersonic flow, hence making mathematical solutions intractable. In
addition, the proper inclusion of high-temperature chemically reacting flows in
any pure theory is extremely difficult. For these reasons, the third partner shown
in Figure 2.46, computational fluid dynamics, takes on a dominant role. The nu-
merical calculation of both inviscid and viscous hypersonic flows, including all
the high-temperature effects discussed in Section 14.2, has been a major thrust
of CFD research and design application since the 1960s. Indeed, hypersonics has
paced the development of CFD since its beginning.

As an example of CFD applied to a hypersonic flight vehicle appropriate to
this chapter, consider the space shuttle shown in Figure 14.17. A numerical solu-
tion of the three-dimensional inviscid flow field around the shuttle was carried out
by Maus et al. in Reference 74. They made two sets of calculations, one for a per-
fect gas with γ = 1.4, and one assuming chemically reacting air in local chemical
equilibrium. The freestream Mach number was 23 in both cases. The CFD tech-
nique used for these calculations involved a time-dependent solution of the flow in
the blunt nose region, patterned after our discussion in Section 13.5, and starting
beyond the sonic line a downstream marching approach patterned after our discus-
sion in Section 13.4. The calculated surface pressure distributions along the wind-
ward centerline of the space shuttle for both the perfect gas case (the circles) and
the chemically reacting case (the triangles) are shown in Figure 14.18. The expan-
sion around the nose, the pressure plateau over the relatively flat bottom surface,
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Figure 14.17 Space shuttle geometry.
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Figure 14.18 Pressure distribution along the windward centerline
of the space shuttle; comparison between a calorically perfect gas
and chemically reacting equilibrium air calculations. (Data Source:
Maus, J. R., Griffith, B. J., Szema, K. Y., and Best, J. T.: “Hypersonic
Mach Number and Real Gas Effects on Space Shuttle Orbiter
Aerodynamics,” J. Spacecraft and Rockets, vol. 21, no. 2,
March–April 1984, pp. 136–141).
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Figure 14.19 Predicted pitching moment coefficient for the space
shuttle; comparison between a calorically perfect gas and equilibrium air
calculations. (Data Source: Maus, J. R., Griffith, B. J., Szema, K. Y., and
Best, J. T.: “Hypersonic Mach Number and Real Gas Effects on Space
Shuttle Orbiter Aerodynamics,” J. Spacecraft and Rockets, vol. 21, no. 2,
March–April 1984, pp. 136–141).

and the further expansion over the slightly inclined back portion of the body, are
all quite evident. Also note that there is little difference in the pressure distribu-
tions between the two cases; this is an example of the more general result that
pressure is usually the flow variable least affected by chemically reacting effects.

It is interesting to note, however, that a flight characteristic as mundane as
the vehicle pitching moment coefficient is affected by chemically reacting flow
effects. Close examination of Figure 14.18 shows that, for the chemically reacting
flow, the pressures are slightly higher on the forward part of the shuttle, and slightly
lower on the rearward part. This results in a more positive pitching moment. Since
the moment is the integral of the pressure through a moment arm, a slight change
in pressure can substantially affect the moment. This is indeed the case here,
as shown in Figure 14.19, which is a plot of the resulting calculated pitching
moment as a function of angle of attack for the space shuttle. Clearly, the pitching
moment is substantially greater for the chemically reacting case. The work by
Maus et al. was the first to point out this effect on pitching moment, and it serves to
reinforce the importance of high-temperature flows on hypersonic aerodynamics.
It also serves to reinforce the importance of CFD in the analysis of hypersonic
flows. The predicted pitching moment used for the space shuttle design came
from “cold-flow” wind tunnel tests which did not simulate the high-temperature
effects, that is, the designers used data for a perfect gas with γ = 1.4 obtained
in the wind tunnel. This is represented by the lower curve in Figure 14.19. The
early flight experience with the shuttle indicated a much higher pitching moment
at hypersonic speeds than predicted, which required that the body flap deflection
for trim to be more than twice that predicted—an alarming situation. The reason
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for this is now known; the actual flight environment encountered by the shuttle at
high Mach numbers was that of a high-temperature chemically reacting flow—
the situation reflected in the upper curve in Figure 14.19. The difference in the
pitching moment between the two curves in Figure 14.19 is enough to account for
the unexpected extra body flap deflection required to trim the shuttle. Although
these CFD results were obtained well after the design of the shuttle, they serve
to underscore the importance of CFD to present and future hypersonic vehicle
designs.

14.8 HYPERSONIC VISCOUS FLOW:
AERODYNAMIC HEATING

Aerodynamic heating can become so severe at hypersonic speeds that it is the
dominant design consideration for hypersonic vehicles. Indeed, for the reason
discussed at the end of Section 1.1 and sketched in Figures 1.8 and 1.9, the nose
and wing leading edges of hypersonic vehicles must be blunt rather than sharp,
or else the vehicle will be destroyed by aerodynamic heating. In the history of
flight, the most unfortunate example of such destruction occurred on February 1,
2003, when the space shuttle Columbia disintegrated over Texas during entry into
the earth’s atmosphere. Several of the thermal protection tiles near the leading
edge of the left wing had been damaged by debris during launch. This allowed
hot gases to penetrate the surface and destroy the internal wing structure.

The physical mechanisms that create atmospheric heating, both thermal con-
duction and radiation, are briefly discussed at the end of Section 14.2. In the
present section we will present some engineering methods for predicting aerody-
namic heating, and apply them to some hypersonic flow examples. Aerodynamic
heating is a major subject in its own right, and is well beyond the scope of this
book. (See Reference 52 for an in-depth discussion of aerodynamic heating ap-
plied to hypersonic flows.) However, its importance to the design of hypersonic
vehicles demands that we examine a few aspects in the present chapter.

14.8.1 Aerodynamic Heating and Hypersonic Flow—The Connection

What is it about hypersonic flight that makes aerodynamic heating so severe?
We address this question by reaching ahead to Chapter 16 and Equation (16.55),
which introduces a dimensionless heat transfer coefficient called the Stanton
number CH , defined as

CH ≡ q̇w

ρeue(haw − hw)
(14.45)

In Equation (14.45), q̇w is the heat transfer rate per unit area at a given point on the
body surface. In the English engineering system the units of q̇w are ft-lb/(s · ft2);
in the international system the units are W/m2. Also in Equation (14.45), ρe is the
local density at the edge of the boundary layer at the given point, ue is the local
velocity at the edge of the boundary layer, hw is the enthalpy of the gas at the
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wall, and haw is the adiabatic wall enthalpy defined as the enthalpy of the gas at
the wall when the wall temperature is the adiabatic wall temperature—the wall
temperature when the wall becomes so hot that no more energy is conducted into
the wall from the gas adjacent to the wall.

Consider the hypersonic flow over a flat plate at zero angle of attack, where
ρe = ρ∞ and ue = V∞ (ignoring any viscous interaction effect as described in
Section 14.2). For high Mach number laminar flow over a flat plate, Taw is about
12 percent less than the total temperature in the freestream. For our purposes here,
we make the approximation that Taw ≈ To, and hence in Equation (14.45)

haw ≈ ho (14.46)

where ho is the total enthalpy of the freestream. From Equation (7.54), we can
write

ho = h∞ + V 2
∞
2

(14.47)

At hypersonic speeds, V∞ is very large. Also the ambient air far ahead of the
vehicle is relatively cool; hence h∞ = cpT∞ is relatively small. Thus, at high
speeds, from Equation (14.47),

ho ≈ V 2
∞
2

(14.48)

The surface temperature of the plate, although it may be hot by normal standards,
still must be maintained at below the melting or decomposition temperature of the
surface, which is usually much smaller than the total temperature at high Mach
numbers. Thus we can easily make the assumption that

ho � hw (14.49)

It follows from Equations (14.46), (14.48), and (14.49) that

haw − hw ≈ ho − hw ≈ ho ≈ V 2
∞
2

(14.50)

Equation (14.45), written for a flat plate, is

CH = q̇w

ρ∞V∞(haw − hw)

Invoking the approximation given by Equation (14.50), we have

CH ≈ q̇w

ρ∞V∞(V 2∞/2)

or

q̇w ≈ 1

2
ρ∞ V 3

∞ CH (14.51)

Equation (14.51) states that the aerodynamic heating rate varies as the cube of the
velocity. This is in contrast to aerodynamic drag, which varies only as the square
of the velocity. For this reason, at very high velocities, aerodynamic heating
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becomes a dominant aspect of hypersonic vehicle design. This is the connection
between aerodynamic heating and hypersonic flow.

14.8.2 Blunt Versus Slender Bodies in Hypersonic Flow

We have made the claim that the nose and wing leading edges of hypersonic
vehicles must be blunt rather than sharp in order to reduce the aerodynamic
heating in those regions. In this section we will begin to demonstrate this fact
quantitatively.

In Section 14.8.1 we focused on the local heat transfer rate per unit area
at a point on the surface of the vehicle, q̇w. Here we expand our view to the
total heat transferred to the vehicle per unit time, dQ/dt, which is equal to the
local heat transfer rate integrated over the whole surface area of the vehicle. We
can define an integrated overall Stanton number C H by an equation similar to
Equation (14.45),

C H ≡ dQ/dt

ρ∞V∞(ho − hw)S
(14.52)

where S is a reference area (planform area of a wing, cross-sectional area of
a spherical entry vehicle, or the like) in the same spirit as in the definition of
the lift or drag coefficients for a vehicle. Using the approximations made in
Section 14.8.1, Equation (14.52) can be approximated by an expression similar
to Equation (14.51); i.e.,

dQ

dt
= 1

2
ρ∞ V 3

∞ S C H (14.53)

Again we borrow a result from Chapters 16 and 18, namely that there exists
an analogy between skin friction and aerodynamic heating, called Reynolds’
analogy, expressed for a laminar flow by Equation (18.50), repeated below:

CH

Cf
= 1

2
Pr−2/3 (18.50)

where Cf is the local skin friction coefficient as first defined in Section 1.5, and
Pr is the Prandtl number defined in Section 15.6. For our analysis here, it is safe
to assume that Pr = 1. Also, Reynolds analogy expressed by Eq. (18.50) can be
written in terms of the integrated heat transfer and skin friction coefficients, C H

and Cf , respectively. Hence, we have

C H

Cf
= 1

2
(14.54)

Inserting Equation (14.54) into (14.53) gives

dQ

dt
= 1

4
ρ∞V 3

∞ S Cf (14.55)

Let us consider the case of a hypersonic vehicle entering the atmosphere at
very high Mach number from a mission in space. The force that slows this vehicle
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during entry is aerodynamic drag. From Newton’s second law, we have

F = D = −m
dV∞
dt

(14.56)

where m is the mass of the vehicle and the minus sign is necessary because
dV∞/dt is negative; i.e., the vehicle is decelerating. From Equation (14.56),

dV∞
dt

= − D

m
= − 1

2m
ρ∞V 2

∞ S CD (14.57)

where CD is the drag coefficient of the vehicle. Mathematically, we can write
dQ/dt as (dQ/dV∞)(dV∞/dt), where dV∞/dt is given by Equation (14.57).

dQ

dt
= dQ

dV∞

(
− 1

2m
ρ∞V 2

∞S CD

)
(14.58)

Equating Equations (14.55) and (14.58),

dQ

dV∞

(
− 1

2m
ρ∞V 2

∞S CD

)
= 1

4
ρ∞V 3

∞S Cf

or
dQ

dV∞
= −1

2
m V∞

Cf

CD

or

dQ = −1

2
m

Cf

CD

dV 2
∞

2
(14.59)

Integrate Equation (14.59) from the beginning of entry to the atmosphere, where
Q = 0 and V∞ = VE , to the end of entry where Q = Qtotal and V∞ = 0:∫ Qtotal

0
dQ = −1

2

Cf

CD

∫ 0

VE

d
(

m
V 2

∞
2

)
or

Qtotal = 1

2

Cf

CD

(
1

2
mV 2

E

)
(14.60)

Equation (14.60) gives the total heat input Qtotal to the vehicle. It reflects two vital
conclusions:

1. The quantity 1
2 mV 2

E is the initial kinetic energy of the vehicle as it first
enters the atmosphere. Equation (14.60) says that the total heat input is
directly proportional to this initial kinetic energy.

2. Total heat input is directly proportional to the ratio of skin friction drag to
the total drag, Cf /CD.

The second of these conclusions is of direct relevance to our discussion.
Recall from Section 1.5 that the aerodynamic drag on a vehicle is the sum of
drag due to the pressure distribution exerted over its surface, called pressure drag
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Dp, and the drag due to shear stress exerted over its surface, called skin friction
drag Df . In terms of the pressure drag coefficient CDp and the skin friction drag
coefficient Cf we have:

CD = CDp + Cf

From Equation (14.60), to minimize the total aerodynamic heating, we need to
minimize the ratio

Cf

CDp + Cf

Now consider two extremes of aerodynamic configurations: a sharp-nosed slender
body such as the cone shown in Figure 14.20a and the blunt body shown in
Figure 14.20b. For a slender body, the skin friction drag is large in comparison
to the pressure drag, hence CD ≈ Cf and

Cf

CD
≈ 1 slender body

On the other hand, for a blunt body the pressure drag is large in comparison to
the skin friction drag, hence CD ≈ CDp and

Cf

CD
� 1 blunt body

Slender Body

Large Cf

Small CDp

Drag  mainly
   friction drag

(a)

CD � Cf

Blunt Body

Large CDp

Small Cf

Drag  mainly
   pressure drag

(b)

CD � CDp

Figure 14.20 Comparison of blunt and slender bodies.
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In light of Equation (14.60), this leads to the following vital conclusion:

To minimize aerodynamic heating, the vehicle must be a
blunt body, i.e., have a blunt nose.

For this reason, all successful entry vehicles in practice, from intercontinental
ballistic missiles (ICBMs), to the Apollo lunar return capsule, to the space shuttle,
have utilized rounded noses and rounded leading edges. Even vehicles designed
for sustained hypersonic atmospheric flight such as the X-43 shown in Figures 14.1
and 14.2 have rounded noses and leading edges, although the radii of curvature
is small because the minimization of drag, hence the maximization of lift-to-drag
ratio, also becomes important in the design of such vehicles.

14.8.3 Aerodynamic Heating to a Blunt Body

The concept that a blunt body would reduce aerodynamic heating in comparison
to a slender body was first advanced by H. Julian “Harvey” Allen in 1951, as
discussed in Section 1.1. From that time on, the calculation of blunt body aero-
dynamic heating has been of paramount importance in the design of hypersonic
vehicles. In this section we examine the calculation of aerodynamic heating to
the stagnation point of a blunt body because the stagnation point is frequently
(but not always) the point of maximum heat transfer rate to a hypersonic vehicle.

The boundary layer in the region of a stagnation point is laminar, and lends
itself to the exact solution discussed in Section 18.5. When you read Chapter 18 as
you progress through this book, you will have the opportunity to enjoy this rather
elegant solution. In the present section, however, we wish to highlight only one
result from Section 18.5, namely that given by Equation (18.83), repeated below.

q̇w ∝ 1√
R

(18.83)

where R is the nose radius at the stagnation point. This states that stagnation point
heating varies inversely with the square root of the nose radius; hence to reduce
the heating, increase the nose radius. Here we have absolute mathematical proof
that a blunt body reduces aerodynamic heating.

The laminar boundary layer solution for the stagnation point case is described
in Section 18.5. This solution yields a detailed result for stagnation point aerody-
namic heating, namely Equations (18.65) for a circular cylinder and (18.70) for a
sphere, that gives the aerodynamic heating as a function of the detailed flow field
properties at the stagnation point. A much simpler engineering formula for aero-
dynamic heating is given by Tauber and Meneses (Reference 97) in a generalized
form of Equation (14.51) as

q̇wρN
∞V M

∞ C (14.61)

where, for the stagnation point,

M = 3, N = 0.5, C = 1.83 × 10−8 R−1/2

(
1 − hw

ho

)
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when the units for q̇w, V∞, and ρ∞ and R are respectively, W/cm2, m/s, kg/m3,
and m. Thus, for the stagnation point, using Equation (14.61), we have

q̇w = ρ0.5
∞ V 3

∞(1.83 × 10−8 R−0.5)

(
1 − hw

ho

)
(14.62)

In Equation (14.62) we see the now familiar result that aerodynamic heating
varies with the cube of the velocity, and that the stagnation point heating varies
inversely with the square root of the nose radius. Equation (14.62) also shows
that q̇w varies with the square root of the density, which at first glance appears
not to be consistent with Equation (14.51), repeated below

q̇w = 1

2
ρ∞V 3

∞CH (14.51)

This relation appears to show that q̇w is proportional to density to the first power.
However, once again drawing on results from Chapter 18, and specifically from
Equation (18.54), we see that the Stanton number itself for laminar flow is in-
versely proportional to the square root of the Reynolds number. Since the Reynolds
number by definition is in turn proportional to ρ∞, we can state that

CH ∝ 1√
Re

∝ 1√
ρ∞

and then from Equation (14.51),

q̇w ∝ √
ρ∞

This is consistent with Equation (14.62).

EXAMPLE 14.2

During the entry of the space shuttle into the earth’s atmosphere, maximum stagnation
point heating occurs at the trajectory point corresponding to an altitude of 68.9 km, where
ρ∞ = 1.075 × 10−4 kg/m3, and a flight velocity of 6.61 km/s. At this point on its entry
trajectory, the shuttle is at a 40.2 degree angle of attack, which presents an effective nose
radius at the stagnation point of 1.29 m. If the wall temperature is Tw = 1110 K, calculate
the stagnation point heating rate.

■ Solution
Equation (14.62), repeated here, is

q̇w = ρ0.5
∞ V 3

∞(1.83 × 10−8 R−0.5)

(
1 − hw

ho

)
To evaluate the ratio hw/ho, we have from Equation (14.48)

ho ≈ V 2∞
2

= (6610)2

2
= 2.185 × 107 J/(kg · K)

For hw , when the wall temperature is 1110 K, we can reasonably assume a calorically per-
fect gas. As calculated in Example 7.1, for calorically perfect air, C p = 1004.5 J/(kg · K).
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Thus,

hw = cpTw = (1004.5)(1110) = 1.115 × 106 J/(kg · K)

Thus,

hw

ho
= 1.115 × 106

2.185 × 107 = 0.051

The stagnation point heat transfer is, from Equation (14.62),

q̇w = ρ0.5
∞ V 3

∞(1.83 × 10−8 R−0.5)

(
1 − hw

h0

)
= (1.075 × 10−4)0.5(6610)3(1.83 × 10−8) × (1.29)−0.5(1 − 0.051)

= 45.78 W/cm2

Zoby (Reference 98) quotes a maximum stagnation point heating of 45 W/cm2 based on
experimental data obtained for the space shuttle at the given altitude and velocity on the
entry trajectory. Our calculated result from Equation (14.62) agrees very well with the
experimental data.

In Example 14.2 we calculated the heat transfer rate to the stagnation point.
This is the point on the body of maximum aerodynamic heating rate. Along
the windward centerline (on the bottom surface), the heating rate rapidly de-
creases with distance downstream from the stagnation point. Figure 14.21 gives
experimental data for the local aerodynamic heating rate as reported in Refer-
ence 98. Note the qualitative similarity between the variation of q̇w with distance
as shown in Figure 14.21 and the variation of pressure with distance as shown in
Figure 14.18. Although the results shown in these two figures are for slightly
different angles of attack, this comparison illustrates a qualitative trend that is
frequently seen in hypersonic aerodynamics, namely that the distribution of the
aerodynamic heating rate over a surface tends to qualitatively follow the distri-
bution of pressure over the surface.

14.9 APPLIED HYPERSONIC AERODYNAMICS:
HYPERSONIC WAVERIDERS

The maximum lift-to-drag ratio (L/D)max for a flight vehicle is a measure of
its aerodynamic efficiency. Unfortunately, for supersonic and hypersonic flight
vehicles, as the freestream Mach number increases, (L/D)max decreases rather
dramatically. This is just a fact of nature, brought about by the rapidly increasing
shock-wave strength as Mach number increases, with consequent large increases
in wave drag. Return to the variation of L/D versus angle of attack for a flat plate
shown in Figure 14.14. The solid curve is from the newtonian analysis discussed
in Section 14.4. This is an inviscid flow result, and shows that L/D theoretically
approaches infinity as the angle of attack α approaches zero. In reality, the vis-
cous shear stress acting on the plate surface causes L/D to peak at a low value
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Figure 14.21 Experimental data for the local aerodynamic heating rate
along the windward centerline of the space shuttle. (Data from Zoby,
E. V., “Approximate Heating Analysis for the Windward Symmetry Plane
of Shuttlelike Bodies at Angle of Attack,” in Thermodynamics of
Atmospheric Entry, T. E. Horton (ed.), Vol. 82, Progress in Astronautics
and Aeronautics, American Institute of Aeronautics and Astronautics,
1982, pp. 229–247).

of α and to go to zero as α → 0. This is illustrated by the dashed curve in Fig-
ure 14.14, which shows the variation of L/D modified by skin friction as predicted
by the reference temperature method discussed in Section 18.4. The skin-friction
calculation is for laminar flow at Mach 10 and a Reynolds number of 3 × 106.
Note that (L/D)max for the flat plate is about 6.5. By comparison, (L/D)max for a
Boeing 747 at normal cruising conditions near Mach 1 is about 20. So the (L/D)max

for a hypersonic flat plate, as shown in Figure 14.14, is a low value, reflecting the
characteristically low lift-to-drag ratios generated by hypersonic vehicles. And
the infinitely thin flat plate is the most efficient lifting surface aerodynamically
compared to other hypersonic shapes with finite thickness. Conclusion: The
L/D value of vehicles at hypersonic Mach numbers is low. This is particularly
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Shock wave
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along the leading edge
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(a) Waverider

(b) Generic vehicle

Detached
shock

Figure 14.22 Comparison of waverider and generic hypersonic
configurations.

bothersome for future hypersonic vehicles designed for sustained flight in the
atmosphere. Current design practice for such vehicles is illustrated by the X-43
shown in Figures 14.1 and 14.2.

There is a class of hypersonic vehicle shapes, however, that generates higher
value of L/D than other shapes—waveriders. A waverider is a supersonic or hy-
personic vehicle that has an attached shock wave all along its leading edge, as
sketched in Figure 14.22a. Because of this, the vehicle appears to be riding on
top of its shock wave, hence the term “waverider.” This is in contrast to a more
conventional hypersonic vehicle, where the shock wave is usually detached from
the leading edge, as sketched in Figure 14.22b. The aerodynamic advantage of the
waverider in Figure 14.22a is that the high pressure behind the shock wave under
the vehicle does not “leak” around the leading edge to the top surface; the flow
field over the bottom surface is contained, and the high pressure is preserved, and
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Figure 14.23 Comparison of lift and L/D curves
between waverider and a generic hypersonic vehicle.

therefore more lift is generated on the vehicle. In contrast, for the vehicle shown
in Figure 14.22b, there is communication between the flows over the bottom and
top surfaces; the pressure tends to leak around the leading edge, and the general
integrated pressure level on the bottom surface is reduced, resulting in less lift.
Because of this, the generic vehicle in Figure 14.22b must fly at a larger angle
of attack α to produce the same lift as the waverider in Figure 14.22a. This is
illustrated in Figure 14.23, where the lift curves (L versus α) are sketched for the
two vehicles shown in Figure 14.22. Note that the lift curve for the waverider is
considerably higher because of the pressure containment compared to that for the
generic vehicle. At the same lift, points 1a and 1b in Figure 14.23 represent the
waverider and generic vehicles, respectively. Also shown in Figure 14.23 are typ-
ical variations of L/D versus α, which for slender hypersonic vehicles are not too
different for the shapes in Figures 14.22a and b. (Although the lift of the waverider
at a given angle of attack is increased by the pressure containment on the bottom
surface, so is the wave drag; hence, the L/D ratio at a given angle of attack for the
waverider is better, but not greatly so, than that for the generic vehicle.) However,
note that because the waverider generates the same lift at a smaller α (point 1a in
Figure 14.23) than does the generic vehicle, which must fly at a large α (point 1b in
Figure 14.23), the L/D for the waverider is considerably higher (point 1aa) than
that for the generic shape point (1bb). Therefore, for sustained hypersonic cruising
flight in the atmosphere the waverider configuration has a definite advantage.

Question: How do you design a vehicle shape such that the shock wave is
attached all along its leading edge; that is, how do you design a waverider?

One answer is as follows. Consider the simple flow field generated by a wedge
in a supersonic or hypersonic freestream as discussed in Section 9.3. Imagine that
the top surface of the wedge is parallel to the freestream, and hence the only wave
in the flow is the planar shock wave propagating below the wedge, as sketched
at the top of Figure 14.24. Now imagine two straight lines arbitrarily traced on
the surface of the shock wave, coming to a point at the front of the shock. Con-
sider all of the streamlines of the flow behind the shock that emanate from these
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Figure 14.24 Nonweiler or “caret” wing.

arbitrarily traced lines. Taken together, these streamlines form a stream surface
that can be considered the surface of a vehicle with its leading edges defined by
the two arbitrarily traced lines on the shock wave. Because the flow field behind
a planar shock wave is uniform with parallel streamlines, these stream surfaces
are flat surfaces that trace out a vehicle shape with a caret cross section as shown
in Figure 14.24, named after the caret symbol ∧. If you now mentally strip away
the imaginary generating flow field shown at the top of Figure 14.24, you have
left the caret-shaped vehicle shown at the bottom of Figure 14.24. Concentrating
on the vehicle shape at the bottom of Figure 14.24, the planar surfaces on the
bottom of the vehicle are stream surfaces that exist behind a planar oblique shock
wave—stream surfaces that are generated by streamlines that begin on the shock
surface itself. Hence, the shock wave is, by definition, attached to the leading
edge of the vehicle; this planar attached shock is shown stretching between the
two straight leading edges of the vehicle sketched at the bottom of Figure 14.24.
By definition, therefore, this vehicle is a waverider. Caution: The waverider is in
principle a point-designed vehicle. The generating oblique shock sketched at the
top of Figure 14.24 pertains to a given freestream Mach number M∞ and a given
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flow deflection angle of the imaginary wedge that generates the oblique shock.
Nevertheless, if you construct the vehicle shape shown at the bottom of Fig-
ure 14.24 and put it in a freestream at the given M∞ and at an angle of attack
such that the flow deflection angle of the vehicle bottom surface is the same as
that of the imaginary generating wedge, then nature will make certain that the
shock wave is attached all along the vehicle’s leading edge; that is, the vehicle will
be a waverider. Note that in Figure 14.24 we have oriented the imaginary gener-
ating wedge such that its top surface is parallel to the freestream; hence, there is
no wave over the top surface of the wedge. Consequently, the top surfaces of the
resulting caret waverider shown at the bottom of Figure 14.24 are aligned with
the freestream, and there is no wave above the waverider.

In principle any shape can be used for the imaginary body producing the
flow field from which a waverider shape is carved. The simplest case is to use
a wedge for the imaginary body as just described. This has the advantage that a
wedge produces a simple known flow field that is easily calculated, as treated in
Chapter 9. You do not need a CFD solution for this flow. The flow over a cone
at zero angle of attack in a supersonic or hypersonic flow is similarly a known
flow field that can be used to generate waverider shapes. Because this conical
flow field is quasi-three-dimensional, it provides more flexibility in the generation
of waverider shapes. The idea is the same. Consider the supersonic or hypersonic
conical flow field over a right-circular cone at zero angle of attack as sketched at
the top of Figure 14.25. The exact numerical solution of this flow field is discussed
in Section 13.6. The flow field is obtained from a solution of the Taylor-Maccoll
Equation, Equation (13.78), and tabulated results given in References 95 and 96.
In short, this is a known flow field. At the top of Figure 14.25, we see a conical
shock wave attached at the vertex of the right-circular cone. This cone is simply
the imaginary body generating the flow field.

Consider the dashed curve drawn on the bottom surface of the conical shock
wave as sketched at the top of Figure 14.25. All of the streamlines flowing through
this dashed curve constitute a stream surface. In turn this stream surface defines
the bottom surface of a waverider with a leading edge traced out by the dashed
curve, as sketched at the bottom of Figure 14.25. Any curve can be traced on the
conical shock; hence, any stream surface of the conical flow field downstream of
the shock can be used as the surface of a waverider. When this is done, the shock
wave will be attached all along the leading edge of the waverider, as shown in
Figure 14.25. Moreover, the attached shock wave on this resulting waverider will,
of course, be a segment of the conical shock wave shown at the top of Figure 14.25.

The waverider concept was first introduced by Nonweiler (Reference 99) in
1959, who generated caret-shaped waveriders from the two-dimensional flow field
behind a planar oblique shock wave generated by a wedge, as described earlier.
Nonweiler was interested in such waveriders as lifting atmospheric entry bodies.
The first extension of Nonweiler’s concept to the use of a conical flow as gener-
ating flow field by Jones (Reference 100) in 1963, and further extensions to other
axisymmetric generating flows are discussed by Jones et al. in Reference 101. An
excellent and authoritative survey of waverider research up to 1979 is given by
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Townend in (Reference 102). In the early 1980s Rasmussen and his colleagues
at the University of Oklahoma (for example, see References 103–105) utilized
hypersonic small-disturbance theory to design waveriders from flow fields over
right-circular cones as well as elliptic cones. In a manner consistent with his use
of analytical solutions of the waverider flows, Rasmussen was also able to use
the classic calculus of variations to optimize the waverider shapes utilizing the
inviscid properties of the flow.

14.9.1 Viscous-Optimized Waveriders

In the work just described, the waverider configurations were designed (and some-
times optimized) on the basis of inviscid flow fields, not including the effect of
skin-friction drag. In turn, the drag predicted by such inviscid analyses was sim-
ply wave drag, and the resulting values of the inviscid L/D looked promising.
However, waveriders tend to have large wetted surface areas, and the skin-friction
drag, always added to the waverider aerodynamics after the fact, tended to greatly
decrease the predicted inviscid lift-to-drag ratio. This made the waverider a less
interesting prospect and led to a temporary lack of interest, indeed outright skepti-
cism by researchers and vehicle designers in the waverider as a viable hypersonic
configuration. Beginning in 1987, the author and his students at the University
of Maryland took a different tack. New families of waveriders were generated
wherein the skin-friction drag was included within an optimization routine to
calculate waveriders with maximum L/D. In this fashion, the trade-offs between
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wave drag and friction drag were accounted for during the optimization process,
and the resulting family of waveriders had a shape and wetted surface area so as
to optimize L/D. This family of waveriders is called viscous-optimization hyper-
sonic waveriders, and subsequent CFD calculations and wind-tunnel tests have
proven their viability, thus greatly enhancing modern interest in the waverider
concept.

The design process for viscous-optimized waveriders was first published in
References 106 and 107. This work, beginning in the late 1980s, led to a new
class of waveriders where the optimization process is trying to reduce the wetted
surface area, hence reducing skin-friction drag, while maximizing L/D. Because
detailed viscous effects cannot be couched in simple analytical forms, the formal
optimization methods based on the calculus of variations cannot be used. Instead,
a numerical optimization technique was used based on the simplex method of
Nelder and Mead (Reference 108). By using a numerical optimization technique,
other real configuration aspects could be included in the analysis in addition to
viscous effects, such as blunted leading edges and an expansion upper surface (in
contrast to the standard assumption of a freestream upper surface, i.e., an upper
surface with all generators parallel to the freestream direction). The results of the
study by Bowcutt et al. led to a new class of waveriders, namely, viscous-optimized
waveriders. Moreover, these waveriders produced relatively high values of L/D,
as will be discussed later.

For the viscous-optimized waverider configurations, the following philoso-
phy was followed:

1. The lower (compression) surface was generated by a stream surface behind
a conical shock wave. The inviscid conical flow field was obtained from the
numerical solution of the Taylor-Maccoll equation, derived in Section 13.6.

2. The upper surface was treated as an expansion surface, generated in a
manner similar to that for the inviscid flow about a tapered, axisymmetric
cylinder at zero angle of attack, and calculated by means of the
axisymmetric method of characteristics.

3. The viscous effects were calculated by means of an integral boundary-layer
analysis following surface streamlines, including transition from laminar to
turbulent flow.

4. Blunt leading edges were included to the extent of determining the
maximum leading-edge radius required to yield acceptable leading-edge
surface temperatures, and then the leading-edge drag was estimated by
modified newtonian theory.

5. The final waverider configuration, optimized for maximum L/D at a given
Mach number and Reynolds number with body fineness ratio as a constraint,
was obtained from the numerical simplex method taking into account all of
the effects itemized in steps 1–4 within the optimization process itself.

The following discussion provides some insight into the optimization process.
First, assume a given conical shock wave in a flow at a given Mach number, say,
a conical shock wave angle of θs = 11 deg. at Mach 6. As discussed previously,
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now trace a curve on the surface of the shock wave. The stream surface generated
from this curve is a bottom surface of a waverider, and the curve itself forms
the leading edge of the waverider. An infinite number of such curves can be
traced on the conical shock wave, generating an infinite number of waverider
shapes using the conical shock with θs = 11 deg. at M∞ = 6. Indeed, some of
these leading-edge curves are shown in Figure 14.26. The optimization procedure
progresses through a series of these leading-edge shapes, each one generating a
new waverider with a certain lift-to-drag ratio, and finally settling on that particular
leading-edge shape that yields the maximum value of L/D. This is the optimum
waverider for the given generating conical shock wave angle of θs = 11 deg. This
resulting (L/D)max is then plotted as a point in Figure 14.27 for the conical shock
wave angle θs = 11 deg. Figure 14.27 also gives the corresponding value of lift
coefficient CL and volumetric efficiency η = V 2/3/Sp, where V is the vehicle
volume and Sp is the planform area. Now choose another conical shock angle for
generating the flow field, say, θs = 12 deg., and repeat the preceding procedure,
finding that leading-edge shape that yields the waverider shape that produces the
highest L/D. This result is now plotted in Figure 14.27 for θs = 12 deg. Then
another conical shock wave angle, say θs = 13 deg., is chosen, and the process is
repeated again, finding that particular waverider shape that produces the highest
L/D. This point is now plotted in Figure 14.27 for θs = 13 deg. And so forth.
The front views of these optimized waverider shapes are shown in Figure 14.28,
each one labeled according to its generating conical shock-wave angle. These
same optimized waveriders are shown in perspective in Figure 14.29. Returning
to Figure 14.27, note that the curve of L/D versus θs itself has a maximum value

x

y

Figure 14.26 Examples of initial and optimized waverider
leading-edge shapes.
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Figure 14.27 Results for a series of optimized waveriders at Mach 6; l =
length of waverider, b/ l = body fineness ratio, and r = leading edge radius.

of L/D, occurring in this case for θs = 12 deg. This yields an “optimum of the
optimums” and defines the final viscous optimized waverider at M∞ = 6 for
the flight conditions shown in Figure 14.27. Noted on Figure 14.27 is the body
fineness ratio, b/ l, where b is the wing span and l is the length of the waverider.
Recall that fineness ratio is taken as a constraint in the optimization process. For
this case, b/ l = 0.06. Finally, a summary three-view of the best optimum (the
optimum of the optimums) waverider, which here corresponds to θs = 12 deg., is
given in Figure 14.30. Also, in Figures 14.28 to 14.30 the lines on the upper and
lower surfaces of the waveriders are inviscid streamlines. Note in these figures
that the shape of the optimum waverider changes considerably with θs . Moreover,
examining (for example) Figure 14.30, note the rather complex curvature of the
leading edge in both the planform and front views; the optimization program is
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�s = 11�
�s = 12�

�s = 13�
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Figure 14.28 Results for a series of optimized waveriders at Mach 6.

shaping the waverider to adjust both wave drag and skin-friction drag so that the
overall L/D is a maximum. Indeed, it was observed that the best optimum shape at
any given M∞ results in the magnitudes of wave drag and skin-friction drag being
approximately the same, never differing by more than a factor of 2. For conical
shock angles below the best optimum (for example, θs = 11◦ in Figures 14.28
and 14.29), skin-friction drag is greater than wave drag; in contrast, for conical
shock angles above the optimum (for example θs = 13◦ and 14◦ in Figures 14.28
and 14.29), skin-friction drag is less than wave drag. [Note: In Section 14.4,
using newtonian theory for a flat plate at angle of attack, at the flight condition
associated with the maximum lift-to-drag ratio, wave drag is twice the friction
drag, as proved by Equation (14.27).]

�s = 11� �s = 12�

�s = 13� �s = 14�

Figure 14.29 Perspective views of a series of optimized waveriders at Mach 6.
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Figure 14.30 Three-view and perspective of the best optimized waverider at Mach 6.

The results in Figures 14.27 to 14.30 pertain to M∞ = 6. Using the same pro-
cedure, the best optimum waverider shape at any supersonic or hypersonic Mach
number can be obtained. For example, the shape of the best optimized waverider
for M∞ = 25 is given in Figure 14.31. Comparing the optimum configuration
of M∞ = 6 (Figure 14.30), note that the Mach 25 shape has more wing sweep.
This pertains to a conical flow field with a smaller wave angle, both of which are
intuitively expected at higher Mach number. However, the body slenderness ratio
at M∞ = 6 is constrained to be b/ l = 0.06 (analogous to a supersonic transport
such as the Concorde), but that b/ l = 0.09 is the constraint chosen at M∞ = 25
(analogous to a hydrogen-fueled hypersonic airplane). The two different slender-
ness ratios are chosen on the basis of reality for two different aircraft with two
different missions at either extreme of the hypersonic flight spectrum.

For supersonic and hypersonic vehicles, L/D markedly decreases as M∞ in-
creases. Indeed, Kuchemann (Reference 66) gives the following general empirical
correlation for (L/D)max based on actual flight-vehicle experience:

(L/D)max = 4(M∞ + 3)

M∞
This variation is shown as the solid curve in Figure 14.32. This figure is important
to our present discussion; it brings home the importance of viscous optimized
waveriders. The Kuchemann curve (the solid curve) in Figure 14.32 represents a
type of “L/D barrier” for conventional vehicles, which is difficult to break. The
open circles in Figure 14.32, which form an almost shotgun scatter of points,
are data for a variety of conventional vehicles representing various wind-tunnel
and flight tests. (Precise identification of the sources for these points is given in
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Figure 14.31 Three-view and perspective of the best optimized waverider at Mach 25.
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Reference 109). The solid symbols pertain to the various optimized hypersonic
waveriders discussed here. The solid squares are results for the waveriders based
on conical generating flows as described below. The solid circles are results
for another family of viscous optimized waveriders based on the shock wave
and downstream streamsurfaces generated by a one-half power law ogive-shaped
body, obtained by Corda and Anderson (Reference 110). From Figure 14.32 we
see that the viscous optimized waveriders break the L/D barrier, that is, they give
(L/D)max values that lie above the Kuchemann curve. Indeed, the L/D variation
of the viscous optimized waveriders is more closely given by

(L/D)max = 6(M∞ + 2)

M∞
This variation is shown as the dotted curve in Figure 14.32. The importance of the
viscous optimized waveriders is established by the results shown in Figure 14.32.
These results have been confirmed by various wind-tunnel tests. They are the
reason for renewed interest in the waverider configuration as a hypersonic vehicle,
particularly for sustained cruising in the atmosphere.

The physical aspects that define the hypersonic flow regime were discussed in
Section 14.2. The influence of viscous interaction effects, high-temperature flows,
and aerodynamic heating on waverider design is discussed at length in the second
edition of Reference 52 (see pages 361–374, 409–413, and 644–646 of the sec-
ond edition of Reference 52). Also, hypersonic vehicle design is sensitive to the
location of the transition from laminar to turbulent flow, and the design of hyper-
sonic waveriders is no exception. Numerical experiments carried out at M∞ = 10
wherein the transition location was varied over a wide latitude, ranging from all-
laminar flow on one hand, to almost all-turbulent flow on the other hand, with vari-
ous cases in between, are discussed in References 52, 107, and 109. Although these
physical phenomena have an effect on the optimized shape of viscous optimized
hypersonic waveriders, the resulting values of (L/D)max are not greatly changed.

Even with these real physical phenomena included in the optimization pro-
cess, the viscous optimized hypersonic waverider remains a viable configura-
tion for future hypersonic vehicle design. Indeed, the Air Force–sponsored and
Boeing-designed X-51, shown in Figure 14.33, is a viscous-optimized waverider.
SCRAMjet-powered, and designed for flight at Mach 5 to 6, the X-51 will provide
the technology for future atmospheric cruise missiles. On May 1, 2013, the X-51
achieved a flight of over six minutes and reached speeds of over Mach 5 for 210
seconds. At the time of writing, this is the longest duration SCRAMjet powered
hypersonic flight. It is only the second SCRAMjet-powered hypersonic vehicle
of any type to achieve sustained atmospheric flight, the first being the X-43 in
2004 (Figures 14.1 and 14.2).

14.10 SUMMARY
Only a few of the basic elements of hypersonic flow are presented here, with
special emphasis on newtonian flow results. Useful information on hypersonic
flows can be extracted from such results. We have derived the basic newtonian
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Figure 14.33 X51 waverider (U.S. Air Force Photo).

sine-squared law:

Cp = 2 sin2 θ (14.4)

and used this result to treat the case of a hypersonic flat plate in Section 14.4.
We also obtained the limiting form of the oblique shock relations as M∞ → ∞,
that is, the hypersonic shock relations. From these relations, we were able to
examine the significance of newtonian theory more thoroughly, namely, Equa-
tion (14.4) becomes an exact relation for a hypersonic flow in the combined limit
of M∞ → ∞ and γ → 1. Finally, these hypersonic shock relations illustrate the
existence of the Mach number independence principle.

14.11 PROBLEMS
14.1 Repeat Problem 9.13 using

a. Newtonian theory
b. Modified newtonian theory
Compare these results with those obtained from exact shock-expansion
theory (Problem 9.13). From this comparison, what comments can you
make about the accuracy of newtonian and modified newtonian theories at
low supersonic Mach numbers?

14.2 Consider a flat plate at α = 20◦ in a Mach 20 freestream. Using straight
newtonian theory, calculate the lift- and wave-drag coefficients. Compare
these results with exact shock-expansion theory.

14.3 Consider a hypersonic vehicle with a spherical nose flying at Mach 20
at a standard altitude of 150,000 ft, where the ambient temperature and
pressure are 500◦R and 3.06 lb/ft2, respectively. At the point on the
surface of the nose located 20◦ away from the stagnation point, estimate
the: (a) pressure, (b) temperature, (c) Mach number, and (d) velocity of
the flow.



P A R T 4
Viscous Flow

In Part 4, we deal with flows that are dominated by viscosity and thermal
conduction—viscous flows. We will treat both incompressible and compress-
ible viscous flows.
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C H A P T E R 15
Introduction to the
Fundamental Principles and
Equations of Viscous Flow

I do not see then, I admit, how one can explain the resistance of fluids by the
theory in a satisfactory manner. It seems to me on the contrary that this theory,
dealt with and studied with profound attention gives, at least in most cases,
resistance absolutely zero: a singular paradox which I leave to geometricians
to explain.

Jean LeRond d’Alembert, 1768

PREVIEW BOX

The real life of aerodynamics—that is what the present
and remaining chapters are all about. Except for the
few earlier sections on viscous flow, most of our pre-
vious discussions in this book have dealt with inviscid
flows. Do not get the wrong impression; a large num-
ber of practical aerodynamic applications are appro-
priately treated by assuming inviscid flow, as we have
already seen. Thank goodness for this, because invis-
cid flows are usually easier to analyze than viscous
flows. But some aspects of aerodynamics are inher-
ently viscous in nature, such as skin-friction drag,
aerodynamic heating, and flow separation. To deal
with these important aspects, we have to undertake

the study of viscous flow, which is the subject of the
remainder of this book.

The present chapter is all about the fundamental
aspects of viscous flow. Here you will find new def-
initions, new concepts, and new equations, including
the derivation of the Navier-Stokes equations, which
are nothing more than the continuity, momentum, and
energy equations for a viscous flow. Although some
of the basic concepts of viscous flow were first intro-
duced in Chapter 1, the present chapter goes far be-
yond that discussed in Chapter 1. As you read through
this chapter, as well as the subsequent chapters, you
will find a small amount of repetition of a few thoughts

925
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introduced in earlier chapters. This is intentional.
I want to make Part 4 of this book a stand-alone,
almost self-contained presentation of viscous flow.
Besides, a little bit of repetition never hurt anybody,

and in the educational process it can help a lot. So
jump into this chapter and immerse yourself in the
ideas and thoughts of viscous flow. Come into the real
world.

15.1 INTRODUCTION
In the above quotation, the “theory” referred to by d’Alembert is inviscid, in-
compressible flow theory; we have seen in Chapter 3 that such theory leads to a
prediction of zero drag on a closed two-dimensional body—this is d’Alembert’s
paradox. In reality, there is always a finite drag on any body immersed in a mov-
ing fluid. Our earlier predictions of zero drag are a result of the inadequacy of
the theory rather than some fluke of nature. With the exception of induced drag
and supersonic wave drag, which can be obtained from inviscid theory, the cal-
culation of all other forms of drag must explicitly take into account the presence
of viscosity, which has not been included in our previous inviscid analyses. The
purpose of the remaining chapters in this book is to discuss the basic aspects of
viscous flows, thus “rounding out” our overall presentation of the fundamentals of
aerodynamics. In so doing, we address the predictions of aerodynamic drag and
aerodynamic heating. To help put our current discussion in perspective, return to
the block diagram of flow categories given in Figure 1.45. All of our previous
discussions have focused on blocks D, E , and F—inviscid, incompressible, and
compressible flows. Now, for the remaining six chapters, we move to the left
branch in Figure 1.45, and deal with blocks C , E , and F—viscous, incompress-
ible, and compressible flows.

Our treatment of viscous flows will be intentionally brief—our purpose is
to present enough of the fundamental concepts and equations to give you the
flavor of viscous flows. A thorough presentation of viscous flow theory would
double the size of this book (at the very least) and is clearly beyond our scope. A
study of viscous flow is an essential part of any serious study of aerodynamics.
Many books have been exclusively devoted to the presentation of viscous flows;
References 40 and 41 are two good examples. You are encouraged to examine
these references closely.

There have been sections on viscous flow topics earlier in this book, namely,
Sections 1.11, 4.12, 9.10, 10.6, and 12.4. These are stand-alone sections dealing
with viscous flow aspects pertinent to the chapters in which they appear. You, the
reader, have had two choices: (1) to read these viscous flow sections in order to
discover how friction has an impact on some of the ideal inviscid flows discussed
in the main body of the chapter, or (2) to by-pass these sections in order to preserve
the intellectual continuity of a study of inviscid flows that is, after all, the main
thrust of Parts 2 and 3 of this book. Now, we are at Part 4 dealing exclusively with
viscous flow. Readers who took the first choice will find some slight repetition in
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Figure 15.1 Road map for Chapter 15.

Part 4, but repetition is a good thing in learning a new subject. Readers who took
the second choice will find Part 4 a totally self-contained discussion of viscous
flow that does not depend on reading the earlier viscous flow sections; however,
at appropriate stages of our discussions you will find direct references to specific
earlier sections that fit nicely into the continuity of Part 4.

The road map for the present chapter is given in Figure 15.1. Our course is
to first examine some qualitative aspects of viscous flows as shown on the left
branch of Figure 15.1. Then we quantify some of these aspects as given on the right
branch. In the process, we obtain the governing equations for a general viscous
flow—in particular, the Navier-Stokes equations (the momentum equations) and
the viscous flow energy equation. Finally, we examine a numerical solution to
these equations.

15.2 QUALITATIVE ASPECTS OF VISCOUS FLOW
What is a viscous flow? Answer: A flow where the effects of viscosity, thermal
conduction, and mass diffusion are important. The phenomenon of mass diffusion
is important in a gas with gradients in its chemical species, for example, the flow
of air over a surface through which helium is being injected or the chemically
reacting flow through a jet engine or over a high-speed reentry body. In this book,
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Figure 15.2 Effect of viscosity on a body in a moving fluid: shear stress and
separated flow.

we are not concerned with the effects of diffusion, and therefore we treat a viscous
flow as one where only viscosity and thermal conduction are important.

First, consider the influence of viscosity. Imagine two solid surfaces slipping
over each other, such as this book being pushed across a table. Clearly, there will
be a frictional force between these objects which will retard their relative motion.
The same is true for the flow of a fluid over a solid surface; the influence of friction
between the surface and the fluid adjacent to the surface acts to create a frictional
force which retards the relative motion. This has an effect on both the surface and
the fluid. The surface feels a “tugging” force in the direction of the flow, tangential
to the surface. This tangential force per unit area is defined as the shear stress τ ,
first introduced in Section 1.5 and illustrated in Figure 15.2. As an equal and
opposite reaction, the fluid adjacent to the surface feels a retarding force which
decreases its local flow velocity, as shown in insert a of Figure 15.2. Indeed, the
influence of friction is to create V = 0 right at the body surface—this is called the
no-slip condition which dominates viscous flow. In any real continuum fluid flow
over a solid surface, the flow velocity is zero at the surface. Just above the surface,
the flow velocity is finite, but retarded, as shown in insert a. If n represents the
coordinate normal to the surface, then in the region near the surface, V = V (n),
where V = 0 at n = 0, and V increases as n increases. The plot of V versus n
as shown in insert a is called a velocity profile. Clearly, the region of flow near
the surface has velocity gradients, ∂V/∂n, which are due to the frictional force
between the surface and the fluid.

In addition to the generation of shear stress, friction also plays another (but
related) role in dictating the flow over the body in Figure 15.2. Consider a fluid
element moving in the viscous flow near a surface, as sketched in Figure 15.3.
Assume that the flow is in its earliest moments of being started. At the station s1,
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Figure 15.3 Separated flow induced by an adverse pressure gradient. This picture
corresponds to the early evolution of the flow; once the flow separates from the surface
between points 2 and 3, the fluid element shown at s3 is in reality different from that
shown at s1 and s2 because the primary flow moves away from the surface, as shown in
Figure 15.2.

the velocity of the fluid element is V1. Assume that the flow over the surface
produces an increasing pressure distribution in the flow direction (i.e., assume
p3 > p2 > p1). Such a region of increasing pressure is called an adverse pressure
gradient. Now follow the fluid element as it moves downstream. The motion of
the element is already retarded by the effect of friction; in addition, it must work
its way along the flow against an increasing pressure, which tends to further
reduce its velocity. Consequently, at station 2 along the surface, its velocity V2

is less than V1. As the fluid element continues to move downstream, it may
completely “run out of steam,” come to a stop, and then, under the action of the
adverse pressure gradient, actually reverse its direction and start moving back
upstream. This “reversed flow” is illustrated at station s3 in Figure 15.3, where
the fluid element is now moving upstream at the velocity V3. The picture shown
in Figure 15.3 is meant to show the flow details very near the surface at the very
initiation of the flow. In the bigger picture of this flow at later times shown in
Figure 15.2, the consequence of such reversed-flow phenomena is to cause the
flow to separate from the surface and create a large wake of recirculating flow
downstream of the surface. The point of separation on the surface in Figure 15.2
occurs where ∂V/∂n = 0 at the surface, as sketched in insert b of Figure 15.2.
Beyond this point, reversed flow occurs. Therefore, in addition to the generation
of shear stress, the influence of friction can cause the flow over a body to separate
from the surface. When such separated flow occurs, the pressure distribution over
the surface is greatly altered. The primary flow over the body in Figure 15.2 no
longer sees the complete body shape; rather, it sees the body shape upstream
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Figure 15.4 Schematic of the pressure
distributions for attached and separated flow over
the upper surface of the body illustrated in
Figure 15.2.

of the separation point, but downstream of the separation point it sees a greatly
deformed “effective body” due to the large separated region. The net effect is
to create a pressure distribution over the actual body surface which results in an
integrated force in the flow direction, that is, a drag. To see this more clearly,
consider the pressure distribution over the upper surface of the body as sketched
in Figure 15.4. If the flow were attached, the pressure over the downstream portion
of the body would be given by the dashed curve. However, for separated flow, the
pressure over the downstream portion of the body is smaller, given by the solid
curve in Figure 15.4. Now return to Figure 15.2. Note that the pressure over the
upper rearward surface contributes a force in the negative drag direction; that is,
p acting over the element of surface ds shown in Figure 15.2 has a horizontal
component in the upstream direction. If the flow were inviscid, subsonic, and
attached and the body were two-dimensional, the forward-acting components of
the pressure distribution shown in Figure 15.2 would exactly cancel the rearward-
acting components due to the pressure distribution over other parts of the body
such that the net, integrated pressure distribution would give zero drag. This
would be d’Alembert’s paradox discussed in Chapter 3. However, for the viscous,
separated flow, we see that p is reduced in the separated region; hence, it can no
longer fully cancel the pressure distribution over the remainder of the body. The
net result is the production of drag; this is called the pressure drag due to flow
separation and is denoted by Dp.

In summary, we see that the effects of viscosity are to produce two types of
drag as follows:

D f is the skin friction drag, that is, the component in the drag direction of
the integral of the shear stress τ over the body.
Dp is the pressure drag due to separation, that is, the component in the drag
direction of the integral of the pressure distribution over the body.
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Dp is sometimes called form drag. The sum D f + Dp is called the profile drag of a
two-dimensional body. For a three-dimensional body such as a complete airplane,
the sum D f + Dp is frequently called parasite drag. (See Reference 2 for a more
extensive discussion of the classification of different drag contributions.)

The occurrence of separated flow over an aerodynamic body not only in-
creases the drag but also results in a substantial loss of lift. Such separated flow is
the cause of airfoil stall as discussed in Section 4.3. For these reasons, the study,
understanding, and prediction of separated flow is an important aspect of viscous
flow.

Let us turn our attention to the influence of thermal conduction—another
overall physical characteristic of viscous flow in addition to friction. Again, let
us draw an analogy from two solid bodies slipping over each other, such as the
motion of this book over the top of a table. If we would press hard on the book,
and vigorously rub it back and forth over the table, the cover of the book as well
as the table top would soon become warm. Some of the energy we expend in
pushing the book over the table will be dissipated by friction, and this shows up
as a form of heating of the bodies. The same phenomenon occurs in the flow of a
fluid over a body. The moving fluid has a certain amount of kinetic energy; in the
process of flowing over a surface, the flow velocity is decreased by the influence
of friction, as discussed earlier, and hence the kinetic energy is decreased. This
lost kinetic energy reappears in the form of internal energy of the fluid, hence
causing the temperature to rise. This phenomenon is called viscous dissipation
within the fluid. In turn, when the fluid temperature increases, there is an overall
temperature difference between the warmer fluid and the cooler body. We know
from experience that heat is transferred from a warmer body to a cooler body;
therefore, heat will be transferred from the warmer fluid to the cooler surface.
This is the mechanism of aerodynamic heating of a body. Aerodynamic heating
becomes more severe as the flow velocity increases, because more kinetic energy
is dissipated by friction, and hence the overall temperature difference between
the warm fluid and the cool surface increases. As discussed in Chapter 14, at
hypersonic speeds, aerodynamic heating becomes a dominant aspect of the flow.

All the aspects discussed above—shear stress, flow separation, aerodynamic
heating, etc.—are dominated by a single major question in viscous flow, namely,
Is the flow laminar or turbulent? Consider the viscous flow over a surface as
sketched in Figure 15.5. If the path lines of various fluid elements are smooth and

(a) Laminar flow (b) Turbulent flow

Figure 15.5 Path lines for laminar and turbulent flows.
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Laminar

Turbulent

V

n

Figure 15.6 Schematic of velocity
profiles for laminar and turbulent
flows.

regular, as shown in Figure 15.5a, the flow is called laminar flow. In contrast, if the
motion of a fluid element is very irregular and tortuous, as shown in Figure 15.5b,
the flow is called turbulent flow. Because of the agitated motion in a turbulent
flow, the higher-energy fluid elements from the outer regions of the flow are
pumped close to the surface. Hence, the average flow velocity near a solid surface
is larger for a turbulent flow in comparison with laminar flow. This comparison
is shown in Figure 15.6, which gives velocity profiles for laminar and turbulent
flow. Note that immediately above the surface, the turbulent flow velocities are
much larger than the laminar values. If (∂V/∂n)n=0 denotes the velocity gradient
at the surface, we have[(

∂V

∂n

)
n=0

]
turbulent

>

[(
∂V

∂n

)
n=0

]
laminar

Because of this difference, the frictional effects are more severe for a turbulent
flow; both the shear stress and aerodynamic heating are larger for the turbulent flow
in comparison with laminar flow. However, turbulent flow has a major redeeming
value; because the energy of the fluid elements close to the surface is larger in a
turbulent flow, a turbulent flow does not separate from the surface as readily as a
laminar flow. If the flow over a body is turbulent, it is less likely to separate from
the body surface, and if flow separation does occur, the separated region will be
smaller. As a result, the pressure drag due to flow separation Dp will be smaller
for turbulent flow.

This discussion points out one of the great compromises in aerodynamics.
For the flow over a body, is laminar or turbulent flow preferable? There is no pat
answer; it depends on the shape of the body. In general, if the body is slender,
as sketched in Figure 15.7a, the friction drag D f is much greater than Dp. For
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Figure 15.7 Drag on slender and blunt bodies.

Transition point

Transition
region

Laminar
Turbulent

xcr

Figure 15.8 Transition from laminar to turbulent flow.

this case, because D f is smaller for laminar than for turbulent flow, laminar flow
is desirable for slender bodies. In contrast, if the body is blunt, as sketched in
Figure 15.7b, Dp is much greater than D f . For this case, because Dp is smaller
for turbulent than for laminar flow, turbulent flow is desirable for blunt bodies.
The above comments are not all-inclusive; they simply state general trends, and
for any given body, the aerodynamic virtues of laminar versus turbulent flow must
always be assessed.

Although, from the above discussion, laminar flow is preferable for some
cases, and turbulent flow for other cases, in reality we have little control over
what actually happens. Nature makes the ultimate decision as to whether a flow
will be laminar or turbulent. There is a general principle in nature that a system,
when left to itself, will always move toward its state of maximum disorder. To
bring order to the system, we generally have to exert some work on the system
or expend energy in some manner. (This analogy can be carried over to daily
life; a room will soon become cluttered and disordered unless we exert some
effort to keep it clean.) Since turbulent flow is much more “disordered” than
laminar flow, nature will always favor the occurrence of turbulent flow. Indeed,
in the vast majority of practical aerodynamic problems, turbulent flow is usually
present.

Let us examine this phenomenon in more detail. Consider the viscous flow
over a flat plate, as sketched in Figure 15.8. The flow immediately upstream of
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the leading edge is uniform at the freestream velocity. However, downstream of
the leading edge, the influence of friction will begin to retard the flow adjacent
to the surface, and the extent of this retarded flow will grow higher above the
plate as we move downstream, as shown in Figure 15.8. To begin with, the flow
just downstream of the leading edge will be laminar. However, after a certain
distance, instabilities will appear in the laminar flow; these instabilities rapidly
grow, causing transition to turbulent flow. The transition from laminar to turbulent
flow takes place over a finite region, as sketched in Figure 15.8. However, for
purposes of analysis, we frequently model the transition region as a single point,
called the transition point, upstream of which the flow is laminar and downstream
of which the flow is turbulent. The distance from the leading edge to the transition
point is denoted by xcr. The value of xcr depends on a whole host of phenomena.
For example, some characteristics which encourage transition from laminar to
turbulent flow, and hence reduce xcr, are:

1. Increased surface roughness. Indeed, to promote turbulent flow over a body,
rough grit can be placed on the surface near the leading edge to “trip” the
laminar flow into turbulent flow. This is a frequently used technique in
wind-tunnel testing. Also, the dimples on the surface of a golf ball are
designed to encourage turbulent flow, thus reducing Dp. In contrast, in
situations where we desire large regions of laminar flow, such as the flow
over the NACA six-series laminar-flow airfoils, the surface should be as
smooth as possible. The main reason why such airfoils do not produce in
actual flight the large regions of laminar flow observed in the laboratory is
that manufacturing irregularities and bug spots (believe it or not) roughen
the surface and promote early transition to turbulent flow.

2. Increased turbulence in the freestream. This is particularly a problem in
wind-tunnel testing; if two wind tunnels have different levels of freestream
turbulence, then data generated in one tunnel are not repeatable in the other.

3. Adverse pressure gradients. In addition to causing flow-field separation as
discussed earlier, an adverse pressure gradient strongly favors transition to
turbulent flow. In contrast, strong favorable pressure gradients (where p
decreases in the downstream direction) tend to preserve initially laminar
flow.

4. Heating of the fluid by the surface. If the surface temperature is warmer
than the adjacent fluid, such that heat is transferred to the fluid from the
surface, the instabilities in the laminar flow will be amplified, thus favoring
early transition. In contrast, a cold wall will tend to encourage laminar flow.

There are many other parameters which influence transition; see Reference 40
for a more extensive discussion. Among these are the similarity parameters of
the flow, principally Mach number and Reynolds number. High values of M∞
and low values of Re tend to encourage laminar flow; hence, for high-altitude
hypersonic flight, laminar flow can be quite extensive. The Reynolds number
itself is a dominant factor in transition to turbulent flow. Referring to Figure 15.8,
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we define a critical Reynolds number, Recr, as

Recr ≡ ρ∞V∞xcr

μ∞

The value of Recr for a given body under specified conditions is difficult to predict;
indeed, the analysis of transition is still a very active area of modern aerodynamic
research. As a rule of thumb in practical applications, we frequently take Recr ≈
500,000; if the flow at a given x station is such that Re = ρ∞V∞x/μ∞ is consid-
erably below 500,000, then the flow at that station is most likely laminar, and if
the value of Re is much larger than 500,000, then the flow is most likely turbulent.

To obtain a better feeling for Recr, let us imagine that the flat plate in Fig-
ure 15.8 is a wind-tunnel model. Assume that we carry out an experiment under
standard sea level conditions [ρ∞ = 1.23 kg/m3 and μ∞ = 1.79 × 10−5 kg/(m · s)]
and measure xcr for a certain freestream velocity; for example, say that xcr =
0.05 m when V∞ = 120 m/s. In turn, this measured value of xcr determines the
measured Recr as

Recr = ρ∞V∞xcr

μ∞
= 1.23(120)(0.05)

1.79 × 10−5
= 412,000

Hence, for the given flow conditions and the surface characteristics of the flat
plate, transition will occur whenever the local Re exceeds 412,000. For example,
if we double V∞, that is, V∞ = 240 m/s, then we will observe transition to occur
at xcr = 0.05/2 = 0.025 m, such that Recr remains the same value of 412,000.

This brings to an end our introductory qualitative discussion of viscous flow.
The physical principles and trends discussed in this section are very important,
and you should study them carefully and feel comfortable with them before
progressing further.

15.3 VISCOSITY AND THERMAL CONDUCTION
The basic physical phenomena of viscosity and thermal conduction in a fluid
are due to the transport of momentum and energy via random molecular motion.
Each molecule in a fluid has momentum and energy, which it carries with it when
it moves from one location to another in space before colliding with another
molecule. The transport of molecular momentum gives rise to the macroscopic
effect we call viscosity, and the transport of molecular energy gives rise to the
macroscopic effect we call thermal conduction. This is why viscosity and thermal
conduction are labeled as transport phenomena. A study of these transport phe-
nomena at the molecular level is part of kinetic theory, which is beyond the scope
of this book. Instead, in this section we simply state the macroscopic results of
such molecular motion.

Consider the flow sketched in Figure 15.9. For simplicity, we consider a one-
dimensional shear flow, that is, a flow with horizontal streamlines in the x direction
but with gradients in the y direction of velocity, ∂u/∂y, and temperature, ∂T/∂y.
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Figure 15.9 Relationship of shear stress and thermal conduction to
velocity and temperature gradients, respectively.

Consider a plane ab perpendicular to the y axis, as shown in Figure 15.9. The shear
stress exerted on plane ab by the flow is denoted by τyx and is proportional to the
velocity gradient in the y direction, τyx ∝ ∂u/∂y. The constant of proportionality
is defined as the viscosity coefficient μ. Hence,

τyx = μ
∂u

∂y
(15.1)

The subscripts on τyx denote that the shear stress is acting in the x direction and
is being exerted on a plane perpendicular to the y axis. The velocity gradient
∂u/∂y is also taken perpendicular to this plane (i.e., in the y direction). The
dimensions of μ are mass/length × time, as originally stated in Section 1.7 and
as can be seen from Equation (15.1). In addition, the time rate of heat conducted
per unit area across plane ab in Figure 15.9 is denoted by q̇y and is proportional
to the temperature gradient in the y direction, q̇y ∝ ∂T/∂y. The constant of
proportionality is defined as the thermal conductivity k. Hence,

q̇y = −k
∂T

∂y
(15.2)

where the minus sign accounts for the fact that the heat is transferred from a
region of high temperature to a region of lower temperature; that is, q̇y is in the
opposite direction of the temperature gradient. The dimensions of k are mass ×
length/(s2 · K), which can be obtained from Equation (15.2) keeping in mind that
q̇y is energy per second per unit area.

Both μ and k are physical properties of the fluid and, for most normal situa-
tions, are functions of temperature only. A conventional relation for the temper-
ature variation of μ for air is given by Sutherland’s law,

μ

μ0
=

(
T

T0

)3/2 T0 + 110

T + 110
(15.3)
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where T is in kelvin and μ0 is a reference viscosity at a reference temperature,
T0. For example, if we choose reference conditions to be standard sea level val-
ues, then μ0 = 1.7894 × 10−5 kg/(m · s) and T0 = 288.16 K. The temperature
variation of k is analogous to Equation (15.3) because the results of elementary
kinetic theory show that k ∝ μcp; for air at standard conditions,

k = 1.45μcp (15.4)

where cp = 1000 J/(kg · K).
Equations (15.3) and (15.4) are only approximate and do not hold at high

temperatures. They are given here as representative expressions which are handy
to use. For any detailed viscous flow calculation, you should consult the published
literature for more precise values of μ and k.

In order to simplify our introduction of the relation between shear stress and
viscosity, we considered the case of a one-dimensional shear flow in Figure 15.9.
In this picture, the y and z components of velocity, v and w, respectively, are
zero. However, in a general three-dimensional flow, u, v, and w are finite, and
this requires a generalization of our treatment of stress in the fluid. Consider the
fluid element sketched in Figure 15.10. In a three-dimensional flow, each face of
the fluid element experiences both tangential and normal stresses. For example,
on face abcd, τxy and τxz are the tangential stresses, and τxx is the normal stress.
As before, the nomenclature τi j denotes a stress in the j direction exerted on a
plane perpendicular to the i axis. Similarly, on face abfe, we have the tangential
stresses τyx and τyz , and the normal stress τyy . On face adge, we have the tangential
stresses τzx and τzy , and the normal stress τzz . Now recall the discussion in the last
part of Section 2.12 concerning the strain of a fluid element, that is, the change in
the angle κ shown in Figure 2.33. What is the force which causes this deformation
shown in Figure 2.33? Returning to Figure 15.10, we have to say that the strain

Figure 15.10 Shear and normal stresses caused by
viscous action on a fluid element.
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is caused by the tangential shear stress. However, in contrast to solid mechanics
where stress is proportional to strain, in fluid mechanics the stress is proportional
to the time rate of strain. The time rate of strain in the xy plane was given in
Section 2.12 as Equation (2.135a):

εxy = ∂v

∂x
+ ∂u

∂y
(2.135a)

Examining Figure 15.10, the strain in the xy plane must be carried out by τxy and
τyx . Moreover, we assume that moments on the fluid element in Figure 15.10 are
zero; hence, τxy = τyx . Finally, from the above, we know that τxy = τyx ∝ εxy .
The proportionality constant is the viscosity coefficient μ. Hence, from Equa-
tion (2.135a), we have

τxy = τyx = μ

(
∂v

∂x
+ ∂u

∂y

)
(15.5)

which is a generalization of Equation (15.1), extended to the case of multidimen-
sional flow. For the shear stresses in the other planes, Equations (2.135b and c)
yield

τyz = τzy = μ

(
∂w

∂y
+ ∂v

∂z

)
(15.6)

and τzx = τxz = μ

(
∂u

∂z
+ ∂w

∂x

)
(15.7)

The normal stresses τxx , τyy , and τzz shown in Figure 15.10 may at first seem
strange. In our previous treatments of inviscid flow, the only force normal to a
surface in a fluid is the pressure force. However, if the gradients in velocity ∂u/∂x ,
∂v/∂y, and ∂w/∂z are extremely large on the faces of the fluid element, there can
be a meaningful viscous-induced normal force on each face which acts in addition
to the pressure. These normal stresses act to compress or expand the fluid element,
hence changing its volume. Recall from Section 2.12 that the derivatives ∂u/∂x ,
∂v/∂y, and ∂w/∂z are related to the dilatation of a fluid element, that is, to ∇ · V.
Hence, the normal stresses should in turn be related to these derivatives. Indeed,
it can be shown that

τxx = λ(∇ · V) + 2μ
∂u

∂x
(15.8)

τyy = λ(∇ · V) + 2μ
∂v

∂y
(15.9)

τzz = λ(∇ · V) + 2μ
∂w

∂z
(15.10)

In Equations (15.8) to (15.10), λ is called the bulk viscosity coefficient, sometimes
identified as the second viscosity coefficient. In 1845, the Englishman George
Stokes hypothesized that

λ = − 2
3μ (15.11)
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To this day, the correct expression for the bulk viscosity is still somewhat con-
troversial, and so we continue to use the above expression given by Stokes. Once
again, the normal stresses are important only where the derivatives ∂u/∂x , ∂v/∂y,
and ∂w/∂z are very large. For most practical flow problems, τxx , τyy , and τzz are
small, and hence the uncertainty regarding λ is essentially an academic question.
An example where the normal stress is important is inside the internal structure
of a shock wave. Recall that, in real life, shock waves have a finite but small
thickness. If we consider a normal shock wave across which large changes in
velocity occur over a small distance (typically 10−5 cm), then clearly ∂u/∂x will
be very large, and τxx becomes important inside the shock wave.

To this point in our discussion, the transport coefficients μ and k have been
considered molecular phenomena, involving the transport of momentum and en-
ergy by random molecular motion. This molecular picture prevails in a laminar
flow. The values of μ and k are physical properties of the fluid; that is, their
values for different gases can be found in standard reference sources, such as the
Handbook of Chemistry and Physics (The Chemical Rubber Co.). In contrast, for
a turbulent flow the transport of momentum and energy can also take place by
random motion of large turbulent eddies, or globs of fluid. This turbulent trans-
port gives rise to effective values of viscosity and thermal conductivity defined
as eddy viscosity ε and eddy thermal conductivity κ , respectively. (Please do not
confuse this use of the symbols ε and κ with the time rate of strain and strain
itself, as used earlier.) These turbulent transport coefficients ε and κ can be much
larger (typically 10 to 100 times larger) than the respective molecular values μ

and k. Moreover, ε and κ predominantly depend on characteristics of the flow
field, such as velocity gradients; they are not just a molecular property of the
fluid such as μ and k. The proper calculation of ε and κ for a given flow has
remained a state-of-the-art research question for the past 80 years; indeed, the
attempt to model the complexities of turbulence by defining an eddy viscosity and
thermal conductivity is even questionable. The details and basic understanding
of turbulence remain one of the greatest unsolved problems in physics today. For
our purpose here, we simply adopt the ideas of eddy viscosity and eddy thermal
conductivity, and for the transport of momentum and energy in a turbulent flow,
we replace μ and k in Equations (15.1) to (15.10) by the combination μ + ε and
k + κ; that is,

τyx = (μ + ε)

(
∂v

∂x
+ ∂u

∂y

)

q̇y = −(k + κ)
∂T

∂y

An example of the calculation of ε and κ is as follows. In 1925, Prandtl
suggested that

ε = ρl2

∣∣∣∣∂u

∂y

∣∣∣∣ (15.12)
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for a flow where the dominant velocity gradient is in the y direction. In Equa-
tion (15.12), l is called the mixing length, which is different for different
applications; it is an empirical constant which must be obtained from exper-
iment. Indeed, all turbulence models require the input of empirical data; no
self-contained purely theoretical turbulence model exists today. Prandtl’s mixing
length theory, embodied in Equation (15.12), is a simple relation which appears
to be adequate for a number of engineering problems. For these reasons, the mix-
ing length model for ε has been used extensively since 1925. In regard to κ , a
relation similar to Equation (15.4) can be assumed (using 1.0 for the constant);
that is,

κ = εcp (15.13)

The comments on eddy viscosity and thermal conductivity are purely intro-
ductory. The modern aerodynamicist has a whole stable of turbulence models to
choose from, and before tackling the analysis of a turbulent flow, you should be
familiar with the modern approaches described in such books as References 40
to 43.

15.4 THE NAVIER-STOKES EQUATIONS
In Chapter 2, Newton’s second law was applied to obtain the fluid-flow momen-
tum equation in both integral and differential forms. In particular, recall Equa-
tions (2.13a to c), where the influence of viscous forces was expressed simply
by the generic terms (F x)viscous, (Fy)viscous, and (Fz)viscous. The purpose of this
section is to obtain the analogous forms of Equations (2.13a to c) where the
viscous forces are expressed explicitly in terms of the appropriate flow-field vari-
ables. The resulting equations are called the Navier-Stokes equations—probably
the most pivotal equations in all of theoretical fluid dynamics.

In Section 2.3, we discussed the philosophy behind the derivation of the
governing equations, namely, certain physical principles are applied to a suitable
model of the fluid flow. Moreover, we saw that such a model could be either
a finite control volume (moving or fixed in space) or an infinitesimally small
element (moving or fixed in space). In Chapter 2, we chose the fixed, finite control
volume for our model and obtained integral forms of the continuity, momentum,
and energy equations directly from this model. Then, indirectly, we went on to
extract partial differential equations from the integral forms. Before progressing
further, it would be wise for you to review these matters from Chapter 2.

For the sake of variety, let us not use the fixed, finite control volume employed
in Chapter 2; rather, in this section, let us adopt an infinitesimally small moving
fluid element of fixed mass as our model of the flow, as sketched in Figure 15.11.
To this model let us apply Newton’s second law in the form F = ma. Moreover,
for the time being consider only the x component of Newton’s second law:

Fx = max (15.14)
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Figure 15.11 Infinitesimally small, moving fluid element. Only the forces in the
x direction are shown.

In Equation (15.14), Fx is the sum of all the body and surface forces acting
on the fluid element in the x direction. Let us ignore body forces; hence, the net
force acting on the element in Figure 15.11 is simply due to the pressure and
viscous stress distributions over the surface of the element. For example, on face
abcd, the only force in the x direction is that due to shear stress, τyx dx dz. Face
efgh is a distance dy above face abcd; hence, the shear force in the x direction
on face efgh is [τyx + (∂τyx/∂y) dy] dx dz. Note the directions of the shear stress
on faces abcd and efgh; on the bottom face, τyx is to the left (the negative x
direction), whereas on the top face, τyx + (∂τyx/∂y) dy is to the right (the positive
x direction). These directions are due to the convention that positive increases in
all three components of velocity, u, v, and w, occur in the positive directions of
the axes. For example, in Figure 15.11, u increases in the positive y direction.
Therefore, concentrating on face efgh, u is higher just above the face than on the
face; this causes a “tugging” action which tries to pull the fluid element in the
positive x direction (to the right) as shown in Figure 15.11. In turn, concentrating
on face abcd, u is lower just beneath the face than on the face; this causes a
retarding or dragging action on the fluid element, which acts in the negative x
direction (to the left), as shown in Figure 15.11. The directions of all the other
viscous stresses shown in Figure 15.11, including τxx , can be justified in a like
fashion. Specifically, on face dcgh, τzx acts in the negative x direction, whereas
on face abfe, τzx + (∂τzx/∂z) dz acts in the positive x direction. On face adhe,
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which is perpendicular to the x axis, the only forces in the x direction are the
pressure force p dy dz, which always acts in the direction into the fluid element,
and τxx dy dz, which is in the negative x direction. In Figure 15.11, the reason
why τxx on face adhe is to the left hinges on the convention mentioned earlier for
the direction of increasing velocity. Here, by convention, a positive increase in u
takes place in the positive x direction. Hence, the value of u just to the left of face
adhe is smaller than the value of u on the face itself. As a result, the viscous action
of the normal stress acts as a “suction” on face adhe; that is, there is a dragging
action toward the left that wants to retard the motion of the fluid element. In
contrast, on face bcgf, the pressure force [p + (∂p/∂x) dx] dy dz presses inward
on the fluid element (in the negative x direction), and because the value of u just to
the right of face bcgf is larger than the value of u on the face, there is a “suction”
due to the viscous normal stress which tries to pull the element to the right (in the
positive x direction) with a force equal to [τxx + (∂τxx/∂x) dx] dy dz.

Return to Equation (15.14). Examining Figure 15.11 in light of our previous
discussion, we can write for the net force in the x direction acting on the fluid
element:

Fx =
[

p −
(

p + ∂p

∂x
dx

)]
dy dz +

[(
τxx + ∂τxx

∂x
dx

)
− τxx

]
dy dz

+
[(

τyx + ∂τyx

∂y
dy

)
− τyx

]
dx dz +

[(
τzx + ∂τzx

∂z
dz

)
− τzx

]
dx dy

or Fx =
(

−∂p

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
dx dy dz (15.15)

Equation (15.15) represents the left-hand side of Equation (15.14). Considering
the right-hand side of Equation (15.14), recall that the mass of the fluid element
is fixed and is equal to

m = ρ dx dy dz (15.16)

Also, recall that the acceleration of the fluid element is the time rate of change
of its velocity. Hence, the component of acceleration in the x direction, denoted
by ax , is simply the time rate of change of u; since we are following a moving
fluid element, this time rate of change is given by the substantial derivative (see
Section 2.9 for a review of the meaning of substantial derivative). Thus,

ax = Du

Dt
(15.17)

Combining Equations (15.14) to (15.17), we obtain

ρ
Du

Dt
= −∂p

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
(15.18a)
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which is the x component of the momentum equation for a viscous flow. In a
similar fashion, the y and z components can be obtained as

ρ
Dv

Dt
= −∂p

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
(15.18b)

ρ
Dw

Dt
= −∂p

∂z
+ ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
(15.18c)

Equations (15.18a to c) are the momentum equations in the x , y, and z direc-
tions, respectively. They are scalar equations and are called the Navier-Stokes
equations in honor of two men—the Frenchman M. Navier and the Englishman
G. Stokes—who independently obtained the equations in the first half of the
nineteenth century.

With the expressions for τxy = τyx , τyz = τzy , τzx = τxz , τxx , τyy , and τzz

from Equations (15.5) to (15.10), the Navier-Stokes equations, Equations (15.18a
to c), can be written as

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= −∂p

∂x
+ ∂

∂x

(
λ∇ · V + 2μ

∂u

∂x

)

+ ∂

∂y

[
μ

(
∂v

∂x
+ ∂u

∂y

)]
+ ∂

∂z

[
μ

(
∂u

∂z
+ ∂w

∂x

)]

(15.19a)

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z
= −∂p

∂y
+ ∂

∂x

[
μ

(
∂v

∂x
+ ∂u

∂y

)]

+ ∂

∂y

(
λ∇ · V + 2μ

∂v

∂y

)
+ ∂

∂z

[
μ

(
∂w

∂y
+ ∂v

∂z

)]
(15.19b)

ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z
= −∂p

∂z
+ ∂

∂x

[
μ

(
∂u

∂z
+ ∂w

∂x

)]

+ ∂

∂y

[
μ

(
∂w

∂y
+ ∂v

∂z

)]
+ ∂

∂z

(
λ∇ · V + 2μ

∂w

∂z

)

(15.19c)

Equations (15.19a to c) represent the complete Navier-Stokes equations for an
unsteady, compressible, three-dimensional viscous flow. To analyze incompress-
ible viscous flow, Equations (15.19a to c) and the continuity equation [say, Equa-
tion (2.52)] are sufficient. However, for a compressible flow, we need an additional
equation, namely, the energy equation to be discussed in the next section.
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In the above form, the Navier-Stokes equations are suitable for the analysis
of laminar flow. For a turbulent flow, the flow variables in Equations (15.19a
to c) can be assumed to be time-mean values over the turbulent fluctuations, and
μ can be replaced by μ + ε, as discussed in Section 15.3. For more details, see
References 40 and 41.

15.5 THE VISCOUS FLOW ENERGY EQUATION
The energy equation was derived in Section 2.7, where the first law of thermo-
dynamics was applied to a finite control volume fixed in space. The resulting
integral form of the energy equation was given by Equation (2.95), and differen-
tial forms were obtained in Equations (2.96) and (2.114). In these equations, the
influence of viscous effects was expressed generically by such terms as Q̇ ′

viscous
and Ẇ ′

viscous. It is recommended that you review Section 2.7 before progressing
further.

In the present section, we derive the energy equation for a viscous flow using
as our model an infinitesimal moving fluid element. This will be in keeping
with our derivation of the Navier-Stokes equation in Section 15.4, where the
infinitesimal element was shown in Figure 15.11. In the process, we obtain explicit
expressions for Q̇ ′

viscous and Ẇ ′
viscous in terms of the flow-field variables. That is, we

once again derive Equation (2.114), except the viscous terms are now displayed
in detail.

Consider again the moving fluid element shown in Figure 15.11. To this
element, apply the first law of thermodynamics, which states

Rate of change net flux of rate of work
of energy inside = heat into + done on element
fluid element element due to pressure and

stress forces on surface
or A = B + C (15.20)

where A, B, and C denote the respective terms above.
Let us first evaluate C ; that is, let us obtain an expression for the rate of work

done on the moving fluid element due to the pressure and stress forces on the
surface of the element. (Note that we are neglecting body forces in this derivation.)
These surface forces are illustrated in Figure 15.11, which for simplicity shows
only the forces in the x direction. Recall from Section 2.7 that the rate of doing
work by a force exerted on a moving body is equal to the product of the force
and the component of velocity in the direction of the force. Hence, the rate of
work done on the moving fluid element by the forces in the x direction shown in
Figure 15.11 is simply the x component of velocity u multiplied by the forces;
for example, on face abcd the rate of work done by τyx dx dz is uτyx dx dz, with
similar expressions for the other faces. To emphasize these energy considerations,
the moving fluid element is redrawn in Figure 15.12, where the rate of work done
on each face by forces in the x direction is shown explicitly. Study this figure
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Figure 15.12 Energy fluxes associated with an infinitesimally small, moving
fluid element. For simplicity, only the fluxes in the x direction are shown.

carefully, referring frequently to its companion in Figure 15.11, until you feel
comfortable with the work terms given in each face. To obtain the net rate of
work done on the fluid element by the forces in the x direction, note that forces in
the positive x direction do positive work and that forces in the negative x direction
do negative work. Hence, comparing the pressure forces on faces adhe and bcgf
in Figure 15.12, the net rate of work done by pressure in the x direction is[

up −
(

up + ∂(up)

∂x
dx

)]
dy dz = −∂(up)

∂x
dx dy dz

Similarly, the net rate of work done by the shear stresses in the x direction on
faces abcd and efgh is[(

uτyx + ∂(uτyx)

∂y
dy

)
− uτyx

]
dx dz = ∂(uτyx)

∂y
dx dy dz

Considering all the forces shown in Figure 15.12, the net rate of work done on
the moving fluid element is simply[

−∂(up)

∂x
+ ∂(uτxx)

∂x
+ ∂(uτyx)

∂y
+ ∂(uτzx)

∂z

]
dx dy dz

The above expression considers only forces in the x direction. When the forces
in the y and z directions are also included, similar expressions are obtained (draw
some pictures and obtain these expressions yourself). In total, the net rate of work
done on the moving fluid element is the sum of all contributions in the x , y, and
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z directions; this is denoted by C in Equation (15.20) and is given by

C =
[
−

(
∂(up)

∂x
+ ∂(vp)

∂y
+ ∂(wp)

∂z

)
+ ∂(uτxx)

∂x
+ ∂(uτyx)

∂y
(15.21)

+ ∂(uτzx)

∂z
+ ∂(vτxy)

∂x
+ ∂(vτyy)

∂y
+ ∂(vτzy)

∂z
+ ∂(wτxz)

∂x

+ ∂(wτyz)

∂y
+ ∂(wτzz)

∂z

]
dx dy dz

Note in Equation (15.21) that the term in large parentheses is simply ∇ · pV.
Let us turn our attention to B in Equation (15.20), that is, the net flux of heat

into the element. This heat flux is due to (1) volumetric heating such as absorption
or emission of radiation and (2) heat transfer across the surface due to temperature
gradients (i.e., thermal conduction). Let us treat the volumetric heating the same
as was done in Section 2.7; that is, define q̇ as the rate of volumetric heat addition
per unit mass. Noting that the mass of the moving fluid element in Figure 15.12
is ρ dx dy dz, we obtain

Volumetric heating of element = ρq̇ dx dy dz (15.22)

Thermal conduction was discussed in Section 15.3. In Figure 15.12, the heat
transferred by thermal conduction into the moving fluid element across face adhe
is q̇x dy dz, and the heat transferred out of the element across face bcgf is [q̇x +
(∂ q̇x/∂x) dx] dy dz. Thus, the net heat transferred in the x direction into the fluid
element by thermal conduction is[

q̇x −
(

q̇x + ∂ q̇x

∂x
dx

)]
dy dz = −∂q̇x

∂x
dx dy dz

Taking into account heat transfer in the y and z directions across the other faces
in Figure 15.12, we obtain

Heating of fluid element
by thermal conduction = −

(
∂q̇x

∂x
+ ∂q̇y

∂y
+ ∂ q̇z

∂z

)
dx dy dz (15.23)

The term B in Equation (15.20) is the sum of Equations (15.22) and (15.23).
Also, recalling that thermal conduction is proportional to temperature gradient,
as exemplified by Equation (15.2), we have

B =
[
ρq̇ + ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)]
dx dy dz (15.24)

Finally, the term A in Equation (15.20) denotes the time rate of change of
energy of the fluid element. In Section 2.7, we stated that the energy of a moving
fluid per unit mass is the sum of the internal and kinetic energies, for example,
e + V 2/2. Since we are following a moving fluid element, the time rate of change
of energy per unit mass is given by the substantial derivative (see Section 2.9).



CHAPTER 15 Introduction to the Fundamental Principles and Equations of Viscous Flow 947

Since the mass of the fluid element is ρ dx dy dz, we have

A = ρ
D

Dt

(
e + V 2

2

)
dx dy dz (15.25)

The final form of the energy equation for a viscous flow is obtained by
substituting Equations (15.21), (15.24), and (15.25) into Equation (15.20),
obtaining

ρ
D(e + V 2/2)

Dt
= ρq̇ + ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)

+ ∂

∂z

(
k
∂T

∂z

)
− ∇ · pV + ∂(uτxx)

∂x
+ ∂(uτyx)

∂y

+ ∂(uτzx)

∂z
+ ∂(vτxy)

∂x
+ ∂(vτyy)

∂y
+ ∂(vτzy)

∂z

+ ∂(wτxz)

∂x
+ ∂(wτyz)

∂y
+ ∂(wτzz)

∂z

(15.26)

Equation (15.26) is the general energy equation for unsteady, compressible, three-
dimensional, viscous flow. Compare Equation (15.26) with Equation (2.105); the
viscous terms are now explicitly spelled out in Equation (15.26). [Note that the
body force term in Equation (15.26) has been neglected.] Moreover, the normal
and shear stresses that appear in Equation (15.26) can be expressed in terms of
the velocity field via Equations (15.5) to (15.10). This substitution will not be
made here because the resulting equation would simply occupy too much space.

Reflect on the viscous flow equations obtained in this chapter—the Navier-
Stokes equations given by Equations (15.19a to c) and the energy equation given
by Equation (15.26). These equations are obviously more complex than the invis-
cid flow equations dealt with in previous chapters. This underscores the fact that
viscous flows are inherently more difficult to analyze than inviscid flows. This is
why, in the study of aerodynamics, the student is first introduced to the concepts
associated with inviscid flow. Moreover, this is why we attempt to model a num-
ber of practical aerodynamic problems in real life as inviscid flows—simply to
allow a reasonable analysis of such flows. However, there are many aerodynamic
problems, especially those involving the prediction of drag and flow separation,
which must take into account viscous effects. For the analysis of such problems,
the basic equations derived in this chapter form a starting point.

Question: What is the form of the continuity equation for a viscous flow?
To answer this question, review the derivation of the continuity equation in Sec-
tion 2.4. You will note that the consideration of the viscous or inviscid nature
of the flow never enters the derivation—the continuity equation is simply a state-
ment that mass is conserved, which is independent of whether the flow is viscous
or inviscid. Hence, Equation (2.52) holds in general.
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15.6 SIMILARITY PARAMETERS
In Section 1.7, we introduced the concept of dimensional analysis, from which
sprung the similarity parameters necessary to ensure the dynamic similarity be-
tween two or more different flows (see Section 1.8). In the present section, we
revisit the governing similarity parameters, but cast them in a slightly different
light.

Consider a steady, two-dimensional, viscous, compressible flow. The
x-momentum equation for such a flow is given by Equation (15.19a), which
for the present case reduces to

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ ∂

∂y

[
μ

(
∂v

∂x
+ ∂u

∂y

)]
(15.27)

In Equation (15.27), ρ, u, p, etc., are the actual dimensional variables, say, [ρ] =
kg/m3, etc. Let us introduce the following dimensionless variables:

ρ ′ = ρ

ρ∞
u′ = u

V∞
v′ = v

V∞
p′ = p

p∞

μ′ = μ

μ∞
x ′ = x

c
y′ = y

c

where ρ∞, V∞, p∞, and μ∞ are reference values (say, e.g., freestream values) and
c is a reference length (say, the chord of an airfoil). In terms of these dimensionless
variables, Equation (15.27) becomes

ρ ′u′ ∂u′

∂x ′ + ρ ′v′ ∂u′

∂y′ = −
(

p∞
ρ∞V 2∞

)
∂p′

∂x ′ +
(

μ∞
ρ∞V∞c

)
∂

∂y′

[
μ′

(
∂v′

∂x ′ + ∂u′

∂y′

)]
(15.28)

Noting that

p∞
ρ∞V 2∞

= γ p∞
γρ∞V 2∞

= a2
∞

γ V 2∞
= 1

γ M2∞

and
μ∞

ρ∞V∞c
= 1

Re∞
where M∞ and Re∞ are the freestream Mach and Reynolds numbers, respectively,
Equation (15.28) becomes

ρ ′u′ ∂u′

∂x ′ + ρ ′v′ ∂u′

∂y′ = − 1

γ M2∞

∂p′

∂x ′ + 1

Re∞

∂

∂y′

[
μ′

(
∂v′

∂x ′ + ∂u′

∂y′

)]
(15.29)

Equation (15.29) tells us something important. Consider two different flows over
two bodies of different shapes. In one flow, the ratio of specific heats, Mach
number, and Reynolds number are γ1, M∞1, and Re∞1, respectively; in the other
flow, these parameters have different values, γ2, M∞2, and Re∞2. Equation (15.29)
is valid for both flows. It can, in principle, be solved to obtain u′ as a function
of x ′ and y′. However, since γ , M∞, and Re∞ are different for the two cases,
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the coefficients of the derivatives in Equation (15.29) will be different. This will
ensure, if

u′ = f1(x ′, y′)

represents the solution for one flow and

u′ = f2(x ′, y′)

represents the solution for the other flow, that

f1 �= f2

However, consider now the case where the two different flows have the same val-
ues of γ , M∞, and Re∞. Now the coefficients of the derivatives in Equation (15.29)
will be the same for both flows; that is, Equation (15.29) is numerically identical
for the two flows. In addition, assume the two bodies are geometrically similar,
so that the boundary conditions in terms of the nondimensional variables are
the same. Then, the solutions of Equation (15.29) for the two flows in terms of
u′ = f1(x ′, y′) and u′ = f2(x ′, y′) must be identical; that is,

f1(x ′, y′) ≡ f2(x ′, y′) (15.30)

Recall the definition of dynamically similar flows given in Section 1.8. There,
we stated in part that two flows are dynamically similar if the distributions of
V/V∞, p/p∞, etc., are the same throughout the flow field when plotted against
common nondimensional coordinates. This is precisely what Equation (15.30) is
saying—that u′ as a function of x ′ and y′ is the same for the two flows. That is,
the variation of the nondimensional velocity as a function of the nondimensional
coordinates is the same for the two flows. How did we obtain Equation (15.30)?
Simply by saying that γ , M∞, and Re∞ are the same for the two flows and that
the two bodies are geometrically similar. These are precisely the criteria for two
flows to be dynamically similar, as originally stated in Section 1.8.

What we have seen in the above derivation is a formal mechanism to identify
governing similarity parameters for a flow. By couching the governing flow equa-
tions in terms of nondimensional variables, we find that the coefficients of the
derivatives in these equations are dimensionless similarity parameters or combi-
nations thereof.

To see this more clearly, and to extend our analysis further, consider the
energy equation for a steady, two-dimensional, viscous, compressible flow, which
from Equation (15.26) can be written as (assuming no volumetric heating and
neglecting the normal stresses)

ρu
∂(e + V 2/2)

∂x
+ ρv

∂(e + V 2/2)

∂y
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
− ∂(up)

∂x

−∂(vp)

∂y
+ ∂(vτxy)

∂x
+ ∂(uτyx)

∂y
(15.31)
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Substituting Equation (15.5) into (15.31), we have

ρu
∂(e + V 2/2)

∂x
+ ρv

∂(e + V 2/2)

∂y
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
(15.32)

− ∂(up)

∂x
− ∂(vp)

∂y

+ ∂

∂x

[
μv

(
∂v

∂x
+ ∂u

∂y

)]

+ ∂

∂y

[
μu

(
∂v

∂x
+ ∂u

∂y

)]
Using the same nondimensional variables as before, and introducing

e′ = e

cvT∞
k ′ = k

k∞
V ′2 = V 2

V 2∞
= u2 + v2

V 2∞
= (u′)2 + (v′)2

Equation (15.32) can be written as

ρ∞V∞cvT∞
c

(
ρ ′u′ ∂e′

∂x ′ + ρ ′v′ ∂e′

∂y′

)

= −ρ∞V 3
∞

2c

[
ρ ′u′ ∂

∂x ′ (u
′2 + v′2) + ρ ′v′ ∂

∂y′ (u
′2 + v′2)

]

+ k∞T∞
c2

[
∂

∂x ′

(
k ′ ∂T ′

∂x ′

)
+ ∂

∂y′

(
k ′ ∂T ′

∂y′

)]
− V∞ p∞

c

(
∂(u′ p′)

∂x ′ + ∂(v′ p′)
∂y′

)

+ μ∞V 2
∞

c2

{
∂

∂x ′

[
μ′v′

(
∂v′

∂x ′ + ∂u′

∂y′

)]
+ ∂

∂y′

[
μ′u′

(
∂v′

∂x ′ + ∂u′

∂y′

)]}

or ρ ′u′ ∂e′

∂x ′ + ρ ′v′ ∂e′

∂y′ = V 2
∞

2cvT∞

[
ρ ′u′ ∂

∂x ′ (u
′2 + v′2) (15.32a)

+ ρ ′v′ ∂

∂y′ (u
′2 + v′2)

]

+ k∞
cρ∞V∞cv

[
∂

∂x ′

(
k ′ ∂T ′

∂x ′

)
+ ∂

∂y′

(
k ′ ∂T ′

∂y′

)]

− p∞
ρ∞cvT∞

(
∂(u′ p′)

∂x ′ + ∂(v′ p′)
∂y′

)

+ μ∞V∞
cρ∞cvT∞

{
∂

∂x ′

[
μ′v′

(
∂v′

∂x ′ + ∂u′

∂y′

)]

+ ∂

∂y′

[
μ′u′

(
∂v′

∂x ′ + ∂u′

∂y′

)]}
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Examining the coefficients of each term on the right-hand side of Equa-
tion (15.32a), we find, consecutively,

V 2
∞

cvT∞
= (γ − 1)V 2

∞
RT∞

= γ (γ − 1)V 2
∞

γ RT∞
= γ (γ − 1)V 2

∞
a2∞

= γ (γ − 1)M2
∞

k∞
cρ∞V∞cv

= k∞γμ∞
cρ∞V∞cpμ∞

= γ

Pr∞Re∞
Note: In the above, we have introduced a new dimensionless parameter, the
Prandtl number, Pr∞ ≡ μ∞cp/k∞, the significance of which will be discussed
later:

p∞
ρ∞cvT∞

= (γ − 1)p∞
ρ∞ RT∞

= (γ − 1)p∞
p∞

= γ − 1

μ∞V∞
cρ∞cvT∞

= μ∞
ρ∞V∞c

(
V 2

∞
cvT∞

)
= 1

Re∞
(γ − 1)

V 2
∞

RT∞
= γ (γ − 1)

M2
∞

Re∞
Hence, Equation (15.32) can be written as

ρ ′u′ ∂e′

∂x ′ + ρ ′v′ ∂e′

∂y′ (15.33)

= γ (γ − 1)

2
M2

∞

[
ρ ′u′ ∂

∂x ′ (u
′2 + v′2) + ρ ′v′ ∂

∂y′ (u
′2 + v′2)

]

+ γ

Pr∞Re∞

[
∂

∂x ′

(
k ′ ∂T ′

∂x ′

)
+ ∂

∂y′

(
k ′ ∂T ′

∂y′

)]

− (γ − 1)

(
∂(u′ p′)

∂x ′ + ∂(v′ p′)
∂y′

)

+ γ (γ − 1)
M2

∞
Re∞

{
∂

∂x ′

[
μ′v′

(
∂v′

∂x ′ + ∂u′

∂y′

)]

+ ∂

∂y′

[
μ′u′

(
∂v′

∂x ′ + ∂u′

∂y′

)]}
Examine Equation (15.33). It is a nondimensional equation which, in principle,
can be solved for e′ = f (x ′, y′). If we have two different flows, but with the same
values γ , M∞, Re∞, and Pr∞, Equation (15.33) will be numerically identical for
the two flows, and if we are considering geometrically similar bodies, then the
solution e′ = f (x ′, y′) will be identical for the two flows.

Reflecting upon Equations (15.29) and (15.33), which are the nondimensional
x-momentum and energy equations, respectively, we clearly see that the govern-
ing similarity parameters for a viscous, compressible flow are γ , M∞, Re∞, and
Pr∞. If the above parameters are the same for two different flows with geomet-
rically similar bodies, then the flows are dynamically similar. We obtained these
results by considering the x-momentum equation and the energy equation, both
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in two dimensions. The same results would have occurred if we had considered
three-dimensional flow and the y- and z-momentum equations.

Note that the similarity parameters γ , M∞, and Re∞ were obtained from
the momentum equation. When the energy equation is considered, an additional
similarity parameter is introduced, namely, the Prandtl number. On a physical
basis, the Prandtl number is an index which is proportional to the ratio of energy
dissipated by friction to the energy transported by thermal conduction; that is,

Pr = μ∞cp

k
∝ frictional dissipation

thermal conduction

In the study of compressible, viscous flow, Prandtl number is just as important as
γ , Re∞, or M∞. For air at standard conditions, Pr∞ = 0.71. Note that Pr∞ is a
property of the gas. For different gases, Pr∞ is different. Also, like μ and k, Pr∞
is, in general, a function of temperature; however, for air over a reasonable tem-
perature range (up to T∞ = 600 K), it is safe to assume Pr∞ = constant = 0.71.

15.7 SOLUTIONS OF VISCOUS FLOWS: A
PRELIMINARY DISCUSSION

The governing continuity, momentum, and energy equations for a general
unsteady, compressible, viscous, three-dimensional flow are given by Equa-
tions (2.52), (15.19a to c), and (15.26), respectively. Examine these equations
closely. They are nonlinear, coupled, partial differential equations. Moreover,
they have additional terms—namely, the viscous terms—in comparison to the
analogous equations for an inviscid flow treated in Part 3. Since we have already
seen that the nonlinear inviscid flow equations do not lend themselves to a general
analytical solution, we can certainly expect the viscous flow equations also not to
have any general solutions (at least, at the time of this writing, no general analyt-
ical solutions have been found). This leads to the following question: How, then,
can we make use of the viscous flow equations in order to obtain some practical
results? The answer is much like our approach to the solution of inviscid flows.
We have the following options:

1. There are a few viscous flow problems which, by their physical and
geometrical nature, allow many terms in the Navier-Stokes solutions to be
precisely zero, with the resulting equations being simple enough to solve,
either analytically or by simple numerical methods. Sometimes this class
of solutions is called “exact solutions” of the Navier-Stokes equations,
because no simplifying approximations are made to reduce the
equations—just precise conditions are applied to reduce the equations.
Chapter 16 is devoted to this class of solutions; an example is Couette flow
(to be defined later).

2. We can simplify the equations by treating certain classes of physical
problems for which some terms in the viscous flow equations are small and
can be neglected. This is an approximation, not a precise condition. The
boundary-layer equations developed and discussed in Chapter 17 are a case
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in point. However, as we will see, the boundary-layer equations may be
simpler than the full viscous flow equations, but they are still nonlinear.

3. We can tackle the solution of the full viscous flow equations by modern
numerical techniques. For example, some of the computational fluid
dynamic algorithms discussed in Chapter 13 in conjunction with “exact”
solutions for the inviscid flow equations carry over to exact solutions for the
viscous flow equations. These matters will be discussed in Chapter 20.

There are some inherent very important differences between the analysis of
viscous flows and the study of inviscid flows that were presented in Parts 2 and
3. The remainder of this section highlights these differences.

First, we have already demonstrated in Example 2.5 that viscous flows are
rotational flows. Therefore, a velocity potential cannot be defined for a viscous
flow, thus losing the attendant advantages that were discussed in Sections 2.15
and 11.2. On the other hand, a stream function can be defined, because the stream
function satisfies the continuity equation and has nothing to do with the flow
being rotational or irrotational (see Section 2.14).

Second, the boundary condition at a solid surface for a viscous flow is the
no-slip condition. Due to the presence of friction between the surface material
and the adjacent layer of fluid, the fluid velocity right at the surface is zero. This
no-slip condition was discussed in Section 15.2. For example, if the surface is
located at y = 0 in a cartesian coordinate system, then the no-slip boundary
condition on velocity is

At y = 0: u = 0 v = 0 w = 0

This is in contrast to the analogous boundary condition for an inviscid flow,
namely, the flow-tangency condition at a surface as discussed in Section 3.7,
where only the component of the velocity normal to the surface is zero. Also, recall
that for an inviscid flow, there is no boundary condition on the temperature; the
temperature of the gas adjacent to a solid surface in an inviscid flow is governed by
the physics of the flow field and has no connection whatsoever with the actual wall
temperature. However, for a viscous flow, the mechanism of thermal conduction
ensures that the temperature of the fluid immediately adjacent to the surface
is the same as the temperature of the material surface. In this respect, the no-
slip condition is more general than that applied to the velocity; in addition to
u = v = 0 at the wall, we also have T = Tw at the wall, where T is the gas
temperature immediately adjacent to the wall and Tw is the temperature of the
surface material. Thus,

At y = 0: T = Tw (15.34)

In many problems, Tw is specified and held constant; this boundary condition
is easily applied. However, consider the following, more general case. Imagine
a viscous flow over a surface where heat is being transferred from the gas to the
surface, or vice versa. Also, assume that the surface is at a certain temperature, Tw,
when the flow first starts, but that Tw changes as a function of time as the surface
is either heated or cooled by the flow [i.e., Tw = Tw(t)]. Because this timewise
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variation is dictated in part by the flow which is being calculated, Tw becomes
an unknown in the problem and must be calculated along with the solution of
the viscous flow. For this general case, the boundary condition at the surface is
obtained from Equation (15.2) applied at the wall; that is,

At y = 0: q̇w = −
(

k
∂T

∂y

)
w

(15.35)

Here, the surface material is responding to the heat transfer to the wall q̇w, hence
changing Tw, which in turn affects q̇w. This general, unsteady heat transfer prob-
lem must be solved by treating the viscous flow and the thermal response of the
material simultaneously. This problem is beyond the scope of the present book.

Finally, let us imagine the above, unsteady case carried out to the limit of
large times. That is, imagine a wind-tunnel model which is at room temperature
suddenly inserted in a supersonic or hypersonic stream. At early times, say, for
the first few seconds, the surface temperature remains relatively cool, and the
assumption of constant wall temperature Tw is reasonable [Equation (15.34)].
However, due to the heat transfer to the model [Equation (15.35)], the surface
temperature soon starts to increase and becomes a function of time, as discussed
in the previous paragraph. However, as Tw increases, the heating rate decreases.
Finally, at large times, Tw increases to a high enough value that the net heat
transfer rate to the surface becomes zero, that is, from Equation (15.35),

q̇w = −
(

k
∂T

∂y

)
w

= 0

or

(
∂T

∂y

)
w

= 0 (15.36)

When the situation of zero heat transfer is achieved, a state of equilibrium exists;
the wall temperature at which this occurs is, by definition, the equilibrium wall
temperature, or, as it is more commonly denoted, the adiabatic wall temperature,
Taw. Hence, for the case of an adiabatic wall (no heat transfer), the wall boundary
condition is given by Equation (15.36).

In summary, for the wall boundary condition associated with the solution of
the energy equation [Equation (15.26)], we have three possible cases:

1. Constant temperature wall, where Tw is a specified constant
[Equation (15.34)]. For this given wall temperature, the temperature
gradient at the wall (∂T/∂y)w is obtained as part of the flow-field solution
and allows the direct calculation of the aerodynamic heating to the wall via
Equation (15.35).

2. The general, unsteady case, where the heat transfer to the wall q̇w causes
the wall temperature Tw to change, which in turn causes q̇w to change
Here, both Tw and (∂T/∂y)w change as a function of time, and the problem
must be solved by treating jointly the viscous flow as well as the thermal
response of the wall material (which usually implies a separate thermal
conduction heat transfer numerical analysis).
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3. The adiabatic wall case (zero heat transfer), where (∂T/∂y)w = 0
[Equation (15.36)]. Here, the boundary condition is applied to the
temperature gradient at the wall, not to the wall temperature itself. Indeed,
the wall temperature for this case is defined as the adiabatic wall
temperature Taw and is obtained as part of the flow-field solution.

Finally, we emphasize again that, from the point of view of applied aerody-
namics, the practical results obtained from a viscous flow analysis are the skin
friction and heat transfer at the surface. However, to obtain these quantities, we
usually need a complete solution of the viscous flow field; among the data obtained
from such a solution are the velocity and temperature gradients at the wall. These,
in turn, allow the direct calculation of τw and q̇w from

τw = μ

(
∂u

∂y

)
w

and q̇w = −k
(

∂T

∂y

)
w

Another practical result provided by a viscous flow analysis is the prediction
and calculation of flow separation; we have discussed numerous cases in the
preceding chapters where the pressure field around an aerodynamic body can be
greatly changed by flow separation; the flows over cylinders and spheres (see
Sections 3.18 and 6.6) are cases in point.

Clearly, the study of viscous flow is important within the entire scope of
aerodynamics. The purpose of the following chapters is to provide an introduction
to such flows. We will organize our study following the three options itemized
at the beginning of this section; that is, we will treat, in turn, certain specialized
“exact” solutions of the Navier-Stokes equations, boundary-layer solutions, and
then “exact” numerical solutions of Navier-Stokes equations. In so doing, we
hope that the reader will gain an overall, introductory picture of the whole area
of viscous flow. Entire books have been written on this subject, see, for example,
References 40 and 41. We cannot possibly present such detail here; rather, our
objective is simply to provide a “feel” for and a basic understanding of the material.
Let us proceed.

15.8 SUMMARY
We have now completed the road map given in Figure 15.1. The main results of
this chapter are summarized below:

Shear stress and flow separation are two major ramifications of viscous flow.
Shear stress is the cause of skin friction drag D f , and flow separation is the
source of pressure drag Dp, sometimes called form drag. Transition from
laminar to turbulent flow causes D f to increase and Dp to decrease.
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Shear stress in a flow is due to velocity gradients: for example, τyx = μ ∂u/∂y
for a flow with gradients in the y direction. Similarly, heat conduction is due
to temperature gradients; for example, q̇y = −k ∂T/∂y, etc. Both μ and k are
physical properties of the gas and are functions of temperature.

The general equations of viscous flow are

x momentum: ρ
Du

Dt
= −∂p

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
(15.18a)

y momentum: ρ
Dv

Dt
= −∂p

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
(15.18b)

z momentum: ρ
Dw

Dt
= −∂p

∂z
+ ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
(15.18c)

Energy:

ρ
D(e + V 2/2)

Dt
= ρq̇ + ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
(15.26)

+ ∂

∂z

(
k
∂T

∂z

)
− ∇ · pV + ∂(uτxx)

∂x
+ ∂(uτyx)

∂y

+ ∂(uτzx)

∂z
+ ∂(vτxy)

∂x
+ ∂(vτyy)

∂y
+ ∂(vτzy)

∂z

+ ∂(wτxz)

∂x
+ ∂(wτyz)

∂y
+ ∂(wτzz)

∂z

where τxy = τyx = μ

(
∂v

∂x
+ ∂u

∂y

)

τyz = τzy = μ

(
∂w

∂y
+ ∂v

∂z

)

τzx = τxz = μ

(
∂u

∂z
+ ∂w

∂x

)

τxx = λ(∇ · V) + 2μ
∂u

∂x

τyy = λ(∇ · V) + 2μ
∂v

∂y

τzz = λ(∇ · V) + 2μ
∂w

∂z
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The similarity parameters for a flow can be obtained by nondimensionalizing
the governing equations; the coefficients in front of the nondimensionalized
derivatives give the similarity parameters or combinations thereof. For a vis-
cous, compressible flow, the main similarity parameters are γ , M∞, Re∞,
and Pr∞.

Exact analytical solutions of the complete Navier-Stokes equations exist for
only a few very specialized cases. Instead, the equations are frequently simpli-
fied by making appropriate approximations about the flow. In modern times,
exact solutions of the complete Navier-Stokes equations for many practical
problems can be obtained numerically, using various techniques of computa-
tional fluid dynamics.

15.9 PROBLEMS
15.1 Consider the incompressible viscous flow of air between two infinitely

long parallel plates separated by a distance h. The bottom plate is
stationary, and the top plate is moving at the constant velocity ue in the
direction of the plate. Assume that no pressure gradient exists in the flow
direction.
a. Obtain an expression for the variation of velocity between the plates.
b. If T = constant = 320 K, ue = 30 m/s, and h = 0.01 m, calculate the

shear stress on the top and bottom plates.
15.2 Assume that the two parallel plates in Problem 15.1 are both stationary

but that a constant pressure gradient exists in the flow direction (i.e.,
dp/dx = constant).
a. Obtain an expression for the variation of velocity between the plates.
b. Obtain an expression for the shear stress on the plates in terms of dp/dx .





C H A P T E R 16
A Special Case: Couette Flow

The resistance arising from the want of lubricity in the parts of a fluid is, other
things being equal, proportional to the velocity with which the parts of the fluid
are separated from one another.

Isaac Newton, 1687,
from Section IX of Book II
of his Principia

PREVIEW BOX

An old but wise expression states that you must
learn to walk before you can run. General applica-
tions of viscous flow are frequently complex and
challenging—you are constantly “running” in order
to obtain their solutions. This chapter teaches you to
walk first. Here we treat a special viscous flow prob-
lem that lends itself to rather straightforward solu-
tions (all we have to do is “walk” to obtain them).
Yet these solutions illustrate some of the most im-
portant aspects of viscous flows in general, obtain-
ing and highlighting the parameters that dictate skin
friction and aerodynamic heating. Here we will learn

some new ideas with strange-sounding words such as
“recovery factor” and “Reynolds analogy.” We will
be able to see some of the basic physics of viscous
flow, stripped of the extra geometrical complexities
that go along with more complex flow applications.
Although this chapter involves a peculiar-sounding
flow, Couette flow, the results are far from peculiar.
Indeed, in this chapter we are going to take a walk
through some of the most important ideas surround-
ing the basic analyses of viscous flow. Get going, and
enjoy your walk.

16.1 INTRODUCTION
The general equations of viscous flow were derived and discussed in Chapter 15. In
particular, the viscous flow momentum equations were treated in Section 15.4 and
are given in partial differential equation form by Equations (15.19a to c)—the
Navier-Stokes equations. These, along with the viscous flow energy equation,

959



960 PART 4 Viscous Flow

Figure 16.1 Road map for Chapter 16.

Equation (15.26), derived in Section 15.5, are the theoretical tools for the study
of viscous flows. However, examine these equations closely; as discussed in Sec-
tion 15.7, they are a system of coupled, nonlinear partial differential equations—
equations which contain more terms and which are inherently more elaborate than
the inviscid flow equations treated in Parts 2 and 3 of this book. Three classes
of solutions of these equations were itemized in Section 15.5. The first itemized
class was that of “exact” solutions of the Navier-Stokes equations for a few spe-
cific physical problems which, by their physical and geometrical nature, allow
many terms in the governing equations to be precisely zero, resulting in a system
of equations simple enough to solve, either analytically or by simple numerical
methods. Such exact problems are the subject of this chapter.

The road map for this chapter is given in Figure 16.1. The type of flow
considered here is generally labeled as parallel flow because the streamlines
are straight and parallel to each other. We will consider one of these flows,
Couette flow, which will be defined in due course. In addition to representing
exact solutions of the Navier-Stokes equations, this flow illustrates some of the
important practical facets of any viscous flow, as itemized on the right side of
the road map. In a clear, uncomplicated fashion, we will be able to calculate
and study the surface skin friction and heat transfer. We will also use the re-
sults to define the recovery factor and Reynolds analogy—two practical engi-
neering tools that are frequently used in the analysis of skin friction and heat
transfer.

16.2 COUETTE FLOW: GENERAL DISCUSSION
Consider the flow model shown in Figure 16.2. Here we see a viscous fluid
contained between two parallel plates separated by a distance D. The upper plate
is moving to the right at velocity ue. Due to the no-slip condition, there can be
no relative motion between the plate and the fluid; hence, at y = D the flow
velocity is u = ue and is directed toward the right. Similarly, the flow velocity at
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(a) General picture

(b) Detailed model

Fixed surface

Parallel streamlines

Moving plate

Moving plate

D

At y � D : u � ue, T � Te

y � D

At y � 0 : u � 0, T � Tw

y

D

x

y � 0

qw

qe

ue

ue

�e on fluid

�w on fluid

�

�

�

�

�w on surface

�e on plate

Figure 16.2 Model for Couette flow.

y = 0, which is the surface of the stationary lower plate, is u = 0. In addition, the
two plates may be at different temperatures; the upper plate is at temperature Te

and the lower plate is at temperature Tw. Again, due to the no-slip condition as
discussed in Section 15.7, the fluid temperature at y = D is T = Te and that at
y = 0 is T = Tw.

Clearly, there is a flow field between the two plates; the driving force for this
flow is the motion of the upper plate, dragging the flow along with it through the
mechanism of friction. The upper plate is exerting a shear stress, τe, acting toward
the right on the fluid at y = D, thus causing the fluid to move toward the right.
By an equal and opposite reaction, the fluid is exerting a shear stress τe on the
upper plate acting toward the left, tending to retard its motion. We assume that the
upper plate is being driven by some external force that is sufficient to overcome
the retarding shear stress and to allow the plate to move at the constant velocity ue.
Similarly, the lower plate is exerting a shear stress τw acting toward the left on
the fluid at y = 0. By an equal and opposite reaction, the fluid is exerting a shear
stress τw acting toward the right on the lower plate. (In all subsequent diagrams
dealing with viscous flow, the only shear stresses shown will be those due to the
fluid acting on the surface, unless otherwise noted.)

In addition to the velocity field induced by the relative motion of the two
plates, there will also be a temperature field induced by the following two
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mechanisms:

1. The plates in general will be at different temperatures, thus causing
temperature gradients in the flow.

2. The kinetic energy of the flow will be partially dissipated by the influence
of friction and will be transformed into internal energy within the fluid.
These changes in internal energy will be reflected by changes in
temperature. This phenomenon is called viscous dissipation.

Consequently, temperature gradients will exist within the flow; in turn, these
temperature gradients result in the transfer of heat through the fluid. Of particular
interest is the heat transfer at the upper and lower surfaces, denoted by q̇e and
q̇w, respectively. These heat transfers are shown in Figure 16.2; the directions for
q̇e and q̇w show heat being transferred from the fluid to the wall in both cases.
When heat flows from the fluid to the wall, this is called a cold wall case, such
as sketched in Figure 16.2. When heat flows from the wall into the fluid, this is
called a hot wall case. Keep in mind that the heat flux through the fluid at any
point is given by the Fourier law expressed by Equation (15.2); that is, the heat
flux in the y direction is expressed as

q̇y = −k
∂T

∂y
(15.2)

where the minus sign accounts for the fact that heat is transferred from a region
of high temperature to a region of lower temperature; that is, q̇y is in the opposite
direction of the temperature gradient.

Let us examine the geometry of Couette flow as illustrated in Figure 16.2. An
x-y cartesian coordinate system is oriented with the x axis in the direction of the
flow and the y axis perpendicular to the flow. Since the two plates are parallel, the
only possible flow pattern consistent with this picture is that of straight, parallel
streamlines. Moreover, since the plates are infinitely long (i.e., stretching to plus
and minus infinity in the x direction), then the flow properties cannot change
with x . (If the properties did change with x , then the flow-field properties would
become infinitely large or infinitesimally small at large values of x—a physical
inconsistency.) Thus, all partial derivatives with respect to x are zero. The only
changes in the flow-field variables take place in the y direction. Moreover, the
flow is steady, so that all time derivatives are zero. With this geometry in mind,
return to the governing Navier-Stokes equations given by Equations (15.19a to c)
and Equation (15.26). In these equations, for Couette flow,

v = w = 0
∂u

∂x
= ∂T

∂x
= ∂p

∂x
= 0

Hence, from Equations (15.19a to c) and Equation (15.26), we have

x-momentum equation: ∂

∂y

(
μ

∂u

∂y

)
= 0 (16.1)

y-momentum equation: ∂p

∂y
= 0 (16.2)
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Energy equation: ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂y

(
μu

∂u

∂y

)
= 0 (16.3)

Equations (16.1) to (16.3) are the governing equations for Couette flow. Note
that these equations are exact forms of the Navier-Stokes equations applied to the
geometry of Couette flow—no approximations have been made. Also, note from
Equation (16.2) that the variation of pressure in the y direction is zero; this in
combination with the earlier result that ∂p/∂x = 0 implies that the pressure is
constant throughout the entire flow field. Couette flow is a constant pressure flow.
It is interesting to note that all the previous flow problems discussed in Parts 2
and 3, being inviscid flows, were established and maintained by the existence
of pressure gradients in the flow. In these problems, the pressure gradient was
nature’s mechanism of grabbing hold of the flow and making it move. However,
in the problem we are discussing now—being a viscous flow—shear stress is
another mechanism by which nature can exert a force on a flow. For Couette flow,
the shear stress exerted by the moving plate on the fluid is the exclusive driving
mechanism that maintains the flow; clearly, no pressure gradient is present, nor
is it needed.

This section has presented the general nature of Couette flow. Note that we
have made no distinction between incompressible and compressible flow; all
aspects discussed here apply to both cases. Also, we note that, although Couette
flow appears to be a rather academic problem, the following sections illustrate, in
a simple fashion, many of the important characteristics of practical viscous flows
in real engineering applications.

The next two sections will treat the separate cases of incompressible and
compressible Couette flow. Incompressible flow will be discussed first because
of its relative simplicity; this is the subject of Section 16.3. Then compressible
Couette flow, and how it differs from the incompressible case, will be examined
in Section 16.4.

As a final note in this section, it is obvious from our general discussion
of Couette flow that the flow-field properties vary only in the y direction; all
derivatives in the x direction are zero. Therefore, as a matter of mathematical
preciseness, all the partial derivatives in Equations (16.1) to (16.3) can be written
as ordinary derivatives. For example, Equation (16.1) can be written as

d

dy

(
μ

du

dy

)
= 0

However, our discussion of Couette flow is intended to serve as a straightforward
example of a viscous flow problem, “breaking the ice” so-to-speak for the more
practical but more complex problems to come—problems which involve changes
in both the x and y directions, and which are described by partial differential
equations. Therefore, on pedagogical grounds, we choose to continue the partial
differential notation here, simply to make the reader feel more comfortable when
we extend these concepts to the boundary layer and full Navier-Stokes solutions
in Chapters 17 and 20, respectively.
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16.3 INCOMPRESSIBLE (CONSTANT PROPERTY)
COUETTE FLOW

In the study of viscous flows, a flow field in which ρ, μ, and k are treated as
constants is sometimes labeled as “constant property” flow. This assumption is
made in the present section. On a physical basis, this means that we are dealing
with an incompressible flow, where ρ is constant. Also, since μ and k are functions
of temperature (see Section 15.3), constant property flow implies that T is constant
also. (We will relax this assumption slightly at the end of this section.)

The governing equations for Couette flow were derived in Section 16.2. In
particular, the y-momentum equation, Equation (16.2), along with the geometrical
property that ∂p/∂x = 0, states that the pressure is constant throughout the
flow. Consequently, all the information about the velocity field comes from the
x-momentum equation, Equation (16.1), repeated below:

∂

∂y

(
μ

∂u

∂y

)
= 0 (16.1)

For constant μ, this becomes
∂2u

∂y2
= 0 (16.4)

Integrating with respect to y twice, we obtain

u = ay + b (16.5)

where a and b are constants of integration. These constants can be obtained from
the boundary conditions illustrated in Figure 16.2, as follows:

At y = 0, u = 0; hence, b = 0.
At y = D, u = ue; hence, a = ue/D.

Thus, the variation of velocity for incompressible Couette flow is given by Equa-
tion (16.5) as

u = ue

(
y

D

)
(16.6)

Note the important result that the velocity varies linearly across the flow. This
result is sketched in Figure 16.3.

Once the velocity profile is obtained, we can obtain the shear stress at any
point in the flow from Equation (15.1), repeated below (the subscript yx is dropped
here because we know the only shear stress acting in this problem is that in the
x direction):

τ = μ
∂u

∂y
(16.7)

From Equation (16.6),
∂u

∂y
= ue

D
(16.8)
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D

ue

Figure 16.3 Velocity profile for
incompressible Couette flow.

Hence, from Equations (16.7) and (16.8), we have

τ = μ

(
ue

D

)
(16.9)

Note that the shear stress is constant throughout the flow. Moreover, the straight-
forward result given by Equation (16.9) illustrates two important physical trends—
trends that we will find to be almost universally present in all viscous flows:

1. As ue increases, the shear stress increases. From Equation (16.9),
τ increases linearly with ue; this is a specific result germane to Couette
flow. For other problems, the increase is not necessarily linear.

2. As D increases, the shear stress decreases; that is, as the thickness of the
viscous shear layer increases, all other things being equal, the shear stress
becomes smaller. From Equation (16.9), τ is inversely proportional to
D—again a result germane to Couette flow. For other problems, the
decrease in τ is not necessarily in direct inverse proportion to the
shear-layer thickness.

With the above results in mind, reflect for a moment on the quotation from
Isaac Newton’s Principia given at the beginning of this chapter. Here, the “want
of lubricity” is, in modern terms, interpreted as the shear stress. This want of
lubricity is, according to Newton, “proportional to the velocity with which the
parts of the fluid are separated from one another,” that is, in the context of the
present problem proportional to ue/D. This is precisely the statement contained
in Equation (16.9). In more recent times, Newton’s statement is generalized to the
form given by Equation (16.7), and even more generalized by Equation (15.1).
For this reason, Equations (15.1) and (16.7) are frequently called the newtonian
shear stress law, and fluids which obey this law are called newtonian fluids. [There
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are some specialized fluids which do not obey Equation (15.1) or (16.7); they are
called non-newtonian fluids—some polymers and blood are two such examples.]
By far, the vast majority of aeronautical applications deal with air or other gases,
which are newtonian fluids. In hydrodynamics, water is the primary medium, and
it is a newtonian fluid. Therefore, we will deal exclusively with newtonian fluids
in this book. Consequently, the quote given at the beginning of this chapter is one
of Newton’s most important contributions to fluid mechanics—it represents the
first time in history where shear stress is recognized as being proportional to a
velocity gradient.

Let us now turn our attention to heat transfer in a Couette flow. Here, we
continue our assumptions of constant ρ, μ, and k, but at the same time, we
will allow a temperature gradient to exist in the flow. In an exact sense, this is
inconsistent; if T varies throughout the flow, then ρ, μ, and k also vary. However,
for this application, we assume that the temperature variations are small—indeed,
small enough such that ρ, μ, and k are approximately constant—and treat them so
in the equations. On the other hand, the temperature changes, although small on
an absolute basis, are sufficient to result in meaningful heat flux through the fluid.
The results obtained will reflect some of the important trends in aerodynamic
heating associated with high-speed flows, to be discussed in subsequent chapters.

For Couette flow with heat transfer, return to Figure 16.2. Here, the temper-
ature of the upper plate is Te and that of the lower plate is Tw. Hence, we have as
boundary conditions for the temperature of the fluid:

At y = 0: T = Tw

At y = D: T = Te

The temperature profile in the flow is governed by the energy equation, Equa-
tion (16.3). For constant μ and k, this equation is written as

k

μ

(
∂2T

∂y2

)
+ ∂

∂y

(
u

∂u

∂y

)
= 0 (16.10)

Also, since μ is assumed to be constant, Equations (16.10) and (16.1) are totally
uncoupled. That is, for the constant property flow considered here, the solution of
the momentum equation [Equation (16.1)] is totally separate from the solution of
the energy equation [Equation (16.10)]. Therefore, in this problem, although the
temperature is allowed to vary, the velocity field is still given by Equation (16.6),
as sketched in Figure 16.3.

In dealing with flows where energy concepts are important, the enthalpy h
is frequently a more fundamental variable than temperature; we have seen much
evidence of this in Part 3, where energy changes were a vital consideration. In the
present problem, where the temperature changes are small enough to justify the
assumptions of constant ρ, μ, and k, this is not quite the same situation. However,
because we will need to solve Equation (16.10), which is an energy equation
for a flow (no matter how small the energy changes), and because we are using
Couette flow as an example to set the stage for more complex problems, it is
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instructional (but by no means necessary) to couch Equation (16.10) in terms of
enthalpy. Assuming constant specific heat, we have

h = cpT (16.11)

Equation (16.11) is valid for the Couette flow of any fluid with constant heat
capacity; here, the germane specific heat is that at constant pressure cp because
the entire flow field is at constant pressure. In this sense, Equation (16.11) is a
result of applying the first law of thermodynamics to a constant pressure process
and recalling the fundamental definition of heat capacity as the heat added per
unit change in temperature, δq/dT . Of course, if the fluid is a calorically perfect
gas, then Equation (16.11) is a basic thermodynamic property of such a gas quite
independent of what the process may be [see Section 7.2 and Equation (7.6b)].
Inserting Equation (16.11) into Equation (16.10), we have

k

μcp

∂2h

∂y2
+ ∂

∂y

(
u

∂u

∂y

)
= 0 (16.12)

Recall the definition of the Prandtl number from Section 15.6, namely,

Pr = μcp

k
Equation (16.12) can be written in terms of the Prandtl number as

1

Pr

∂2h

∂y2
+ ∂

∂y

(
u

∂u

∂y

)
= 0

or
∂2h

∂y2
+ Pr

2

∂

∂y

(
∂u2

∂y

)
= 0 (16.13)

Integrating twice in the y direction, we find that Equation (16.13) yields

h +
(

Pr

2

)
u2 = ay + b (16.14)

where a and b are constants of integration [different from the a and b in Equa-
tion (16.5)]. Expressions for a and b are found by applying Equation (16.14) at
the boundaries, as follows:

At y = 0: h = hw and u = 0

At y = D: h = he and u = ue

Hence, from Equation (16.14) at the boundaries,

b = hw

and a = he − hw + (Pr /2)u2
e

D
Inserting these values into Equation (16.14) and rearranging, we have

h = hw +
[

he − hw +
(

Pr

2

)
u2

e

]
y

D
−

(
Pr

2

)
u2 (16.15)
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Inserting Equation (16.6) for the velocity profile in Equation (16.15) yields

h = hw +
[

he − hw +
(

Pr

2

)
u2

e

]
y

D
−

(
Pr

2

)
u2

e

(
y

D

)2

(16.16)

Note that h varies parabolically with y/D across the flow. Since T = h/cp,
then the temperature profile across the flow is also parabolic. The precise shape
of the parabolic curve depends on hw (or Tw), he (or Te), and Pr. Also note
that, as expected from our discussion of the viscous flow similarity parameters
in Section 15.6, the Prandtl number is clearly a strong player in the results;
Equation (16.16) is one such example.

Once the enthalpy (or temperature) profile is obtained, we can obtain the heat
flux at any point in the flow from Equation (15.2), repeated below (the subscript
y is dropped here because we know the only direction of heat transfer is in the
y direction for this problem):

q̇ = −k
∂T

∂y
(16.17)

Equation (16.17) can be written as

q̇ = − k

cp

∂h

∂y
(16.18)

In Equation (16.18), the enthalpy gradient is obtained by differentiating Equa-
tion (16.16) as follows:

∂h

∂y
=

[
he − hw +

(
Pr

2

)
u2

e

]
1

D
− Pr u2

e

y

D2
(16.19)

Inserting Equation (16.19) into Equation (16.18), and writing k/cp as μ/ Pr, we
have

q̇ = −μ

(
he − hw

Pr
+ u2

e

2

)
1

D
+ μu2

e

y

D2
(16.20)

From Equation (16.20), note that q̇ is not constant across the flow, unlike the shear
stress discussed earlier. Rather, q̇ varies linearly with y. The physical reason for
the variation of q̇ is viscous dissipation which takes place within the flow, and
which is associated with the shear stress in the flow. Indeed, the last term in
Equation (16.20), in light of Equations (16.6) and (16.9), can be written as

μu2
e

y

D2
= τue

(
y

D

)
= τu

Hence, Equation (16.20) becomes

q̇ = −μ

(
he − hw

Pr
+ u2

e

2

)
1

D
+ τu (16.21)

The variation of q̇ across the flow is due to the last term in Equation (16.21),
and this term involves shear stress multiplied by velocity. The term τu is viscous
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dissipation; it is the time rate of heat generated at a point in the flow by one
streamline at a given velocity “rubbing” against an adjacent streamline at a slightly
different velocity—analogous to the heat you feel when rubbing your hands to-
gether vigorously. Note that, if ue is negligibly small, then the viscous dissipation
is small and can be neglected; that is, in Equation (16.20) the last term can be
neglected (ue is small), and in Equation (16.21) the last term can be neglected
(τ is small if ue is small). In this case, the heat flux becomes constant across the
flow, simply equal to

q̇ ≈ − μ

Pr

(
he − hw

D

)
(16.22)

In this case, the “driving potential” for heat transfer across the flow is simply
the enthalpy difference (he − hw) or, in other words, the temperature difference
(Te −Tw) across the flow. However, as we have emphasized, if ue is not negligible,
then viscous dissipation becomes another factor that drives the heat transfer across
the flow.

Of particular practical interest is the heat flux at the walls—the aerodynamic
heating as we label it here. We denote the heat transfer at a wall as q̇w. Moreover,
it is conventional to quote aerodynamic heating at a wall without any sign con-
vention. For example, if the heat transfer from the fluid to the wall is 10 W/cm2,
or, if in reverse the heat transfer from the wall to the fluid is 10 W/cm2, it is
simply quoted as such; in both cases, q̇w is given as 10 W/cm2 without any sign
convention. In this sense, we write Equation (16.18) as

q̇w = k

cp

∣∣∣∣∂h

∂y

∣∣∣∣
w

= μ

Pr

∣∣∣∣∂h

∂y

∣∣∣∣
w

(16.23)

where the subscript w implies conditions at the wall. The direction of the net heat
transfer at the wall, whether it is from the fluid to the wall or from the wall to the
fluid, is easily seen from the temperature gradient at the wall; if the wall is cooler
than the adjacent fluid, heat is transferred into the wall, and if the wall is hotter
than the adjacent fluid, heat is transferred into the fluid. Another criterion is to
compare the wall temperature with the adiabatic wall temperature, to be defined
shortly.

Return to the picture of Couette flow in Figure 16.2. To calculate the heat
transfer at the lower wall, use Equation (16.23) with the enthalpy gradient given
by Equation (16.19) evaluated at y = 0:

At y = 0: q̇w = μ

Pr

∣∣∣∣∣he − hw + 1
2 Pr u2

e

D

∣∣∣∣∣ (16.24)

To calculate the heat transfer at the upper wall, use Equation (16.23) with the
enthalpy gradient given by Equation (16.19) evaluated at y = D. In this case,
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Equation (16.19) yields

∂h

∂y
= he − hw + 1

2 Pr u2
e

D
− Pr u2

e

D
= he − hw − 1

2 Pr u2
e

D

In turn, from Equation (16.23)

At y = D: q̇w = μ

Pr

∣∣∣∣∣he − hw − 1
2 Pr u2

e

D

∣∣∣∣∣ (16.25)

Let us examine the above results for three different scenarios, namely, (1) neg-
ligible viscous dissipation, (2) equal wall temperature, and (3) adiabatic wall
conditions (no heat transfer to the wall). In the process, we define three important
concepts in the analysis of aerodynamic heating: (1) adiabatic wall temperature,
(2) recovery factor, and (3) Reynolds analogy.

16.3.1 Negligible Viscous Dissipation

To some extent, we have already discussed this case in regard to the local heat
flux at any point within the flow. If ue is very small, hence τ is very small, then the
amount of viscous dissipation is negligibly small, and Equation (16.21) becomes

q̇ = − μ

Pr

(
he − hw

D

)
(16.26)

Clearly, for this case, the heat flux is constant across the flow. Moreover, the
enthalpy profile given by Equation (16.16) becomes

h = hw + (he − hw)
y

D
(16.27)

Since h = cpT , the temperature profile is identical to the enthalpy profile:

T = Tw + (Te − Tw)
y

D
(16.28)

Note that the temperature varies linearly across the flow, as sketched in Fig-
ure 16.4. The case shown here is for the upper wall at a higher temperature than the

D

y

y
D

ue Te

Tw

T � Tw � (Te � Tw)

Figure 16.4 Couette flow temperature profile for negligible viscous dissipation.
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lower wall. The heat transfer at the lower wall is obtained from Equation (16.24)
with a negligible ue:

At y = 0: q̇w = μ

Pr

∣∣∣∣he − hw

D

∣∣∣∣ (16.29)

The heat transfer at the upper wall is similarly obtained as

At y = D: q̇w = μ

Pr

∣∣∣∣he − hw

D

∣∣∣∣ (16.30)

Equations (16.29) and (16.30) are identical; this is no surprise, since we have
already shown that the heat flux is constant across the flow, as shown by Equa-
tion (16.26), and therefore the heat transfer at both walls should be the same.
Equations (16.29) and (16.30) can also be written in terms of temperature as

q̇w = k

∣∣∣∣Te − Tw

D

∣∣∣∣ (16.31)

Examining Equations (16.29) to (16.31), we can make some conclusions which
can be generalized to most viscous flow problems, as follows:

1. Everything else being equal, the larger the temperature difference across the
viscous layer, the greater the heat transfer at the wall. The temperature
difference (Te − Tw) or the enthalpy difference (he − hw) takes on the role
of a “driving potential” for heat transfer. For the special case treated here,
the heat transfer at the wall is directly proportional to this driving potential.

2. Everything else being equal, the thicker the viscous layer (the larger D is),
the smaller the heat transfer is at the wall. For the special case treated here,
q̇w is inversely proportional to D.

3. Heat flows from a region of high temperature to low temperature. For
negligible viscous dissipation, if the temperature at the top of the viscous
layer is higher than that at the bottom, heat flows from the top to the bottom.
In the case sketched in Figure 16.4, heat is transferred from the upper plate
into the fluid, and then is transferred from the fluid to the lower plate.

16.3.2 Equal Wall Temperatures

Here we assume that Te = Tw; that is, he = hw. The enthalpy profile for this case,
from Equation (16.16), is

or h = hw + 1

2
Pr u2

e

(
y

D

)
− 1

2
Pr u2

e

(
y

D

)2

(16.32)

= hw + 1

2
Pr u2

e

[
y

D
−

(
y

D

)2
]

In terms of temperature, this becomes

T = Tw + Pr u2
e

2cp

[
y

D
−

(
y

D

)2
]

(16.33)
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D

yue

Te

Tw

T � Tw � �2cp

Pru2
e

2

D
y

D
y

Figure 16.5 Couette flow temperature profile for equal wall temperature with viscous
dissipation.

Note that the temperature varies parabolically with y, as sketched in Figure 16.5.
The maximum value of temperature occurs at the midpoint, y = D/2. This
maximum value is obtained by evaluating Equation (16.33) at y = D/2.

Tmax = Tw + Pr u2
e

8cp
(16.34)

The heat transfer at the walls is obtained from Equations (16.24) and (16.25) as

At y = 0: q̇w = μ

2

u2
e

D
(16.35)

At y = D: q̇w = μ

2

u2
e

D
(16.36)

Equations (16.35) and (16.36) are identical; the heat transfers at the upper and
lower walls are equal. In this case, as can be seen by inspecting the temperature
distribution shown in Figure 16.5, the upper and lower walls are both cooler than
the adjacent fluid. Hence, at both the upper and lower walls, heat is transferred
from the fluid to the wall.

Question: Since the walls are at equal temperature, where is the heat transfer
coming from? Answer: Viscous dissipation. The local temperature increase in the
flow as sketched in Figure 16.5 is due solely to viscous dissipation within the fluid.
In turn, both walls experience an aerodynamic heating effect due to this viscous
dissipation. This is clearly evident in Equations (16.35) and (16.36), where q̇w

depends on the velocity ue. Indeed, q̇w is directly proportional to the square of
ue. In light of Equation (16.9), Equations (16.35) and (16.36) can be written as

q̇w = τ

(
ue

2

)
(16.37)

which further emphasizes that q̇w is due entirely to the action of shear stress in the
flow. From Equations (16.35) to (16.37), we can make the following conclusions
that reflect general properties of most viscous flows:

1. Everything else being equal, aerodynamic heating increases as the flow
velocity increases. This is why aerodynamic heating becomes an important
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design factor in high-speed aerodynamics. Indeed, for most hypersonic
vehicles, you can begin to appreciate that viscous dissipation generates
extreme temperatures within the boundary layer adjacent to the vehicle
surface and frequently makes aerodynamic heating the dominant design
factor. In the Couette flow case shown here—a far cry from hypersonic
flow—we see that q̇w varies directly as u2

e .
2. Everything else being equal, aerodynamic heating decreases as the thickness

of the viscous layer increases. For the case considered here, q̇w is inversely
proportional to D. This conclusion is the same as that made for the above
case of negligible viscous dissipation but with unequal wall temperature.

16.3.3 Adiabatic Wall Conditions (Adiabatic Wall Temperature)

Let us imagine the following situation. Assume that the flow illustrated in Fig-
ure 16.5 is established. We have the parabolic temperature profile established as
shown, and we have heat transfer into the walls as just discussed. However, both
wall temperatures are considered fixed, and both are equal to the same constant
value. Question: How can the wall temperature remain fixed at the same time
that heat is transferred into the wall? Answer: There must be some independent
mechanism that conducts heat away from the wall at the same rate that the aero-
dynamic heating is pumping heat into the wall. This is the only way for the wall
temperature to remain fixed at some cooler temperature than the adjacent fluid.
For example, the wall can be some vast heat sink that can absorb heat without any
appreciable change in temperature, or possibly there are cooling coils within the
plate that can carry away the heat, much like the water coils that keep the engine of
your automobile cool. In any event, to have the picture shown in Figure 16.5 with
a constant wall temperature independent of time, some exterior mechanism must
carry away the heat that is transferred from the fluid to the walls. Now imagine
that, at the lower wall, this exterior mechanism is suddenly shut off. The lower
wall will now begin to grow hotter in response to q̇w, and Tw will begin to increase
with time. At any given instant during this transient process, the heat transfer to
the lower wall is given by Equation (16.24), repeated below:

q̇w = μ

Pr

∣∣∣∣∣he − hw + 1
2 Pr u2

e

D

∣∣∣∣∣ (16.24)

At time t = 0, when the exterior cooling mechanism is just shut off, hw = he,
and q̇w is given by Equation (16.35), namely,

At time t = 0: q̇w = μ

2

u2
e

D
However, as time now progresses, Tw (and therefore hw) increases. From Equa-
tion (16.24), as hw increases, the numerator decreases in magnitude, and hence
q̇w decreases. That is,

At t > 0: q̇w <
μ

2

u2
e

D
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Figure 16.6 Illustration for the definition of an adiabatic wall and the adiabatic wall
temperature.

Hence, as time progresses from when the exterior cooling mechanism was first
cut off at the lower wall, the wall temperature increases, and the aerodynamic
heating to the wall decreases. This in turn slows the rate of increase of Tw as time
progresses. The transient variations of both q̇w and Tw are sketched in Figure 16.6.
In Figure 16.6a, we see that, as time increases to large values, the heat transfer
to the wall approaches zero—this is defined as the equilibrium, or the adiabatic
wall condition. For an adiabatic wall, the heat transfer is, by definition, equal to
zero. Simultaneously, the wall temperature Tw approaches asymptotically a lim-
iting value defined as the adiabatic wall temperature Taw, and the corresponding
enthalpy is defined as the adiabatic wall enthalpy haw.

The purpose of this discussion is to define an adiabatic wall condition; the
example involving a timewise approach to this condition was just for convenience
and edification. Let us now assume that the lower wall in our Couette flow is an
adiabatic wall. For this case, we already know the value of heat transfer to the
wall—by definition, it is zero. The question now becomes, What is the value of
the adiabatic wall enthalpy haw, and in turn the adiabatic wall temperature Taw?
The answer is given by Equation (16.23), where q̇w = 0 for an adiabatic wall.

Adiabatic wall: q̇w = 0 →
(

∂h

∂y

)
w

=
(

∂T

∂y

)
w

= 0 (16.38)

Therefore, from Equation (16.19), with ∂h/∂y = 0, y = 0, and hw = haw, by
definition

he − haw + 1
2 Pr u2

e = 0

or haw = he + Pr
u2

e

2
(16.39)
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e
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Figure 16.7 Couette flow temperature profile for an adiabatic lower wall.

In turn, the adiabatic wall temperature is given by

Taw = Te + Pr
u2

e

2cp
(16.40)

Clearly, the higher the value of ue, the higher is the adiabatic wall temperature.
The enthalpy profile across the flow for this case is given by a combination of

Equations (16.16) and (16.40), as follows. Setting hw = haw in Equation (16.16),
we obtain

h = haw +
(

he + haw + Pr
u2

e

2

)
y

D
− Pr

2
u2

e

(
y

D

)2

(16.41)

From Equation (16.39),

he − haw = − Pr
u2

e

2
(16.42)

Inserting Equation (16.42) into (16.41), we have

h = haw − Pr
u2

e

2

(
y

D

)2

(16.43)

Equation (16.43) gives the enthalpy profile across the flow. The temperature
profile follows from Equation (16.43) as

T = Taw − Pr
u2

e

2cp

(
y

D

)2

(16.44)

This variation of T is sketched in Figure 16.7. Note that Taw is the maximum
temperature in the flow. Moreover, the temperature curve is perpendicular at the
plate for y = 0; that is, the temperature gradient at the lower plate is zero, as
expected for an adiabatic wall. This result is also obtained by differentiating
Equation (16.44):

∂T

∂y
= − Pr

u2
e

cp D

(
y

D

)
which gives ∂T/∂y = 0 at y = 0.
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16.3.4 Recovery Factor

As a corollary to the above case for the adiabatic wall, we take this opportunity
to define the recovery factor—a useful engineering parameter in the analysis of
aerodynamic heating. The total enthalpy of the flow at the upper plate (which
represents the upper boundary on a viscous shear layer) is, by definition,

h0 = he + u2
e

2
(16.45)

(The significance and definition of total enthalpy are discussed in Section 7.5.)
Compare Equation (16.45), which is a general definition, with Equation (16.39),
repeated below, which is for the special case of Couette flow:

haw = he + Pr
u2

e

2
(16.39)

Note that haw is different from h0, the difference provided by the value of Pr as
it appears in Equation (16.39). We now generalize Equation (16.39) to a form
which holds for any viscous flow, as follows:

haw = he + r
u2

e

2
(16.46a)

Similarly, Equation (16.40) can be generalized to

Taw = Te + r
u2

e

2cp
(16.46b)

In Equations (16.46a and b), r is defined as the recovery factor. It is the factor that
tells us how close the adiabatic wall enthalpy is to the total enthalpy at the upper
boundary of the viscous flow. If r = 1, then haw = h0. An alternate expression for
the recovery factor can be obtained by combining Equations (16.46) and (16.45)
as follows. From Equation (16.46),

r = haw − he

u2
e/2

(16.47)

From Equation (16.45),

u2
e

2
= h0 − he (16.48)

Inserting Equation (16.48) into (16.47), we have

r = haw − he

h0 − he
= Taw − Te

T0 − Te
(16.49)

where T0 is the total temperature. Equation (16.49) is frequently used as an alter-
nate definition of the recovery factor.
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In the special case of Couette flow, by comparing Equation (16.39) or (16.40)
with Equation (16.46a) or (16.46b), we find that

r = Pr (16.50)

For Couette flow, the recovery factor is simply the Prandtl number. Note that, if
Pr < 1, then haw < h0; conversely, if Pr > 1, then haw > h0.

In more general viscous flow cases, the recovery factor is not simply the
Prandtl number; however, in general, for incompressible viscous flows, we will
find that the recovery factor is some function of Pr. Hence, the Prandtl number
is playing its role as an important viscous flow parameter. As expected from
Section 15.6, for a compressible viscous flow, the recovery factor is a function of
Pr along with the Mach number and the ratio of specific heats.

16.3.5 Reynolds Analogy

Another useful engineering relation for the analysis of aerodynamic heating is
Reynolds analogy, which can easily be introduced within the context of our dis-
cussion of Couette flow. Reynolds analogy is a relation between the skin friction
coefficient and the heat transfer coefficient. The skin friction coefficient c f was
first introduced in Section 1.5. In our context here, we define the skin friction
coefficient as

c f = τw

1
2ρeu2

e

(16.51)

From Equation (16.9), we have, for Couette flow,

τw = μ

(
ue

D

)
(16.52)

Combining Equations (16.51) and (16.52), we have

c f = μ(ue/D)
1
2ρeu2

e

= 2μ

ρeue D
(16.53)

Let us define the Reynolds number for Couette flow as

Re = ρeue D

μ

Then, Equation (16.53) becomes

c f = 2

Re
(16.54)

Equation (16.54) is interesting in its own right. It demonstrates that the skin
friction coefficient is a function of just the Reynolds number—a result which
applies in general for other incompressible viscous flows [although the function
is not necessarily the same as given in Equation (16.54)].
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Now let us define a heat transfer coefficient as

CH = q̇w

ρeue(haw − hw)
(16.55)

In Equation (16.55), CH is called the Stanton number; it is one of several different
types of heat transfer coefficient that is used in the analysis of aerodynamic heat-
ing. It is a dimensionless quantity, in the same vein as the skin-friction coefficient.
For Couette flow, from Equation (16.24), and dropping the absolute value signs
for convenience, we have

q̇w = μ

Pr

(
he − hw + 1

2 Pr u2
e

D

)
(16.56)

Inserting Equation (16.39) into (16.56), we have for Couette flow

q̇w = μ

Pr

(
haw − hw

D

)
(16.57)

Inserting Equation (16.57) into (16.55), we obtain

CH = (μ/Pr)[(haw − hw)/D]

ρeue(haw − hw)
= μ/Pr

ρeue D
= 1

Re Pr
(16.58)

Equation (16.58) is interesting in its own right. It demonstrates that the Stanton
number is a function of the Reynolds number and Prandtl number—a result that
applies generally for other incompressible viscous flows [although the function
is not necessarily the same as given in Equation (16.58)].

We now combine the results for c f and CH obtained above. From Equa-
tions (16.54) and (16.58), we have

CH

c f
=

(
1

Re Pr

)
Re

2

or
CH

c f
= 1

2
Pr−1 (16.59)

Equation (16.59) is Reynolds analogy as applied to Couette flow. Reynolds anal-
ogy is, in general, a relation between the heat transfer coefficient and the skin
friction coefficient. For Couette flow, this relation is given by Equation (16.59).
Note that the ratio CH/c f is simply a function of the Prandtl number—a result that
applies usually for other incompressible viscous flows, although not necessarily
the same function as given in Equation (16.59).

16.3.6 Interim Summary

In this section, we have studied incompressible Couette flow. Although it is a
somewhat academic flow, it has all the trappings of many practical viscous flow
problems, with the added advantage of lending itself to a simple, straightfor-
ward solution. We have taken this advantage, and have discussed incompressible
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Couette flow in great detail. Our major purpose in this discussion is to make the
reader familiar with many concepts used in general in the analysis of viscous
flows without clouding the picture with more fluid dynamic complexities. In the
context of our study of Couette flow, we have one additional question to address,
namely, What is the effect of compressibility? This question is addressed in the
next section.

EXAMPLE 16.1

Consider the geometry sketched in Figure 16.2. The velocity of the upper plate is 200 ft/s,
and the two plates are separated by a distance of 0.01 in. The fluid between the plates is
air. Assume incompressible flow. The temperature of both plates is the standard sea level
value of 519◦R.

(a) Calculate the velocity in the middle of the flow.
(b) Calculate the shear stress.
(c) Calculate the maximum temperature in the flow.
(d) Calculate the heat transfer to either wall.
(e) If the lower wall is suddenly made adiabatic, calculate its temperature.

■ Solution
Assume that μ is constant throughout the flow, and that it is equal to its value of 3.7373 ×
10−7 slug/ft/s at the standard sea level temperature of 519◦R.

(a) From Equation (16.6),

u = ue

( y

D

)
u = (200)

(
1
2

) = 100 ft/s

(b) From Equation (16.9),

τw = μ
ue

D
where D = 0.01 in = 8.33 × 10−4 ft

τw = (3.7373 × 10−7)(200)

8.33 × 10−4 = 0.09 lb/ft2

Note that the shear stress is relatively small—less than a tenth of a pound acting over a
square foot.

(c) From Equation (16.34), for equal wall temperatures, the maximum temperature,
which occurs at y/D = 0.5, is

T = Tw + Pr

cp

u2
e

2

[
y

D
−

( y

D

)2
]

= Tw + Pr u2
e

8cp

For air at standard conditions, Pr = 0.71 and cp = 6006 (ft · lb)/(slug · ◦R). Hence,

T = 519 + (0.71)(200)2

8(6006)
= 519 + 0.6 = 519.6◦R

Notice that the maximum temperature in the flow is only six-tenths of a degree above
the wall temperature—viscous dissipation for this relatively low-speed case is very small.
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This certainly justifies our assumption of constant ρ, μ, and k in this section, and gives us
a feeling for the energy changes associated with an essentially incompressible flow—they
are very small.

(d) From Equation (16.35),

q̇w = μ

2

(
u2

e

D

)
= (3.7373 × 10−7)(200)2

(2)(8.33 × 10−4)
= 8.97 (ft · lb)/(ft2/s)

Since there are 778 ft · lb to a Btu (British thermal unit), then

q̇w = 8.97 (ft · lb)/(ft2/s) = 0.0115 Btu/(ft2/s)

(e) From Equation (16.40),

Taw = Te + Pr

cp

(
u2

e

2

)
= 519 + (0.71)(200)2

(2)(6006)

= 519 + 2.36 = 521.36◦R

Note in the above example that the adiabatic wall temperature is higher than
the maximum flow temperature calculated in part (c) for the cold wall case. In
general, for cold wall cases, the viscous dissipation in the flow is not sufficient to
heat the gas anywhere in the flow to a temperature as high as the adiabatic wall
temperature. Also, we again note the comparatively low temperature increase—
Taw is only 2.36◦ higher than the upper wall temperature. In contrast, for the
compressible flow to be treated in the next section, the temperature increases can
be substantial—this is one of the major aspects that distinguishes compressible
viscous flow from incompressible viscous flow. Note that, in the present problem,
the Mach number of the upper plate is

Me = ue

ae
= ue√

γ RTe
= 200√

(1.4)(1716)(519)
= 0.18

Again, this certainly justifies our assumption of incompressible flow for this
problem.

16.4 COMPRESSIBLE COUETTE FLOW
Return to Figure 16.2, which is our general model of Couette flow. We now
assume that ue is large enough; hence, the changes in temperature within the flow
are substantial enough, so that we must treat ρ, μ, and k as variables—this is
compressible Couette flow. Since T = T (y), then μ = μ(y) and k = k(y). Also,
since ∂p/∂x = 0 from the geometry and ∂p/∂y = 0 from Equation (16.2), then
the pressure is constant throughout the compressible Couette flow, just as in the
incompressible case discussed in Section 16.3. From the equation of state, we
have ρ = p/RT ; because T = T (y), ρ is also a function of y, varying inversely
with temperature.
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The governing equations for compressible Couette flow are Equations (16.1)
to (16.3), with μ and k as variables. Let us arrange these equations in a form
convenient for solution. From Equation (16.1),

∂

∂y

(
μ

∂u

∂y

)
= ∂τ

∂y
= 0 (16.60)

or τ = const (16.61)

Hence, just as in the incompressible case, the shear stress is constant across the
flow. However, keep in mind that μ = μ(y), and, from τ = μ(∂u/∂y), clearly
the velocity gradient, ∂u/∂y, is not constant across the flow—this is an essential
difference between compressible and incompressible flows. With all this in mind,
Equation (16.3), repeated below

∂

∂y

(
k
∂T

∂y

)
+ ∂

∂y

(
μu

∂u

∂y

)
= 0 (16.3)

can be written as

∂

∂y

(
k
∂T

∂y

)
+ τ

∂u

∂y
= 0 (16.62)

The temperature variation of μ is accurately given by Sutherland’s law, Equa-
tion (15.3), for the temperature range of interest in this book. Hence, from Equa-
tion (15.3) and recalling that it is written in the International System of Units, we
have

τ = μ
∂u

∂y
= μ0

(
T

T0

)3/2 T0 + 110

T + 110

(
∂u

∂y

)
(16.63)

The solution for compressible Couette flow requires a numerical solution of
Equation (16.62). Note that, with μ and k as variables, Equation (16.62) is a non-
linear differential equation, and for the conditions stated, it does not have a neat,
closed-form, analytic solution. Recognizing the need for a numerical solution,
let us write Equation (16.62) in terms of the ordinary differential equation that it
really is. (Recall that we have been using the partial differential notation only as
a carry-over from the Navier-Stokes equations and to make the equations for our
study of Couette flow look more familiar when treating the two-dimensional and
three-dimensional viscous flows discussed in Chapters 17 to 20—just a pedagog-
ical ploy on our part):

d

dy

(
k
∂T

∂y

)
+ τ

du

dy
= 0 (16.64)

Equation (16.64) must be solved between y = 0, where T = Tw, and y = D,
where T = Te. Note that the boundary conditions must be satisfied at two different
locations in the flow, namely, at y = 0 and y = D; this is called a two-point
boundary value problem. We present two approaches to the numerical solution
of this problem. Both approaches are used for the solutions of more complex
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viscous flows to be discussed in Chapters 17 through 20, and that is why they are
presented here in the context of Couette flow—simply to “break the ice” for our
subsequent discussions.

16.4.1 Shooting Method

This method is a classic method for the solution of the boundary-layer equations
to be discussed in Chapter 17. For the solution of compressible Couette flow, the
same philosophy follows as that to be applied to boundary-layer solutions, and
that is why we discuss it now. The method involves a double iteration, that is, two
minor iterations nested within a major iteration. The scheme is as follows:

1. Assume a value for τ in Equation (16.64). A reasonable assumption to start
with is the incompressible value, τ = μ(ue/D). Also, assume that the
variation of u(y) is given by the incompressible result from Equation (16.6).

2. Starting at y = 0 with the known boundary condition T = Tw, integrate
Equation (16.64) across the flow until y = D. Use any standard numerical
technique for ordinary differential equations, such as the well-known
Runge-Kutta method (see, e.g., Reference 49). However, to start this
numerical integration, because Equation (16.64) is second order, two
boundary conditions must be specified at y = 0. We only have one physical
condition, namely, T = Tw. Therefore, we have to assume a second
condition; let us assume a value for the temperature gradient at the wall, that
is, assume a value for (dT/dy)w. A value based on the incompressible flow
solution discussed in Section 16.3 would be a reasonable assumption. With
the assumed (dT/dy)w and the known Tw at y = 0, then Equation (16.64)
is integrated numerically away from the wall, starting at y = 0 and moving
in small increments, �y in the direction of increasing y. Values of T at
each increment in y are produced by the numerical algorithm.

3. Stop the numerical integration when y = D is reached. Check to see if the
numerical value of T at y = D equals the specified boundary condition,
T = Te. Most likely, it will not because we have had to assume a value for
(dT/dy)w in step 2. Hence, return to step 2, assume another value of
(dT/dy)w, and repeat the integration. Continue to repeat steps 2 and 3 until
convergence is obtained, that is, until a value of (dT/dy)w is found such
that, after the numerical integration, T = Te at y = D. From the converged
temperature profile obtained by repetition of steps 2 and 3, we now have
numerical values for T as a function of y that satisfy both boundary
conditions; that is, T = Tw at the lower wall and T = Te at the upper wall.
However, do not forget that this converged solution was obtained for the
assumed value of τ and the assumed velocity profile u(y) in step 1.
Therefore, the converged profile for T is not necessarily the correct profile.
We must continue further; this time to find the correct value for τ .

4. From the converged temperature profile obtained by the repetitive iteration
in steps 2 and 3, we can obtain μ = μ(y) from Equation (15.3).
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5. From the definition of shear stress,

τ = μ
du

dy

we have
du

dy
= τ

μ
(16.65)

Recall from the solution of the momentum equation, Equation (16.60), that
τ is a constant. Using the assumed value of τ from step 1, and the values of
μ = μ(y) from step 4, numerically integrate Equation (16.65) starting at
y = 0 and using the known boundary condition u = 0 at y = 0. Since
Equation (16.65) is first order, this single boundary condition is sufficient to
initiate the numerical integration. Values of u at each increment in y, �y,
are produced by the numerical algorithm.

6. Stop the numerical integration when y = D is reached. Check to see if the
numerical value of u at y = D equals the specified boundary condition,
u = ue. Most likely, it will not, because we have had to assume a value of τ

and u(y) all the way back in step 1, which has carried through to this point
in our iterative solution. Hence, return to step 5, assume another value for τ ,
and repeat the integration of Equation (16.65). Continue to repeat steps 5
and 6 [using the same values of μ = μ(y) from step 4] until convergence is
obtained, that is, until a value of τ is found that, after the numerical
integration of Equation (16.65), u = ue at y = D. From the converged
velocity profile obtained by repetition of steps 5 and 6, we now have
numerical values for u as a function of y that satisfy both boundary
conditions; that is, u = 0 at y = 0 and u = ue at y = D. However, do not
forget that this converged solution was obtained using μ = μ(y) from
step 4, which was obtained using the initially assumed τ and u(y) from
step 1. Therefore, the converged profile for u obtained here is not
necessarily the correct profile. We must continue one big step further.

7. Return to step 2, using the new value of τ and the new u(y) obtained from
step 6. Repeat steps 2 through 7 until total convergence is obtained. When
this double iteration is completed, then the profile for T = T (y) obtained at
the last cycle of step 3, the profile for u = u(y) obtained at the last cycle of
step 6, and the value of τ obtained at the last cycle of step 7 are all the
correct values for the given boundary conditions. The problem is solved!

Looking over the shooting method as described above, we see two minor iterations
nested within a major iteration. Steps 2 and 3 constitute the first minor iteration
and provide ultimately the temperature profile. Steps 5 and 6 are the second minor
iteration and provide ultimately the velocity profile. Steps 2 to 7 constitute the
major iteration and ultimately result in the proper value of τ .

The shooting method described above for the solution of compressible
Couette flow is carried over almost directly for the solution of the boundary-
layer equations to be described in Chapter 18. In the same vein, there is another
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completely different approach to the solution of compressible Couette flow which
carries over directly for the solution of the Navier-Stokes equations to be described
in Chapter 20. This is the time-dependent, finite-difference method, first discussed
in Chapter 13 and applied to the inviscid flow over a supersonic blunt body in
Section 13.5. In order to prepare ourselves for Chapter 20, we briefly discuss the
application of this method to the solution of compressible Couette flow.

16.4.2 Time-Dependent Finite-Difference Method

Return to the picture of Couette flow in Figure 16.2. Imagine, for a moment, that
the space between the upper and lower plates is filled with a flow field which is
not a Couette flow; for example, imagine some arbitrary flow field with gradients
in both the x and y directions, including gradients in pressure. We can imagine
such a flow existing at some instant during the start-up process just after the
upper plate is set into motion. This would be a transient flow field, where u, T ,
ρ, etc., would be functions of time t as well as of x and y. Finally, after enough
time elapses, the flow will approach a steady state, and this steady state will be
the Couette flow solution discussed above. Let us track this picture numerically.
That is, starting from an assumed initial flow field at time t = 0, let us solve the
unsteady Navier-Stokes equations in steps of time until a steady flow is obtained
at large times. As discussed in Section 13.5, the time-asymptotic steady flow is
the desired result; the time-dependent approach is just a means to that end. At
this stage in our discussion, it would be well for you to review the philosophy
(not the details) presented in Section 13.5 before progressing further.

The Navier-Stokes equations are given by Equations (15.18a to c) and (15.26).
For an unsteady, two-dimensional flow, they are

Continuity:
∂p

∂t
= −∂(ρu)

∂x
− ∂(ρv)

∂y
(16.66)

x momentum:
∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
− 1

ρ

[
∂p

∂x
− ∂τxx

∂x
− ∂τyz

∂y

]
(16.67)

y momentum:
∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
− 1

ρ

[
∂p

∂y
− ∂τxy

∂x
− ∂τyy

∂y

]
(16.68)

Energy:

∂(e + V 2/2)

∂t
= −u

∂(e + V 2/2)

∂x
− v

∂(e + V 2/2)

∂y
(16.69)

+ 1

ρ

{
∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
− ∂(pu)

∂x
− ∂(pv)

∂y

+ ∂(uτxx)

∂x
+ ∂(uτyx)

∂y
+ ∂(vτxy)

∂x
+ ∂(vτyy)

∂y

}
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Note that Equations (16.66) to (16.69) are written with the time derivatives on the
left-hand side and spatial derivatives on the right-hand side. These are analogous
to the form of the Euler equations given by Equations (13.59) to (13.62). In
Equations (16.67) to (16.69), τxy , τxx , and τyy are given by Equations (15.5),
(15.8), and (15.9), respectively.

The above equations can be solved by means of MacCormack’s method as
described in Chapter 13. This is a predictor-corrector approach, and its arrange-
ment for the time-dependent method is described in Section 13.5. The application
to compressible Couette flow is outlined as follows:

1. Divide the space between the two plates into a finite-difference grid, as
sketched in Figure 16.8a. The length L of the grid is somewhat arbitrary,
but it must be longer than a certain minimum, to be described shortly.

2. At x = 0 (the inflow boundary), specify some inflow conditions for u, v, ρ,
and T (hence, e, since e = cvT ). The incompressible solution for Couette
flow makes reasonable inflow boundary conditions.

3. At all the remaining grid points, arbitrarily assign values for all the
flow-field variables, u, v, ρ, and T . This arbitrary flow field, which
constitutes the initial conditions at t = 0, can have finite values of v, and
can include pressure gradients.

4. Starting with the initial flow field established in step 3, solve
Equations (16.66) to (16.69) in steps of time. For example, consider the
x-momentum equation in the form of Equation (16.67). MacCormack’s
predictor-corrector method, applied to this equation, is as follows.

Predictor: Assume that we know the complete flow field at time t , and
we wish to advance the flow-field variables to time t + �t . Replace the
spatial derivatives with forward differences:(

∂u

∂t

)
i, j

= −ui, j

(
ui+1, j − ui, j

�x

)
− vi, j

(
ui, j+1 − ui, j

�y

)
(16.70)

− 1

ρi, j

{
pi+1, j − pi, j

�x
−

[
(τxx)i+1, j − (τxx)i, j

�x

]

−
[
(τyx)i, j+1 − (τyx)i, j

�y

]}
All the quantities on the right-hand side are known at time t ; we want to
advance the flow-field values to the next time, t + �t . That is, the
right-hand side of Equation (16.70) is a known number at time t . Form the
predicted value of ui, j at time t + �t , denoted by ūi, j from the first two
terms of a Taylor’s series as

ūi, j = ui, j +
(

∂u

∂t

)
i, j

�t

︸ ︷︷ ︸
Known at

time t

︸ ︷︷ ︸
Calculated

from
Equation (16.70)

(16.71)
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x

Inflow

(a) Finite-difference grid

(b) Transient flow

(c) Steady-state flow

Intermediate profiles
Assumed inflow
profile Same profiles independent of x.

This is the solution to the compressible
Couette flow problem.

l

y

ue T � Te

u � 0, T � Tw

i �1,  j i �1,  j

� y

� x

i,  j�1

i,  j�1

i,  j

Figure 16.8 Illustration of the finite-difference grid, and characteristics of the flow during its
transient approach to the steady state.

Calculate predicted values for ρ, v, and e, namely, ρ̄i, j , v̄i, j , and ēi, j , by the
same approach applied to Equations (16.66), (16.68), and (16.69),
respectively. Do this for all the grid points in Figure 16.8a.

Corrector: Return to Equation (16.67), and replace the spatial
derivatives with rearward differences using the predicted (barred) quantities
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obtained from the predictor step:(
∂u

∂t

)
i, j

= −ūi, j

(
ūi, j − ūi−1, j

�x

)
− v̄i, j

(
ūi, j − ūi, j−1

�y

)
(16.72)

− 1

ρ̄i, j

{
p̄i, j − p̄i−1, j

�x
−

[
(τ̄xx)i, j − (τ̄xx)i−1, j

�x

]

−
[
(τ̄yx)i, j − (τ̄yx)i, j−1

�y

]}
Finally, calculate the corrected value of ui, j at time t + �t , denoted by
ut+�t

i, j , from the first two terms of a Taylor’s series using an average time
derivative obtained from Equations (16.70) and (16.72). That is,

ut+�t
i, j = ut

i, j + 1

2

[ (
∂u

∂t

)
i, j

+
(

∂u

∂t

)
i, j

⎤
⎦ �t

︸ ︷︷ ︸
From

Equation (16.70)

︸ ︷︷ ︸
From

Equation (16.72)

(16.73)

Carry out the same process using Equations (16.66), (16.68), and (16.69)
to obtain ρ t+�t

i, j , vt+�t
i, j , and et+�t

i, j . The complete flow field at time t + �t is
now obtained.

5. Repeat step 4, except starting with the newly calculated flow-field variables
at the previous time. The flow-field variables will change from one time
step to the next. This transient flow field will not even have parallel
streamlines (i.e., there will be finite values of v throughout the flow). This
is sketched in Figure 16.8b. Make the calculations for a large number of
time steps; as we go out to large times, the changes in the flow-field
variables from one time step to another will become smaller. Finally, if we
go out to a large enough time (hundreds, sometimes even thousands, of
time steps in some problems), the flow-field variables will not change
anymore—a steady flow will be achieved, as sketched in Figure 16.8c.
Moving from left to right in Figure 16.8c, we see a developing flow near the
entrance, influenced by the assumed inflow profile. However, at the right
of Figure 16.8c, the history of the inflow has died out, and the flow-field
profiles become independent of distance. Indeed, we have chosen L to be a
sufficient length for this to occur. The flow field near the exit is the desired
solution to the compressible Couette flow problem.

The value of �t in Equations (16.71) and (16.73) is not arbitrary. The steps
outlined above constitute an explicit finite-difference method, and hence there
is a stability bound on �t . The value of �t must be less than some prescribed
maximum, or else the numerical solution will become unstable and “blow up”
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Figure 16.9 Velocity and temperature profiles for compressible Couette flow. Cold wall cases.
(Data Source: White, F. M.: Viscous Fluid Flow, McGraw-Hill Book Company, New York, 1974).

on the computer. A useful expression for �t is the Courant-Friedrichs-Lewy
(CFL) criterion, which states that �t should be the minimum of �tx and �ty ,
where

�tx = �x

u + a
�ty = �y

v + a
(16.74)

In Equation (16.74), a is the local speed of sound. Equation (16.74) is evaluated
at every grid point, and the minimum value is used to advance the whole flow
field.

The time-dependent technique described above is a common approach to the
solution of the compressible Navier-Stokes equations, and for that reason, it has
been outlined here. Our purpose has been not so much to outline the solution of
Couette flow by means of this technique, but rather to present the technique as a
precursor to our later discussions on Navier-Stokes solutions.

16.4.3 Results for Compressible Couette Flow

Some typical results for compressible Couette flow are shown in Figure 16.9 for a
cold wall case, and in Figure 16.10 for an adiabatic lower wall case. These results
are obtained from White (Reference 41); they assume a viscosity-temperature
relation of μ/μmax = (T/Tref)

2/3, which is not quite as accurate for a gas as is
Sutherland’s law [Equation (15.3)]. Recall from Section 15.6 that a compressible
viscous flow is governed by the following similarity parameters: the Mach number,
the Prandtl number, and the ratio of specific heats, γ . Therefore, we expect the
results for compressible Couette flow to be governed by the same parameters. Such
is the case, as illustrated in Figures 16.9 and 16.10. Here we see the different
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Figure 16.10 Velocity and temperature profiles for compressible Couette flow. Adiabatic lower
wall. (Data Source: White, F. M.: Viscous Fluid Flow, McGraw-Hill Book Company, New York,
1974).

flow-field profiles for different values of the combined parameter A = (γ −
1) Pr M2

e . In particular, examining Figure 16.9 for the equal temperature, cold
wall case, we note that:

1. From Figure 16.9a, the velocity profiles are not greatly affected by
compressibility. The profile labeled A = 0 is the familiar linear
incompressible case, and that labeled A = 30 corresponds to Me

approximately 10. Clearly, the velocity profile (in terms of u/ue versus
y/D) does not change greatly over such a large range of Mach number.

2. In contrast, from Figure 16.9b, there are huge temperature changes in the
flow; these are due exclusively to viscous dissipation, which is a major
effect at high Mach numbers. For example, for A = 30 (Me ≈ 10), the
temperature in the middle of the flow is almost five times the wall
temperature. Contrast this with the very small temperature increase
calculated in Example 16.1 for an incompressible flow. This is why, on the
scale in Figure 16.9b, the incompressible case (A = 0) is seen as essentially
a vertical line.

For the adiabatic wall case shown in Figure 16.10, we note the following:

1. From Figure 16.10a, the velocity profiles show a pronounced curvature due
to compressibility.

2. From Figure 16.10b, the temperature increases are larger than for the cold
wall case. Note that, for A = 30 (Me ≈ 10), the maximum temperature is
over 15 times that of the upper wall. Also, note the results, familiar from
our discussion in Section 16.3, that the temperature is the largest at the
adiabatic wall; that is, Taw is the maximum temperature. As expected,
Figure 16.10b shows that Taw increases markedly as Me increases.
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In summary, in a general comparison between the incompressible flow discussed
in Section 16.3 and the compressible flow discussed here, there is no tremendous
qualitative change; that is, there is no discontinuous change in the flow-field
behavior in going from subsonic to supersonic flow as is the case for an inviscid
flow, such as discussed in Part 3. Qualitatively, a supersonic viscous flow is similar
to a subsonic viscous flow. On the other hand, there are tremendous quantitative
differences, especially in regard to the large temperature changes that occur due
to massive viscous dissipation in a high-speed compressible viscous flow. The
physical reason for this difference in viscous versus inviscid flow is as follows. In
an inviscid flow, information is propagated via the mechanism of pressure waves
traveling throughout the flow. This mechanism changes radically when the flow
goes from subsonic to supersonic. In contrast, for a viscous flow, information
is propagated by the diffusive transport mechanisms of μ and k (a molecular
phenomenon), and these mechanisms are not basically changed when the flow
goes from subsonic to supersonic. These statements hold in general for any viscous
flow, not just for the Couette flow case treated here.

16.4.4 Some Analytical Considerations

For air temperatures up to 1000 K, the specific heats are essentially constant, thus
justifying the assumption of a calorically perfect gas for this range. Moreover,
the temperature variations of μ and k over this range are virtually identical. As
a result, the Prandtl number, μcp/k, is essentially constant up to temperatures
on the order of 1000 K. This is shown in Figure 16.11 (Reference 50). Note that
Pr ≈ 0.71 for air; this is the value that was used in Example 16.1.

Figure 16.11 Variation of viscosity coefficient, thermal conductivity, and Prandtl
number for air as a function of temperature. (Data Source: Schetz, Joseph A.:
Foundations of Boundary Layer Theory for Momentum, Heat, and Mass Transfer,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1984).
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Question: How high a Mach number can exist before we would expect to
encounter temperatures in the flow above 1000 K? Answer: An approximate
answer is to calculate that Mach number at which the total temperature is 1000 K.
Assuming a static temperature T = 288 K, from Equation (8.40),

M =
√

2

γ − 1

(
T0

T
− 1

)
=

√
2

0.4

(
1000

288
− 1

)
= 3.5

Hence, for most aeronautical applications involving flight at a Mach number of
3.5 or less, the temperature within the viscous portions of the flow field will
not exceed 1000 K. A Mach number of 3.5 or less encompasses virtually all
operational aircraft today, with the exception of a few hypersonic test vehicles.

In light of the above, many viscous flow solutions are carried out making the
justifiable assumption of a constant Prandtl number. For the case of compressible
Couette flow, the assumption of Pr = constant allows the following analysis.
Consider the energy equation, Equation (16.3), repeated below:

∂

∂y

(
k
∂T

∂y

)
+ ∂

∂y

(
μu

∂u

∂y

)
= 0 (16.3)

Since T = h/cp and Pr = μcp/k, Equation (16.3) can be written as

∂

∂y

(
μ

Pr

∂h

∂y

)
+ ∂

∂y

(
μu

∂u

∂y

)
= 0 (16.75)

or
∂

∂y

[
μ

(
1

Pr

∂h

∂y
+ u

∂u

∂y

)]
= 0 (16.76)

Integrating Equation (16.76) with respect to y, we have

1

Pr

∂h

∂y
+ u

∂u

∂y
= a

μ
(16.77)

Since τ = μ(∂u/∂y), we have μ = τ(∂u/∂y)−1. Also, recalling from Equa-
tion (16.61) that τ is constant, we can write the right-hand side of Equa-
tion (16.77) as

a

μ
= a

τ

∂u

∂y
= b

∂u

∂y

where b is a constant. With this, Equation (16.77) becomes

1

Pr

∂h

∂y
+ ∂(u2/2)

∂y
− b

∂u

∂y
= 0 (16.78)

Integrating Equation (16.78) with respect to y, remembering that Pr = constant,
we have

h

Pr
+ u2

2
− bu = c (16.79)
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where c is another constant of integration. Expressions for b and c can be obtained
by evaluating Equation (16.79) at y = 0 and y = D. At y = 0, h = hw and
u = 0; hence,

c = hw

Pr
At y = D, h = he and u = ue; hence,

b = 1

ue

(
he − hw

Pr

)
+ ue

2

Inserting b and c into Equation (16.79) and simplifying, we obtain

h + Pr
u2

2
= hw + u

ue
(he − hw) + Pr

2
(uue) (16.80)

Assume the lower wall is adiabatic; that is, (∂h/∂y)w = 0. Differentiating Equa-
tion (16.80) with respect to y, we have

∂h

∂y
= − Pr u

∂u

∂y
+

(
he + hw

ue

)
∂u

∂y
+ ue Pr

2

∂u

∂y

or
∂h

∂y
=

(
−u Pr + he − hw

ue
+ ue Pr

2

)
∂u

∂y
(16.81)

Recall that the condition for an adiabatic wall is that (∂h/∂y)w = 0. Applying
Equation (16.81) at y = 0 for an adiabatic wall, where u = 0 and by definition
hw = haw, we have(

∂h

∂y

)
w

=
(

he − haw

ue
+ ue Pr

2

)(
∂u

∂y

)
w

= 0

Since (∂u/∂y)w is finite, then

he − haw

ue
+ ue Pr

2
= 0

or haw = he + Pr
u2

e

2
(16.82)

This is identical to Equation (16.39) obtained for incompressible flow. Hence, we
have just proven that the recovery factor for compressible Couette flow, assuming
constant Prandtl number, is also

r = Pr (16.83)

Since the recovery factors for the incompressible and compressible cases
are the same (as long as Pr = constant), what can we say about Reynolds anal-
ogy? Does Equation (16.59) hold for the compressible case? Let us examine this
question. Return to Equation (16.3), repeated below:

∂

∂y

(
k
∂T

∂y

)
+ ∂

∂y

(
μu

∂u

∂y

)
= 0 (16.3)
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Recalling that, from the definitions,

q̇ = k
∂T

∂y
(16.84)

and τ = μ
∂u

∂y
(16.85)

then Equation (16.3) can be written as

∂q̇

∂y
+ ∂(τu)

∂y
= 0 (16.86)

Integrating Equation (16.86) with respect to y, we have

q̇ + τu = a (16.87)

where a is a constant of integration. Evaluating Equation (16.87) at y = 0, where
u = 0 and q̇ = qw, we find that

a = q̇w

Hence, Equation (16.87) is

q̇ + τu = q̇w (16.88)

Inserting Equations (16.84) and (16.85) into (16.88), we have

q̇w = k
∂T

∂y
+ μu

∂u

∂y
(16.89)

or
q̇w

μ
= k

μ

∂T

∂y
+ u

∂u

∂y
(16.90)

Recall that the shear stress is constant throughout the flow; hence,

τ = μ
∂u

∂y
= τw

or μ = τw

∂u/∂y
(16.91)

Also, k

μ
= cp

Pr
(16.92)

Inserting Equation (16.91) into the left-hand side of Equation (16.90), and Equa-
tion (16.92) into the right-hand side of Equation (16.90), we have

q̇w

τw

∂u

∂y
= cp

Pr

∂T

∂y
+ ∂(u2/2)

∂y
(16.93)

Integrate Equation (16.93) between the two plates, keeping in mind that q̇w, τw,
cp, and Pr are all fixed values:

q̇w

τw

∫ D

0

∂u

∂y
dy = cp

Pr

∫ D

0

∂T

∂y
dy +

∫ D

0

∂(u2/2)

∂y
dy
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or
q̇w

τw

∫ ue

0
du = cp

Pr

∫ Te

Tw

dT +
∫ ue

0
d

(
u2

2

)
which yields

q̇w

τw

ue = cp

Pr
(Te − Tw) + u2

e

2
(16.94)

Rearranging Equation (16.94), and recalling that h = cpT , we have

q̇w = τw

ue Pr

(
he − hw + Pr

u2
e

2

)
(16.95)

Inserting Equation (16.82) into (16.95), we have

q̇w = τw

ue Pr
(haw − hw) (16.96)

The skin-friction coefficient and Stanton number are defined by Equations (16.51)
and (16.55), respectively. Thus, their ratio is

CH

c f
= q̇w/[ρeue(haw − hw)]

τw/
(

1
2ρeu2

e

) = q̇w

τw

[
ue

2(haw − hw)

]
(16.97)

Inserting Equation (16.96) into (16.97), we have

CH

c f
= (haw − hw)

ue Pr

[
ue

2(haw − hw)

]

or
CH

c f
= 1

2
Pr−1 (16.98)

Equation (16.98) is Reynolds analogy—a relation between heat transfer and skin
friction coefficients. Moreover, it is precisely the same result as obtained in Equa-
tion (16.59) for incompressible flow. Hence, for a constant Prandtl number, we
have shown that Reynolds analogy is precisely the same form for incompressible
and compressible flow.

EXAMPLE 16.2

Consider the geometry given in Figure 16.2. The two plates are separated by a distance
of 0.01 in (the same as in Example 16.1). The temperature of the two plates is equal, at a
value of 288 K (standard sea level temperature). The air pressure is constant throughout
the flow and equal to 1 atm. The upper plate is moving at Mach 3. The shear stress at the
lower wall is 72 N/m2. (This is about 1.5 lb/ft2—a much larger value than that associated
with the low-speed case treated in Example 16.1.) Calculate the heat transfer to either
plate. (Since the shear stress is constant throughout the flow, and the plates are at equal
temperature, the heat transfer to the upper and lower plates is the same.)



CHAPTER 16 A Special Case: Couette Flow 995

■ Solution
The velocity of the upper plate is

ue = Meae = Me

√
γ RTe = 3

√
(1.4)(288)(287) = 1020 m/s

The air density at both plates is (noting that 1 atm = 1.01 × 105 N/m2)

ρe = pe

RTe
= 1.01 × 105

(287)(288)
= 1.22 kg/m3

Hence, the skin-friction coefficient is

c f = τw

1
2ρeu2

e

= 72

(0.5)(1.22)(1020)2 = 1.13 × 10−4

From Reynolds analogy, Equation (16.92), we have

CH = c f

2 Pr
= 1.13 × 10−4

2(0.71)
= 8 × 10−5

The adiabatic wall enthalpy, from Equation (16.82), is

haw = he + Pr
u2

e

2
= cpTe + Pr

u2
e

2

For air, cp = 1004.5 J/kg · K. Thus,

haw = (1004.5)(288) + (0.71)
(1020)2

2
= 6.59 × 105 J/kg

[Note: This gives Taw = haw/cp = (6.59 × 105)/1004.5 = 656 K. In the adiabatic
case, the wall would be quite warm.] Hence, from the definition of the Stanton number
[Equation (16.55)], and noting that hw = cpTw = (1004.6)(288) = 2.89 × 105 J/kg,

q̇w = ρeue(haw − hw)CH = (1.22)(1020)[(6.59 − 2.89) × 105](8 × 10−5)

= 3.68 × 104 W/m2

16.5 SUMMARY
The parallel flow discussed in this chapter illustrates features common to many
more complex viscous flows, with the added advantage of lending itself to a
relatively straightforward solution. The purpose of this discussion has been to
introduce many of the basic concepts of viscous flows in a fashion unencumbered
by fluid dynamic complexities. In particular, we have studied Couette flow and
found the following.

1. The driving force is the shear stress between the moving wall and the fluid.
Shear stress is constant across the flow for both incompressible and
compressible cases.
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2. For incompressible Couette flow,

u = ue

(
y

D

)
(16.6)

τ = μ

(
ue

D

)
(16.9)

3. The heat transfer depends on the wall temperatures and the amount of
viscous dissipation. For an adiabatic wall, the wall enthalpy is

haw = he + r
u2

e

2
(16.46a)

For incompressible and compressible Couette flow with a constant Prandtl
number, the recovery factor is

r = Pr

and Reynolds analogy holds in both cases;

CH

c f
= 1

2
Pr−1 (16.59)



C H A P T E R 17
Introduction to Boundary
Layers

A very satisfactory explanation of the physical process in the boundary layer
between a fluid and a solid body could be obtained by the hypothesis of an
adhesion of the fluid to the walls, that is, by the hypothesis of a zero relative
velocity between fluid and wall. If the viscosity was very small and the fluid path
along the wall not too long, the fluid velocity ought to resume its normal value
at a very short distance from the wall. In the thin transition layer however, the
sharp changes of velocity, even with small coefficient of friction, produce
marked results.

Ludwig Prandtl, 1904

PREVIEW BOX

The revelations in this chapter are simply amazing.
Although the influence of friction is present at ev-
ery point throughout every flow, on a practical ba-
sis it is usually of no consequence except in a thin
region adjacent to the surface of a body immersed
in the flow, or in the boundary region between two
flows of widely different velocities. For the former,
the thin region is called a boundary layer, and for
the latter it is called a shear layer. After centuries
of trying to solve flows taking into account friction,
most to no avail, the introduction of the boundary-
layer concept revolutionized fluid dynamics and made

the analysis of flows with friction tractable. It is amaz-
ing that what goes on inside the thin boundary layer
is the physical mechanism for skin friction and aero-
dynamic heating to the surface, and for flow sepa-
ration from the surface. It is truly amazing that to
calculate skin friction and aerodynamic heating at the
surface, we have only to account for friction and ther-
mal conduction within the thin boundary layer, and
not in the large region of flow outside the boundary
layer.

This chapter is all about boundary layers. Read
on, and be prepared to be amazed.

997
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17.1 INTRODUCTION
The above quotation is taken from an historic paper given by Ludwig Prandtl at
the third Congress of Mathematicians at Heidelberg, Germany, in 1904. In this
paper, the concept of the boundary layer was first introduced—a concept which
eventually revolutionized the analysis of viscous flows in the twentieth century
and which allowed the practical calculation of drag and flow separation over
aerodynamic bodies. Before Prandtl’s 1904 paper, the Navier-Stokes equations
discussed in Chapter 15 were well known, but fluid dynamicists were frustrated in
their attempts to solve these equations for practical engineering problems. After
1904, the picture changed completely. Using Prandtl’s concept of a boundary
layer adjacent to an aerodynamic surface, the Navier-Stokes equations can be
reduced to a more tractable form called the boundary-layer equations. In turn,
these boundary-layer equations can be solved to obtain the distributions of shear
stress and aerodynamic heat transfer to the surface. Prandtl’s boundary-layer
concept was an advancement in the science of fluid mechanics of the caliber
of a Nobel prize, although he never received that honor. The purpose of this
chapter is to present the general concept of the boundary layer and to give a few
representative samples of its application. Our purpose here is to provide only an
introduction to boundary-layer theory; consult Reference 40 for a rigorous and
thorough discussion of boundary-layer analysis and applications. Also, a general
introduction to boundary layers was given in Section 1.11. If you have not read
that section, now would be a good time to pause and return to Section 1.11 before
progressing further.

What is a boundary layer? We have used this term in several places in our
previous chapters, first introducing the idea in Section 1.10 and illustrating the
concept in Figure 1.42. The boundary layer is the thin region of flow adjacent to a
surface, where the flow is retarded by the influence of friction between a solid sur-
face and the fluid. For example, a photograph of the flow over a supersonic body is
shown in Figure 17.1, where the boundary layer (along with shock and expansion
waves and the wake) is made visible by a special optical technique called a shad-
owgraph (see References 25 and 26 for discussions of the shadowgraph method).
Note how thin the boundary layer is in comparison with the size of the body;
however, although the boundary layer occupies geometrically only a small por-
tion of the flow field, its influence on the drag and heat transfer to the body is
immense—in Prandtl’s own words as quoted above, it produces “marked results.”

The purpose of the remaining chapters is to examine these “marked results.”
The road map for the present chapter is given in Figure 17.2. In the next section,
we discuss some fundamental properties of boundary layers. This is followed
by a development of the boundary-layer equations, which are the continuity,
momentum, and energy equations written in a special form applicable to the flow
in the thin viscous region adjacent to a surface. The boundary layer equations are
partial differential equations that apply inside the boundary layer.

Finally, we note that this chapter represents the second of the three options
discussed in Section 15.7 for the solution of the viscous flow equations, namely,
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Boundary layer

Figure 17.1 The boundary layer on an aerodynamic body (© H.S. Photos/Alamy).

Figure 17.2 Road map for Chapter 17.
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the simplification of the Navier-Stokes equations by neglecting certain terms that
are smaller than other terms. This is an approximation, not a precise condition as in
the case of Couette and Poiseuille flows in Chapter 16. In this chapter, we will see
that the Navier-Stokes equations, when applied to the thin viscous boundary layer
adjacent to a surface, can be reduced to simpler forms, albeit approximate, which
lend themselves to simpler solutions. These simpler forms of the equations are
called the boundary-layer equations—they are the subject of the present chapter.

17.2 BOUNDARY-LAYER PROPERTIES
Consider the viscous flow over a flat plate as sketched in Figure 17.3. The viscous
effects are contained within a thin layer adjacent to the surface; the thickness is
exaggerated in Figure 17.3 for clarity. Immediately at the surface, the flow velocity
is zero; this is the “no-slip” condition discussed in Section 15.2. In addition, the
temperature of the fluid immediately at the surface is equal to the temperature
of the surface; this is called the wall temperature Tw, as shown in Figure 17.3.
Above the surface, the flow velocity increases in the y direction until, for all
practical purposes, it equals the freestream velocity. This will occur at a height
above the wall equal to δ, as shown in Figure 17.3. More precisely, δ is defined
as that distance above the wall where u = 0.99ue; here, ue is the velocity at
the outer edge of the boundary layer. In Figure 17.3, which illustrates the flow
over a flat plate, the velocity at the edge of the boundary layer will be V∞; that
is, ue = V∞. For a body of general shape, ue is the velocity obtained from an
inviscid flow solution evaluated at the body surface (or at the “effective body”
surface, as discussed later). The quantity δ is called the velocity boundary-layer
thickness. At any given x station, the variation of u between y = 0 and y = δ,
that is, u = u(y), is defined as the velocity profile within the boundary layer, as
sketched in Figure 17.3. This profile is different for different x stations. Similarly,
the flow temperature will change above the wall, ranging from T = Tw at y = 0
to T = 0.99Te at y = δT . Here, δT is defined as the thermal boundary-layer
thickness. At any given x station, the variation of T between y = 0 and y = δT ,
that is, T = T (y), is called the temperature profile within the boundary layer, as
sketched in Figure 17.3. (In the above, Te is the temperature at the edge of the

Vw � 0, T � Tw

qw
Velocity
profile

Temperature
profile

V
�

T
�

y

x

T

�w

�T

�
Outer edge of velocity boundary layer, u � ue 
Outer edge of thermal boundary layer, T � Te 

Figure 17.3 Boundary-layer properties.
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thermal boundary layer. For the flow over a flat plate, as sketched in Figure 17.3,
Te = T∞. For a general body, Te is obtained from an inviscid flow solution
evaluated at the body surface, or at the “effective body” surface, to be discussed
later.) Hence, two boundary layers can be defined: a velocity boundary layer
with thickness δ and a temperature boundary layer with thickness δT . In general,
δT �= δ. The relative thicknesses depend on the Prandtl number: it can be shown
that if Pr = 1, then δ = δT ; if Pr > 1, then δT < δ; if Pr < 1, then δT > δ.
For air at standard conditions, Pr = 0.71; hence, the thermal boundary layer is
thicker than the velocity boundary layer, as shown in Figure 17.3. Note that both
boundary-layer thicknesses increase with distance from the leading edge; that is,
δ = δ(x) and δT = δT (x).

The consequence of the velocity gradient at the wall is the generation of shear
stress at the wall,

τw = μ

(
∂u

∂y

)
w

(17.1)

where (∂u/∂y)w is the velocity gradient evaluated at y = 0 (i.e., at the wall).
Similarly, the temperature gradient at the wall generates heat transfer at the wall,

q̇w = −k
(

∂T

∂y

)
w

(17.2)

where (∂T/∂y)w is the temperature gradient evaluated at y = 0 (i.e., at the wall).
In general, both τw and q̇w are functions of distance from the leading edge; that
is, τw = τw(x) and q̇w = q̇w(x). One of the central purposes of boundary-layer
theory is to compute τw and q̇w.

A frequently used boundary-layer property is the displacement thickness δ∗,
defined as

δ∗ ≡
∫ y1

0

(
1 − ρu

ρeue

)
dy δ ≤ y1 → ∞ (17.3)

The displacement thickness has two physical interpretations:

1. δ∗ is an index proportional to the “missing mass flow” due to the presence
of the boundary layer. Let us explain. Consider point y1 above the boundary
layer, as shown in Figure 17.4. Consider also the mass flow (per unit depth
perpendicular to the page) across the vertical line connecting y = 0 and
y = y1. Then

A = actual mass flow between 0 and y1 =
∫ y1

0
ρu dy

B =
hypothetical mass flow
between 0 and y1 if boundary
layer were not present

=
∫ y1

0
ρeue dy

B − A =
decrement in mass flow due to
presence of boundary layer, that is,
missing mass flow

=
∫ y1

0
(ρeue − ρu) dy (17.4)
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Edge of boundary layer
ue

�e

u
dy

�

y � y1

y � 0

Figure 17.4 Construction for the discussion of
displacement thickness.

u

Streamline

Boundary
layer

External streamline
1

2

Hypothetical flow with no boundary layer
(inviscid case)

Actual flow with a boundary layer

ue

�e

y1 ue

�e

�

y1

�*

�

Figure 17.5 Displacement thickness is the distance by which an external flow streamline is
displaced by the presence of the boundary layer.

Express this missing mass flow as the product of ρeue and a height δ∗;
that is,

Missing mass flow = ρeue δ∗ (17.5)

Equating Equations (17.4) and (17.5), we have

ρeueδ
∗ =

∫ y1

0
(ρeue − ρu) dy

or δ∗ =
∫ y1

0

(
1 − ρu

ρeue

)
dy (17.6)

Equation (17.6) is identical to the definition of δ∗ given in Equation (17.3).
Hence, clearly δ∗ is a height proportional to the missing mass flow. If this
missing mass flow was crammed into a streamtube where the flow
properties were constant at ρe and ue, then Equation (17.5) says that δ∗ is
the height of this hypothetical streamtube.

2. The second physical interpretation of δ∗ is more practical than the one
discussed above. Consider the flow over a flat surface as sketched in
Figure 17.5. At the left is a picture of the hypothetical inviscid flow over the
surface; a streamline through point y1 is straight and parallel to the surface.
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The actual viscous flow is shown at the right of Figure 17.5; here, the
retarded flow inside the boundary layer acts as a partial obstruction to the
freestream flow. As a result, the streamline external to the boundary layer
passing through point y1 is deflected upward through a distance δ∗. We now
prove that this δ∗ is precisely the displacement thickness defined by
Equation (17.3). At station 1 in Figure 17.5, the mass flow (per unit depth
perpendicular to the page) between the surface and the external streamline is

ṁ =
∫ y1

0
ρeue dy (17.7)

At station 2, the mass flow between the surface and the external streamline is

ṁ =
∫ y1

0
ρu dy + ρeue δ∗ (17.8)

Since the surface and the external streamline form the boundaries of a
streamtube, the mass flows across stations 1 and 2 are equal. Hence,
equating Equations (17.7) and (17.8), we have∫ y1

0
ρeue dy =

∫ y1

0
ρu dy + ρeue δ∗

or δ∗ =
∫ y1

0

(
1 − ρu

ρeue

)
dy (17.9)

Hence, the height by which the streamline in Figure 17.5 is displaced
upward by the presence of the boundary layer, namely, δ∗, is given by
Equation (17.9). However, Equation (17.9) is precisely the definition of the
displacement thickness given by Equation (17.3). Thus, the displacement
thickness, first defined by Equation (17.3), is physically the distance
through which the external inviscid flow is displaced by the presence of the
boundary layer.

This second interpretation of δ∗ gives rise to the concept of an effective body.
Consider the aerodynamic shape sketched in Figure 17.6. The actual contour of

Figure 17.6 The “effective body,” equal to the actual body
shape plus the displacement thickness distribution.
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the body is given by curve ab. However, due to the displacement effect of the
boundary layer, the shape of the body effectively seen by the freestream is not
given by curve ab; rather, the freestream sees an effective body given by curve ac.
In order to obtain the conditions ρe, ue, Te, etc., at the outer edge of the boundary
layer on the actual body ab, an inviscid flow solution should be carried out for
the effective body, and ρe, ue, Te, etc., are obtained from this inviscid solution
evaluated along curve ac.

Note that in order to solve for δ∗ from Equation (17.3), we need the profiles
of u and ρ from a solution of the boundary-layer flow. In turn, to solve the
boundary-layer flow, we need ρe, ue, Te, etc. However, ρe, ue, Te, etc., depend on
δ∗. This leads to an iterative solution. To calculate accurately the boundary-layer
properties as well as the pressure distribution over the surface of the body in
Figure 17.6, we proceed as follows:

1. Carry out an inviscid solution for the given body shape ab. Evaluate ρe, ue,
Te, etc., along curve ab.

2. Using these values of ρe, ue, Te, etc., solve the boundary-layer equations
(discussed in Sections 17.3 to 17.6) for u = u(y), ρ = ρ(y), etc., at various
stations along the body.

3. Obtain δ∗ at these stations from Equation (17.3). This will not be an
accurate δ∗ because ρe, ue, Te, etc., were evaluated on curve ab, not the
proper effective body. Using this intermediate δ∗, calculate an effective
body, given by a curve ac′ (not shown in Figure 17.6).

4. Carry out an inviscid solution for the flow over the intermediate effective
body ac′, and evaluate new values of ρe, ue, Te, etc., along ac′.

5. Repeat steps 2 to 4 above until the solution at one iteration essentially does
not deviate from the solution at the previous iteration. At this stage, a
converged solution will be obtained, and the final results will pertain to the
flow over the proper effective body ac shown in Figure 17.6.

In some cases, the boundary layers are so thin that the effective body can
be ignored, and a boundary-layer solution can proceed directly from ρe, ue, Te,
etc., obtained from an inviscid solution evaluated on the actual body surface
(ab in Figure 17.6). However, for highly accurate solutions, and for cases where
the boundary-layer thickness is relatively large (such as for hypersonic flow as
discussed in Chapter 14), the iterative procedure described above should be carried
out. Also, we note parenthetically that δ∗ is usually smaller than δ; typically,
δ∗ ≈ 0.3 δ.

Another boundary-layer property of importance is the momentum thickness θ ,
defined as

θ ≡
∫ y1

0

ρu

ρeue

(
1 − u

ue

)
dy δ ≤ y1 → ∞ (17.10)



CHAPTER 17 Introduction to Boundary Layers 1005

To understand the physical interpretation of θ , return again to Figure 17.4. Con-
sider the mass flow across a segment dy, given by dm = ρu dy. Then

A = momentum flow across dy = dm u = ρu2 dy

If this same elemental mass flow were associated with the freestream, where the
velocity is ue, then

B =
{

momentum flow at freestream
velocity associated with mass dm = dm ue = (ρu dy)ue

Hence,

B − A =
⎧⎨
⎩

decrement in momentum flow
(missing momentum flow) associated = ρu(ue − u) dy
with mass dm

(17.11)

The total decrement in momentum flow across the vertical line from y = 0 to
y = y1 in Figure 17.4 is the integral of Equation (17.11),

Total decrement in momentum
flow, or missing momentum flow

}
=

∫ y1

0
ρu(ue − u) dy (17.12)

Assume that the missing momentum flow is the product of ρeu2
e and a height θ .

Then,

Missing momentum flow = ρeu2
eθ (17.13)

Equating Equations (17.12) and (17.13), we obtain

ρeu2
eθ =

∫ y1

0
ρu(ue − u) dy

θ =
∫ y1

0

ρu

ρeue

(
1 − u

ue

)
dy (17.14)

Equation (17.14) is precisely the definition of the momentum thickness given by
Equation (17.10). Therefore, θ is an index that is proportional to the decrement
in momentum flow due to the presence of the boundary layer. It is the height
of a hypothetical streamtube which is carrying the missing momentum flow at
freestream conditions.

Note that θ = θ(x). In more detailed discussions of boundary-layer theory,
it can be shown that θ evaluated at a given station x = x1 is proportional to the
integrated friction drag coefficient from the leading edge to x1; that is,

θ(x1) ∝ 1

x1

∫ x1

0
c f dx = C f

where c f is the local skin-friction coefficient defined in Section 1.5 and C f is the
total skin-friction drag coefficient for the length of surface from x = 0 to x = x1.
Hence, the concept of momentum thickness is useful in the prediction of drag
coefficient.

All the boundary-layer properties discussed above are general concepts; they
apply to compressible as well as incompressible flows, and to turbulent as well
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as laminar flows. The differences between turbulent and laminar flows were in-
troduced in Section 15.2. Here, we extend that discussion by noting that the
increased momentum and energy exchange that occur within a turbulent flow
cause a turbulent boundary layer to be thicker than a laminar boundary layer.
That is, for the same edge conditions, ρe, ue, Te, etc., we have δturbulent > δlaminar

and (δT )turbulent > (δT )laminar. When a boundary layer changes from laminar to tur-
bulent flow, as sketched in Figure 15.8, the boundary-layer thickness markedly
increases. Similarly, δ∗ and θ are larger for turbulent flows.

17.3 THE BOUNDARY-LAYER EQUATIONS
For the remainder of this chapter, we consider two-dimensional, steady flow. The
nondimensionalized form of the x-momentum equation (one of the Navier-Stokes
equations) was developed in Section 15.6 and was given by Equation (15.29):

ρ ′u′ ∂u′

∂x ′ + ρ ′v′ ∂u′

∂y′ = − 1

γ M2∞

∂p′

∂x ′ + 1

Re∞

∂

∂y′

[
μ′

(
∂v′

∂x ′ + ∂u′

∂y′

)]
(15.29)

Let us now reduce Equation (15.29) to an approximate form which holds reason-
ably well within a boundary layer.

Consider the boundary layer along a flat plate of length c as sketched in
Figure 17.7. The basic assumption of boundary-layer theory is that a boundary
layer is very thin in comparison with the scale of the body; that is,

δ � c (17.15)

Consider the continuity equation for a steady, two-dimensional flow,

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (17.16)

In terms of the nondimensional variables defined in Section 15.6, Equation (17.16)
becomes

∂(ρ ′u′)
∂x ′ + ∂(ρ ′v′)

∂y′ = 0 (17.17)

Because u′ varies from 0 at the wall to 1 at the edge of the boundary layer, let us
say that u′ is of the order of magnitude equal to 1, symbolized by O(1). Similarly,

V�y

x

c

� �� c 

�

Figure 17.7 The basic assumption of boundary-layer
theory: A boundary layer is very thin in comparison
with the scale of the body.
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ρ ′ = O(1). Also, since x varies from 0 to c, x ′ = O(1). However, since y varies
from 0 to δ, where δ � c, then y′ is of the smaller order of magnitude, denoted
by y′ = O(δ/c). Without loss of generality, we can assume that c is a unit length.
Therefore, y′ = O(δ). Putting these orders of magnitude in Equation (17.17), we
have

[O(1)][O(1)]

O(1)
+ [O(1)][v′]

O(δ)
= 0 (17.18)

Hence, from Equation (17.18), clearly v′ must be of an order of magnitude equal
to δ; that is, v′ = O(δ). Now examine the order of magnitude of the terms in
Equation (15.29). We have

ρ ′u′ ∂u′

∂x ′ = O(1) ρ ′v′ ∂u′

∂y′ = O(1)
∂p′

∂x ′ = O(1)

∂

∂y′

(
μ′ ∂v′

∂x ′

)
= O(1)

∂

∂y′

(
μ′ ∂u′

∂y′

)
= O

(
1

δ2

)
Hence, the order-of-magnitude equation for Equation (15.29) can be written as

O(1) + O(1) = − 1

γ M2∞
O(1) + 1

Re∞

[
O(1) + O

(
1

δ2

)]
(17.19)

Let us now introduce another assumption of boundary-layer theory, namely, the
Reynolds number is large, indeed, large enough such that

1

Re∞
= O(δ2) (17.20)

Then, Equation (17.19) becomes

O(1) + O(1) = − 1

γ M2∞
O(1) + O(δ2)

[
O(1) + O

(
1

δ2

)]
(17.21)

In Equation (17.21), there is one term with an order of magnitude that is much
smaller than the rest, namely, the product O(δ2)[O(1)] = O(δ2). This term
corresponds to (1/Re∞)∂/∂y′(μ′∂v′/∂x ′) in Equation (15.29). Hence, neglect
this term in comparison to the remaining terms in Equation (15.29). We obtain

ρ ′u′ ∂u′

∂x ′ + ρ ′v′ ∂u′

∂y′ = − 1

γ M2∞

∂p′

∂x ′ + 1

Re∞

∂

∂y′

(
μ′ ∂u′

∂y′

)
(17.22)

In terms of dimensional variables, Equation (17.22) is

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ ∂

∂y

(
μ

∂u

∂y

)
(17.23)

Equation (17.23) is the approximate x-momentum equation which holds for flow
in a thin boundary layer at a high Reynolds number.
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Consider the y-momentum equation for two-dimensional, steady flow, ob-
tained from Equation (15.19b) as (neglecting the normal stress τyy)

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+ ∂

∂x

[
μ

(
∂v

∂x
+ ∂u

∂y

)]
(17.24)

In terms of the nondimensional variables, Equation (17.24) becomes

ρ ′u′ ∂v′

∂x ′ + ρ ′v′ ∂v′

∂y′ = − 1

γ M2∞

∂p′

∂y′ + 1

Re∞

∂

∂x ′

[
μ′

(
∂v′

∂x ′ + ∂u′

∂y′

)]
(17.25)

The order-of-magnitude equation for Equation (17.25) is

O(δ) + O(δ) = − 1

γ M2∞

∂p′

∂y′ + O(δ2)

[
O(δ) + O

(
1

δ

)]
(17.26)

From Equation (17.26), we see that ∂p′/∂y′ = O(δ) or smaller, assuming that
γ M2

∞ = O(1). Since δ is very small, this implies that ∂p′/∂y′ is very small.
Therefore, from the y-momentum equation specialized to a boundary layer, we
have

∂p

∂y
= 0 (17.26a)

Equation (17.26a) is important; it states that at a given x station, the pressure is
constant through the boundary layer in a direction normal to the surface. This
implies that the pressure distribution at the outer edge of the boundary layer is
impressed directly to the surface without change. Hence, throughout the boundary
layer, p = p(x) = pe(x).

It is interesting to note that if M2
∞ is very large, as in the case of large

hypersonic Mach numbers, then from Equation (17.26) ∂p′/∂y′ does not have to
be small. For example, if M∞ were large enough such that 1/γ M2

∞ = O(δ), then
∂p′/∂y′ could be as large as O(1), and Equation (17.26) would still be satisfied.
Thus, for very large hypersonic Mach numbers, the assumption that p is constant
in the normal direction through a boundary layer is not always valid.

Consider the general energy equation given by Equation (15.26). The nondi-
mensional form of this equation for two-dimensional, steady flow is given in
Equation (15.33). Inserting e = h − p/ρ into this equation, subtracting the mo-
mentum equation multiplied by velocity, and performing an order-of-magnitude
analysis similar to those above, we can obtain the boundary-layer energy equa-
tion as

ρu
∂h

∂x
+ ρv

∂h

∂y
= ∂

∂y

(
k
∂T

∂y

)
+ u

∂p

∂x
+ μ

(
∂u

∂y

)2

(17.27)

The details are left to you.
In summary, by making the combined assumptions of δ � c and Re ≥ 1/δ2,

the complete Navier-Stokes equations derived in Chapter 15 can be reduced to
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simpler forms which apply to a boundary layer. These boundary-layer equa-
tions are

Continuity:
∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (17.28)

x momentum: ρu
∂u

∂x
+ ρv

∂u

∂y
= −dpe

dx
+ ∂

∂y

(
μ

∂u

∂y

)
(17.29)

y momentum:
∂p

∂y
= 0 (17.30)

Energy: ρu
∂h

∂x
+ ρv

∂h

∂y
= ∂

∂y

(
k
∂T

∂y

)
+ u

dpe

dx
+ μ

(
∂u

∂y

)2

(17.31)

Note that, as in the case of the Navier-Stokes equations, the boundary-layer equa-
tions are nonlinear. However, the boundary-layer equations are simpler, and there-
fore are more readily solved. Also, since p = pe(x), the pressure gradient ex-
pressed as ∂p/∂x in Equations (17.23) and (17.27) is reexpressed as dpe/dx in
Equations (17.29) and (17.31). In the above equations, the unknowns are u, v, ρ,
and h; p is known from p = pe(x), and μ and k are properties of the fluid which
vary with temperature. To complete the system, we have

p = ρRT (17.32)

h = cpT (17.33)and

Hence, Equations (17.28), (17.29), and (17.31) to (17.33) are five equations for
the five unknowns, u, v, ρ, T , and h.

The boundary conditions for the above equations are as follows:

At the wall: y = 0 u = 0 v = 0 T = Tw

At the boundary-layer edge: y → ∞ u → ue T → Te

Note that since the boundary-layer thickness is not known a priori, the boundary
condition at the edge of the boundary layer is given at large y, essentially y
approaching infinity.

17.4 HOW DO WE SOLVE THE BOUNDARY-LAYER
EQUATIONS?

Examine again the boundary-layer equations given by Equations (17.28) to
(17.31). With these equations, are we still in the same “soup” as we are with
the complete Navier-Stokes equations, in that the equations are a coupled system
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of nonlinear partial differential equations for which no general analytical solution
has been obtained to date? The answer is partly yes, but with a difference. Because
the boundary-layer equations are simpler than the Navier-Stokes equations, espe-
cially the boundary-layer y-momentum equation, Equation (17.30), which states
that at any axial location along the surface the pressure is constant in the direction
normal to the surface, there is more hope of obtaining meaningful solutions for
the flow inside a boundary layer. For almost one hundred years, engineers and
scientists have “nudged” the boundary layer equations in many different ways,
and have come up with reasonable solutions for a number of practical applica-
tions. The most complete and authoritative book on such solutions is by Hermann
Schlichting (Reference 40).

In Chapters 18 and 19 we will discuss some of these solutions—their tech-
nique and some practical results. Solutions of the boundary layer equations can
be classified into two groups: (1) classical solutions, some of which date back to
1908, and (2) numerical solutions obtained by modern computational fluid dy-
namic techniques. In the subsequent chapters, we will show examples from both
groups. In addition to this subdivision based on the solution technique, boundary-
layer solutions also subdivide on a physical basis into laminar boundary layers
and turbulent boundary layers. This subdivision is natural for the reasons dis-
cussed in Section 15.2—the nature of turbulent flow is quite different than that
of laminar flow. Indeed, for certain types of flow problems, exact solutions have
been obtained for laminar boundary layers. To date, no exact solution has been
obtained for turbulent boundary layers, because we still do not have a complete
understanding of turbulence, and hence all turbulent boundary-layer solutions
to date have depended on the use of some type of approximate model of turbu-
lence. These contrasts will become more clear when you read Chapter 18, which
deals with laminar boundary layers, and Chapter 19, which deals with turbulent
boundary layers. You will see that laminar boundary-layer theory is well in hand,
but turbulent boundary-layer theory is not. In some sense, what a pity that na-
ture always tends toward turbulent flow, and hence the vast majority of practical
boundary-layer problems deal with turbulent boundary layers—if it were the other
way around, the engineering calculation of skin friction and aerodynamic heating
at the surface would be much simpler and more reliable.

Finally, we note what is meant by a “boundary-layer solution.” The solution of
Equations (17.28) to (17.31) yields the velocity and temperature profiles through-
out the boundary layer. However, the practical information we want is the solution
for τw and q̇w, the surface shear stress and heat transfer, respectively. These are
given by

τw = μw

(
∂u

∂y

)
w

(17.34)

q̇w = kw

(
∂T

∂y

)
w

(17.35)and

where the subscript w denotes conditions at the wall. Question: Where do val-
ues of (∂u/∂y)w and (∂T/∂y)w come from? Answer: From the velocity and
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temperature profiles obtained from a solution of the boundary layer equations,
where the profiles evaluated at the wall provide both (∂u/∂y)w and (∂T/∂y)w.
Hence in order to obtain the values for τw and q̇w along the wall, which are usually
considered the engineering results of most importance, we first have to solve the
boundary-layer equations for the velocity and temperature profiles throughout the
boundary layer, which by themselves usually are of lesser practical interest.

17.5 SUMMARY
Return to the road map given in Figure 17.2, and make certain that you feel at
home with the material represented by each box. The highlights of our discussion
of boundary layers are summarized as follows:

The basic quantities of interest from boundary-layer theory are the velocity and
thermal boundary-layer thicknesses, δ and δT , respectively, the shear stress at
the wall, τw, and heat transfer to the surface, q̇w. In the process, we can define
two additional thicknesses: the displacement thickness

δ∗ ≡
∫ y1

0

(
1 − ρu

ρeue

)
dy δ ≤ y1 → ∞ (17.3)

and the momentum thickness

θ ≡
∫ y1

0

ρu

ρeue

(
1 − u

ue

)
dy δ ≤ y1 → ∞ (17.10)

Both δ∗ and θ are related to decrements in the flow due to the presence of
the boundary layer; δ∗ is proportional to the decrement in mass flow, and θ is
proportional to the decrement in momentum flow. Moreover, δ∗ is the distance
away from the body surface through which the outer inviscid flow is displaced
due to the boundary layer. The body shape plus δ∗ defines a new effective body
seen by the inviscid flow.

By an order-of-magnitude analysis, the complete Navier-Stokes equations for
two-dimensional flow reduce to the following boundary-layer equations:

Continuity: ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (17.28)

x momentum: ρu
∂u

∂x
+ ρv

∂u

∂y
= −dpe

dx
+ ∂

∂y

(
μ

∂u

∂y

)
(17.29)

y momentum: ∂p

∂y
= 0 (17.30)

(continued)
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Energy: ρu
∂h

∂x
+ ρv

∂h

∂y
= ∂

∂y

(
k
∂T

∂y

)
+ u

dpe

dx
+ μ

(
∂u

∂y

)2

(17.31)

These equations are subject to the boundary conditions:

At the wall: y = 0 u = 0 v = 0 h = hw

At the boundary-layer edge: y → ∞ u → ue h → he

Inherent in the above boundary-layer equations are the assumptions that δ � c,
Re is large, and M∞ is not inordinately large.



C H A P T E R 18
Laminar Boundary Layers

Lamina—A thin scale or sheet. A layer or coat lying over another.
Funk and Wagnalls Standard Desk
Dictionary, 1964

PREVIEW BOX

Here we get down to the brass tacks of actually solving
the boundary-layer equations and obtaining practical
formulas for the calculation of skin friction and aero-
dynamic heating to the surface. The solution, however,
depends on whether the flow in the boundary layer is
laminar or turbulent. And what a big difference there
is! The difference is so important that we have separate
chapters for each case—the present chapter dealing

with laminar boundary layers, and Chapter 19 deal-
ing with turbulent boundary layers.

Laminar boundary layers are easier to deal with,
and that is why we treat them first. The analysis of a
laminar boundary layer is more theoretically “pure”
than that for a turbulent boundary layer. You will feel
intellectually comfortable with this chapter, so sit back
and enjoy this intellectual experience.

18.1 INTRODUCTION
Within the panoply of boundary-layer analyses, the solution of laminar boundary
layers is well in hand compared to the status for turbulent boundary layers. This
chapter is exclusively devoted to laminar boundary layers; turbulent boundary
layers is the subject of Chapter 19. The basic definitions of laminar and turbulent
flows are discussed in Section 15.1, and some characteristics of these flows are
illustrated in Figures 15.5 and 15.6; it is recommended that you review that
material before progressing further.

The road map for this chapter is given in Figure 18.1. We will first deal
with some well-established classical solutions that come under the heading of

1013
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Laminar boundary layer solutions

Finite difference

Classical solutions
(self-similar solutions)

Incompressible
flow

Compressible
flow

Computational fluid
dynamic solutions

Flat plate

Stagnation point

Reference temperature method

Flat plate

Figure 18.1 Road map for Chapter 18.

self-similar solutions, a term that is defined in Section 18.2. In this regard, we will
deal with both incompressible and compressible flows over a flat plate, as noted on
the left side of our road map in Figure 18.1. We will also discuss the boundary-layer
solution in the region surrounding the stagnation point on a blunt-nosed body,
because this solution gives us important information on aerodynamic heating at
the stagnation point—vital information for high-speed flight vehicles. As part
of the classical solution of compressible boundary layers, we will discuss the
reference temperature method—a very useful engineering calculation that makes
use of classical incompressible boundary-layer results to predict skin friction and
aerodynamic heating for a compressible flow. Then we will move to the right side
of the road map in Figure 18.1 and discuss some more modern computational fluid
dynamic solutions to laminar boundary layers. Unlike the classical self-similar
solutions, which are limited to a few (albeit important) applications such as flat
plates and the stagnation region, these CFD numerical solutions deal with the
laminar boundary layer over bodies of arbitrary shapes.

Note: As we progress through this chapter, we will encounter ideas and results
that are already familiar to us from our discussion of Couette flow in Chapter 16.
Indeed, this is one of the primary reasons for Chapter 16—to introduce these
concepts within the context of a relatively straightforward flow problem before
dealing with the more intricate boundary-layer solutions.

18.2 INCOMPRESSIBLE FLOW OVER A FLAT
PLATE: THE BLASIUS SOLUTION

Consider the incompressible, two-dimensional flow over a flat plate at 0◦ angle
of attack, such as sketched in Figure 17.7. For such a flow, ρ = constant, μ =
constant, and dpe/dx = 0 (because the inviscid flow over a flat plate at α = 0
yields a constant pressure over the surface). Moreover, recall that the energy
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equation is not needed to calculate the velocity field for an incompressible flow.
Hence, the boundary-layer equations, Equations (17.28) to (17.31), reduce to

∂u

∂x
+ ∂v

∂y
= 0 (18.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(18.2)

∂p

∂y
= 0 (18.3)

where ν is the kinematic viscosity, defined as ν ≡ μ/ρ.
We now embark on a procedure that is common to many boundary-layer

solutions. Let us transform the independent variables (x, y) to (ξ, η), where

ξ = x and η = y

√
V∞
νx

(18.4)

Using the chain rule, we obtain the derivatives

∂

∂x
= ∂

∂ξ

∂ξ

∂x
+ ∂

∂η

∂η

∂x
(18.5)

∂

∂y
= ∂

∂ξ

∂ξ

∂y
+ ∂

∂η

∂η

∂y
(18.6)

However, from Equations (18.4) we have

∂ξ

∂x
= 1

∂ξ

∂y
= 0

∂η

∂y
=

√
V∞
νx

(18.7)

(We do not have to explicitly obtain ∂η/∂x because these terms will eventually
cancel from our equations.) Substituting Equations (18.7) into (18.5) and (18.6),
we have

∂

∂x
= ∂

∂ξ
+ ∂η

∂x

∂

∂η
(18.8)

∂

∂y
=

√
V∞
νx

∂

∂η
(18.9)

∂2

∂y2
= V∞

νx

∂2

∂η2
(18.10)

Also, let us define a stream function ψ such that

ψ =
√

νxV∞ f (η) (18.11)

where f (η) is strictly a function of η only. This expression for ψ identically
satisfies the continuity equation, Equation (18.1); therefore, it is a physically
possible stream function. [Show yourself that ψ satisfies Equation (18.1); to do
this, you will have to carry out many of the same manipulations described below.]
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From the definition of the stream function, and using Equations (18.8), (18.9),
and (18.11), we have

u = ∂ψ

∂y
=

√
V∞
νx

∂ψ

∂η
= V∞ f ′(η) (18.12)

v = −∂ψ

∂x
= −

(
∂ψ

∂ξ
+ ∂η

∂x

∂ψ

∂η

)
= −1

2

√
νV∞

x
f −

√
νxV∞

∂η

∂x
f ′ (18.13)

Equation (18.12) is of particular note. The function f (η) defined in Equa-
tion (18.11) has the property that its derivative f ′ gives the x component of
velocity as

f ′(η) = u

V∞
Substitute Equations (18.8) to (18.10), (18.12), and (18.13) into the momentum
equation, Equation (18.2). Writing each term explicitly so that you can see what
is happening, we have

V∞ f ′
(

V∞
∂η

∂x
f ′′

)
−

⎛
⎝1

2

√
νV∞

x
f +

√
νxV∞

∂η

∂x
f ′

⎞
⎠V∞

√
V∞
νx

f ′′ = νV∞
V∞
νx

f ′′′

Simplifying, we obtain

V 2
∞

∂η

∂x
f ′ f ′′ − 1

2

V 2
∞
x

f f ′′ − V 2
∞

(
∂η

∂x

)
f ′ f ′′ = V 2

∞
x

f ′′′ (18.14)

The first and third terms cancel, and Equation (18.14) becomes

2 f ′′′ + f f ′′ = 0 (18.15)

Equation (18.15) is important; it is called Blasius’ equation, after H. Blasius, who
obtained it in his Ph.D. dissertation in 1908. Blasius was a student of Prandtl, and
his flat-plate solution using Equation (18.15) was the first practical application
of Prandtl’s boundary-layer hypothesis since its announcement in 1904. Examine
Equation (18.15) closely. Amazingly enough it is an ordinary differential equa-
tion. Look what has happened! Starting with the partial differential equations for
a flat-plate boundary layer given by Equations (18.1) to (18.3), and transform-
ing both the independent and dependent variables through Equations (18.4) and
(18.11), we obtain an ordinary differential equation for f (η). In the same breath,
we can say that Equation (18.15) is also an equation for the velocity u because
u = V∞ f ′(η). Because Equation (18.15) is a single ordinary differential equa-
tion, it is simpler to solve than the original boundary-layer equations. However,
it is still a nonlinear equation and must be solved numerically, subject to the
transformed boundary conditions,

At η = 0: f = 0, f ′ = 0

At η → ∞: f ′ = 1
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[Note that at the wall where η = 0, f ′ = 0 because u = 0, and therefore f = 0
from Equation (18.13) evaluated at the wall.]

Equation (18.15) is a third-order, nonlinear, ordinary differential equation; it
can be solved numerically by means of standard techniques, such as the Runge-
Kutta method (such as that described in Reference 49). The integration begins at
the wall and is carried out in small increments 	y in the direction of increasing y
away from the wall. However, since Equation (18.15) is third order, three bound-
ary conditions must be known at η = 0; from the above, only two are specified.
A third boundary condition, namely, some value for f ′′(0), must be assumed;
Equation (18.15) is then integrated across the boundary layer to a large value
of η. The value of f ′ at large eta is then examined. Does it match the boundary
condition at the edge of the boundary layer, namely, is f ′ = 1 satisfied at the
edge of the boundary layer? If not, assume a different value of f ′′(0) and integrate
again. Repeat this process until convergence is obtained. This numerical approach
is called the “shooting technique”; it is a classical approach, and its basic phi-
losophy and details are discussed at great length in Section 16.4. Its application
to Equation (18.15) is more straightforward than the discussion in Section 16.4,
because here we are dealing with an incompressible flow and only one equation,
namely, the momentum equation as embodied in Equation (18.15).

The solution of Equation (18.15) is plotted in Figure 18.2 in the form of
f ′(η) = u/V∞ as a function of η. Note that this curve is the velocity profile and
that it is a function of η only. Think about this for a moment. Consider two different
x stations along the plate, as shown in Figure 18.3. In general, u = u(x, y), and
the velocity profiles in terms of u = u(y) at given x stations will be different.
Clearly, the variation of u normal to the wall will change as the flow progresses
downstream. However, when plotted versus η, we see that the profile, u = u(η), is

Figure 18.2 Incompressible velocity
profile for a flat plate; solution of the
Blasius equation.
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y

y

Velocity profiles u � u(y)
are different at different
x stations

u � u(�) is the
same for all
x stations

f '  � u�V
�

�

x

Figure 18.3 Velocity profiles in physical and transformed space,
demonstrating the meaning of self-similar solutions.

the same for all x stations, as illustrated in Figure 18.3. This result is an example
of a self-similar solution—solutions where the boundary-layer profiles, when
plotted versus a similarity variable η are the same for all x stations. For such self-
similar solutions, the governing boundary-layer equations reduce to one or more
ordinary differential equations in terms of a transformed independent variable.
Self-similar solutions occur only for certain special types of flows—the flow over
a flat plate is one such example. In general, for the flow over an arbitrary body,
the boundary-layer solutions are nonsimilar; the governing partial differential
equations cannot be reduced to ordinary differential equations.

Numerical values of f , f ′, and f ′′ tabulated versus η can be found in Ref-
erence 40. Of particular interest is the value of f ′′ at the wall; f ′′(0) = 0.332.
Consider the local skin-friction coefficient defined as c f = τw/ 1

2ρ∞V 2
∞. From

Equation (17.34), the shear stress at the wall is given by

τw = μ

(
∂u

∂y

)
y=0

(18.16)

However, from Equations (18.9) and (18.11),

∂u

∂y
= V∞

∂ f ′

∂y
= V∞

√
V∞
νx

∂ f ′

∂η
= V∞

√
V∞
νx

f ′′ (18.17)

Evaluating Equation (18.17) at the wall, where y = η = 0, we obtain

(
∂u

∂y

)
y=0

= V∞

√
V∞
νx

f ′′(0) (18.18)
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Combining Equations (18.16) and (18.18), we have

c f = τw

1
2ρ∞V 2∞

= 2μ

ρ∞V 2∞
V∞

√
V∞
νx

f ′′(0) (18.19)

= 2
√

μ

ρ∞V∞x
f ′′(0) = 2 f ′′(0)√

Rex

where Rex is the local Reynolds number. Since f ′′(0) = 0.332 from the numerical
solution of Equation (18.15), then Equation (18.19) yields

c f = 0.664√
Rex

(18.20)

which is a classic expression for the local skin-friction coefficient for the in-
compressible laminar flow over a flat plate—a result that stems directly from
boundary-layer theory. Its validity has been amply verified by experiment. Note
that c f ∝ Re−1/2

x ∝ x−1/2; that is, c f decreases inversely proportional to the
square root of distance from the leading edge. Examining the flat plate sketched
in Figure 17.7, the total drag on the top surface of the entire plate is the integrated
contribution of τw(x) from x = 0 to x = c. Letting C f denote the skin friction
drag coefficient, we obtain from Equation (1.16)

C f = 1

c

∫ c

0
c f dx (18.21)

Substituting Equation (18.20) into (18.21), we obtain

C f = 1

c
(0.664)

√
μ

ρ∞V∞

∫ c

0
x−1/2 dx = 1.328

c

√
μc

ρ∞V∞

or C f = 1.328√
Rec

(18.22)

where Rec is the Reynolds number based on the total plate length c.
An examination of Figure 18.2 shows that f ′ = 0.99 at approximately η =

5.0. Hence, the boundary-layer thickness, which was defined earlier as that dis-
tance above the surface where u = 0.99ue, is

η = y

√
V∞
νx

= δ

√
V∞
νx

= 5.0

or δ = 5.0x√
Rex

(18.23)

Note that the boundary-layer thickness is inversely proportional to the square
root of the Reynolds number (based on the local distance x). Also, δ ∝ x1/2; the
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laminar boundary layer over a flat plate grows parabolically with distance from
the leading edge.

The displacement thickness δ∗, defined by Equation (17.3), becomes for an
incompressible flow

δ∗ =
∫ y1

0

(
1 − u

ue

)
dy (18.24)

In terms of the transformed variables f ′ and η given by Equations (18.4) and
(18.12), the integral in Equation (18.24) can be written as

δ∗ =
√

νx

V∞

∫ η1

0
[1 − f ′(η)] dη =

√
νx

V∞
[η1 − f (η1)] (18.25)

where η1 is an arbitrary point above the boundary layer. The numerical solution for
f (η) obtained from Equation (18.15) shows that, amazingly enough, η1 − f (η) =
1.72 for all values of η above 5.0. Therefore, from Equation (18.25), we have

δ∗ = 1.72
√

νx

V∞

or δ∗ = 1.72x√
Rex

(18.26)

Note that, as in the case of the boundary-layer thickness itself, δ∗ varies inversely
with the square root of the Reynolds number, and δ∗ ∝ x1/2. Also, comparing
Equations (18.23) and (18.26), we see that δ∗ = 0.34δ; the displacement thickness
is smaller than the boundary-layer thickness, confirming our earlier statement in
Section 17.2.

The momentum thickness for an incompressible flow is, from Equa-
tion (17.10),

θ =
∫ y1

0

u

ue

(
1 − u

ue

)
dy

or in terms of our transformed variables,

θ =
√

νx

V∞

∫ η1

0
f ′(1 − f ′) dη (18.27)

Equation (18.27) can be integrated numerically from η = 0 to any arbitrary point
η1 > 5.0. The result gives

θ =
√

ηx

V∞
(0.664)

or θ = 0.664x√
Rex

(18.28)

Note that, as in the case of our previous thicknesses, θ varies inversely with the
square root of the Reynolds number and that θ ∝ x1/2. Also, θ = 0.39δ∗, and
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θ = 0.13δ. Another property of momentum thickness can be demonstrated by
evaluating θ at the trailing edge of the flat plate sketched in Figure 17.7. In this
case, x = c, and from Equation (18.28), we obtain

θx=c = 0.664c√
Rec

(18.29)

Comparing Equations (18.22) and (18.29), we have

C f = 2θx=c

c
(18.30)

Equation (18.30) demonstrates that the integrated skin-friction coefficient for the
flat plate is directly proportional to the value of θ evaluated at the trailing edge.

18.3 COMPRESSIBLE FLOW OVER A FLAT PLATE
The properties of the incompressible, laminar, flat-plate boundary layer were
developed in Section 18.2. These results hold at low Mach numbers where the
density is essentially constant through the boundary layer. However, what happens
to these properties at high Mach numbers where the density becomes a variable;
that is, what are the compressibility effects? The purpose of the present section
is to outline briefly the effects of compressibility on both the derivations and
the final results for laminar flow over a flat plate. We do not intend to present
much detail; rather, we examine some of the salient aspects which distinguish
compressible from incompressible boundary layers.

The compressible boundary-layer equations were derived in Section 17.3,
and were presented as Equations (17.28) to (17.31). For flow over a flat plate,
where dpe/dx = 0, these equations become

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (18.31)

ρu
∂u

∂x
+ ρv

∂u

∂y
= ∂

∂y

(
μ

∂u

∂y

)
(18.32)

∂p

∂y
= 0 (18.33)

ρu
∂h

∂x
+ ρv

∂h

∂y
= ∂

∂y

(
k
∂T

∂y

)
+ μ

(
∂u

∂y

)2

(18.34)

Compare these equations with those for the incompressible case given by Equa-
tions (18.1) to (18.3). Note that, for a compressible boundary layer, (1) the energy
equation must be included, (2) the density is treated as a variable, and (3) in
general, μ and k are functions of temperature and hence also must be treated as
variables. As a result, the system of equations for the compressible case, Equa-
tions (18.31) to (18.34), is more complex than for the incompressible case, Equa-
tions (18.1) to (18.3).
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It is sometimes convenient to deal with total enthalpy, h0 = h + V 2/2, as the
dependent variable in the energy equation, rather than the static enthalpy as given
in Equation (18.34). Note that, consistent with the boundary-layer approximation,
where v is small, h0 = h + V 2/2 = h + (u + v2)/2 ≈ h + u2/2. To obtain
the energy equation in terms of h0, multiply Equation (18.32) by u, and add to
Equation (18.34), as follows. From Equation (18.32) multiplied by u,

ρu
∂(u2/2)

∂x
+ ρv

∂(u2/2)

∂y
= u

∂

∂y

(
μ

∂u

∂y

)
(18.35)

Adding Equation (18.35) to (18.34), we obtain

ρu
∂(h + u2/2)

∂x
+ ρv

∂(h + u2/2)

∂y
= ∂

∂y

(
k
∂T

∂y

)
+ μ

(
∂u

∂y

)2

+ u
∂

∂y

(
μ

∂u

∂y

)

(18.36)
Recall that for a calorically perfect gas, dh = cp dT ; hence,

∂T

∂y
= 1

cp

∂h

∂y
= 1

cp

∂

∂y

(
h0 − u2

2

)
(18.37)

Substituting Equation (18.37) into (18.36), we obtain

ρu
∂h0

∂x
+ ρv

∂h0

∂y
= ∂

∂y

[
k

cp

∂

∂y

(
h0 − u2

2

)]
+ μ

(
∂u

∂y

)2

+ u
∂

∂y

(
μ

∂u

∂y

)

(18.38)
Note that

k

cp

∂

∂y

(
h0 − u2

2

)
= μk

μcp

∂

∂y

(
h0 − u2

2

)
= μ

Pr

(
∂h0

∂y
− u

∂u

∂y

)
(18.39)

μ

(
∂u

∂y

)2

+ u
∂

∂y

(
μ

∂u

∂y

)
= ∂

∂y

(
μu

∂u

∂y

)
(18.40)and

Substituting Equations (18.39) and (18.40) into (18.38), we obtain

ρu
∂h0

∂x
+ ρv

∂h0

∂y
= ∂

∂y

[
μ

Pr

∂h0

∂y
+

(
1 − 1

Pr

)
μu

∂u

∂y

]
(18.41)

which is an alternate form of the boundary-layer energy equation. In this equation,
Pr is the local Prandtl number, which, in general, is a function of T and hence
varies throughout the boundary layer.

For the laminar, compressible flow over a flat plate, the system of governing
equations can now be considered to be Equations (18.31) to (18.33) and (18.41).
These are nonlinear partial differential equations. As in the incompressible case,
let us seek a self-similar solution; however, the transformed independent variables
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must be defined differently:

ξ = ρeμeuex ξ = ξ(x)

η = ue√
2ξ

∫ y

0
ρ dy η = η(x, y)

The dependent variables are transformed as follows:

f ′ = u

ue
(which is consistent with defining stream function ψ = √

2ξ f )

g = h0

(h0)e

The mechanics of the transformation using the chain rule are similar to that
described in Section 18.2. Hence, without detailing the precise steps (which are
left for your entertainment), Equations (18.32) and (18.41) transform into(

ρμ

ρeμe
f ′′

)′
+ f f ′ = 0 (18.42)

(
ρμ

ρeμe

1

Pr
g′

)′
+ f g′ + u2

e

(h0)e

[(
1 − 1

Pr

)
ρμ

ρeμe
f ′ f ′′

]′
= 0 (18.43)and

Examine Equations (18.42) and (18.43) closely. They are ordinary differential
equations—recall that the primes denote differentiation with respect to η. There-
fore, the compressible, laminar flow over a flat plate does lend itself to a self-
similar solution, where f ′ = f ′(η) and g = g(η). That is, the velocity and
total enthalpy profiles plotted versus η are the same at any station. Furthermore,
the product ρμ is a variable and depends in part on temperature. Hence, Equa-
tion (18.42) is coupled to the energy equation, Equation (18.43), via ρμ. Of
course, the energy equation is strongly coupled to Equation (18.42) via the ap-
pearance of f , f ′, and f ′′ in Equation (18.43). Hence, we are dealing with a system
of coupled ordinary differential equations which must be solved simultaneously.
The boundary conditions for these equations are

At η = 0: f = f ′ = 0 g = gw

At η → ∞: f ′ = 1 g = 1

Note that the coefficient u2
e/(h0)e appearing in Equation (18.43) is simply a

function of the Mach number:

u2
e

(h0)e
= u2

e

he + u2
e/2

= 1

he/u2
e + 1

2

= 1

cpTe/u2
e + 1

2

= 1

RTe/(γ − 1)u2
e + 1

2

= 1

1/(γ − 1)M2
e + 1

2

= 2(γ − 1)M2
e

2 + (γ − 1)M2
e

Therefore, Equation (18.43) involves as a parameter the Mach number of the
flow at the outer edge of the boundary layer, that is, for the flat-plate case, the
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freestream Mach number. Hence, we can explicitly see that the compressible
boundary-layer solutions will depend on the Mach number. Moreover, because of
the appearance of the local Pr in Equation (18.43), the solutions will also depend
on the freestream Prandtl number as a parameter. Finally, note from the boundary
conditions that the value of g at the wall gw is a given quantity. Note that at the
wall where u = 0, gw = hw/(h0)e = cpTw/(h0)e. Hence, instead of referring to a
given enthalpy at the wall gw, we usually deal with a given wall temperature Tw.
An alternative to a given value of Tw is the assumption of an adiabatic wall, that
is, a case where there is no heat transfer to the wall. If q̇w = k(∂T/∂y)w = 0,
then (∂T/∂y)w = 0. Hence, for an adiabatic wall, the boundary condition at the
wall becomes simply (∂T/∂y)w = 0.

In short, we see from the above discussion that a numerical self-similar
solution can be obtained for the compressible, laminar flow over a flat plate.
However, this solution depends on the Mach number, the Prandtl number, and
the condition of the wall (whether it is adiabatic or a constant temperature wall
with Tw given). Such numerical solutions have been carried out; see Reference 41
for details. A classic solution to Equations (18.42) and (18.43) is the shooting
technique described in Section 16.4. The approach here is directly analogous to
that used for the solution of compressible Couette flow discussed in Section 16.4.
Since Equation (18.42) is third order, we need three boundary conditions at η = 0.
We have only two, namely, f = f ′ = 0. Therefore, assume a value for f ′′(0),
and iterate until the boundary condition at the boundary-layer edge, f ′ = 1,
is matched. Similarly, Equation (18.43) is a second-order equation. It requires
two boundary conditions at the wall in order to integrate numerically across the
boundary layer; we have only one, namely, g(0) = gw. Thus, assume g′(0), and
integrate Equation (18.43). Iterate until the outer boundary condition is satisfied;
that is, g = 1. Since Equation (18.42) is coupled to Equation (18.43), that is, since
ρμ in Equation (18.42) requires a knowledge of the enthalpy (or temperature)
profile across the boundary layer, the entire process must be repeated again. This
is directly analogous to the two minor iterations nested within the major iteration
that was described in the discussion of the shooting method in Section 16.4. The
approach here is virtually the same philosophy as described in Section 16.4, which
should be reviewed at this stage. Therefore, no further details will be given here.

Typical solutions of Equations (18.42) and (18.43) for the velocity and tem-
perature profiles through a compressible boundary layer on a flat plate are shown
in Figures 18.4–18.7 (Reference 75). Figures 18.4 and 18.5 contain results for
an insulated flat plate (zero-heat transfer) using Sutherland’s law for μ, and as-
suming a constant Pr = 0.75. The velocity profiles are shown in Figure 18.4 for
different Mach numbers ranging from 0 (incompressible flow) to the large hyper-
sonic value of 20. Note that at a given x station at a given Rex , the boundary-layer
thickness increases markedly as Me is increased to hypersonic values. This clearly
demonstrates one of the most important aspects of compressible boundary layers,
namely, that the boundary-layer thickness becomes large at large Mach numbers.
Figure 18.5 illustrates the temperature profiles for the same case as Figure 18.4.
Note the obvious physical trend that, as Me increases to large hypersonic values,
the temperatures increase markedly. Also note in Figure 18.5 that at the wall
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Figure 18.4 Velocity profiles in a compressible laminar
boundary layer over an insulated flat plate. (Data Source:
Van Driest, E. R.: “Investigation of Laminar Boundary
Layer in Compressible Fluids Using the Crocco Method,”
NACA TN 2579, Jan. 1952).

(y = 0), (∂T/∂y)w = 0, as it should be for an insulated surface (qw = 0). Fig-
ures 18.6 and 18.7 also contain results by van Driest, but now for the case of heat
transfer to the wall. Such a case is called a “cold wall” case, because Tw < Taw.
(The opposite case would be a “hot wall,” where heat is transferred from the
wall into the flow; in this case, Tw > Taw.) For the results shown in Figures 18.6
and 18.7, Tw/Te = 0.25 and Pr = 0.75 = constant. Figure 18.6 shows velocity
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Figure 18.5 Temperature profiles in a
compressible laminar boundary layer over an
insulated flat plate. (Data Source: Van Driest,
E. R.: “Investigation of Laminar Boundary
Layer in Compressible Fluids Using the
Crocco Method,” NACA TN 2579, Jan. 1952).

profiles for various different values of Me, again demonstrating the rapid growth
in boundary layer thickness with increasing Me. In addition, the effect of a cold
wall on the boundary layer thickness can be seen by comparing Figures 18.4 and
18.6. For example, consider the case of Me = 20 in both figures. For the insulated
wall at Mach 20 (Figure 18.4), the boundary layer thickness reaches out beyond
a value of (y/x)

√
Rex = 60, whereas for the cold wall at Mach 20 (Figure 18.6),

the boundary-layer thickness is slightly above (y/x)
√

Rew = 30. This illustrates
the general fact that the effect of a cold wall is to reduce the boundary-layer
thickness. This trend is easily explainable on a physical basis when we exam-
ine Figure 18.7, which illustrates the temperature profiles through the boundary
layer for the cold-wall case. Comparing Figures 18.5 and 18.7, we note that, as
expected, the temperature levels in the cold-wall case are considerably lower than
in the insulated case. In turn, because the pressure is the same in both cases, we
have from the equation of state p = ρRT , that the density in the cold-wall case is
much higher. If the density is higher, the mass flow within the boundary layer can
be accommodated within a smaller boundary-layer thickness; hence, the effect of
a cold wall is to thin the boundary layer. Also note in Figure 18.7 that, starting at
the outer edge of the boundary layer and going toward the wall, the temperature
first increases, reaches a peak somewhere within the boundary layer, and then
decreases to its prescribed cold-wall value of Tw. The peak temperature inside the
boundary layer is an indication of the amount of viscous dissipation occurring
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Figure 18.6 Velocity profiles in a laminar, compressible
boundary layer over a cold flat plate. (Data Source: Van
Driest, E. R.: “Investigation of Laminar Boundary Layer
in Compressible Fluids Using the Crocco Method,”
NACA TN 2579, Jan. 1952).

within the boundary layer. Figure 18.7 clearly demonstrates the rapidly growing
effect of this viscous dissipation as Me increases—yet another basic aspect of
compressible boundary layers.

Carefully study the boundary-layer profiles shown in Figures 18.4–18.7.
They are an example of the detailed results which emerge from a solution of
Equations (18.42) and (18.43); indeed, these figures are graphical representations
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Figure 18.7 Temperature profiles in a laminar,
compressible boundary layer over a cold flat plate.
(Data Source: Van Driest, E. R.: “Investigation of
Laminar Boundary Layer in Compressible Fluids Using
the Crocco Method,” NACA TN 2579, Jan. 1952).

of Equations (18.43) and (18.42), with the results cast in the physical (x, y) space
(rather than in terms of the transformed variable η). In turn, the surface values c f

and CH can be obtained from the velocity and temperature gradients respectively
at the wall as given by the velocity and temperature profiles evaluated at the wall.
Recall from Equations (16.51) and (16.55) that c f and CH are defined as

c f = τw

1
2ρeu2

e

(16.51)

and CH = q̇w

ρeue(haw − he)
(16.54)

where τw = μ

(
∂u

∂y

)
w

and q̇w = −k
(

∂T

∂y

)
w

and where (∂u/∂y)w and (∂T/∂y)w are the values obtained from the velocity and
temperature profiles, respectively, evaluated at the wall. In turn, the overall flat
plate skin friction drag coefficient C f can be obtained by integrating c f over the
plate via Equation (18.21).

Return to Equation (18.22) for the friction drag coefficient for incompressible
flow. The analogous compressible result can be written as

C f = 1.328√
Rec

F
(

Me, Pr,
Tw

Te

)
(18.44)
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Figure 18.8 Friction drag coefficient for laminar,
compressible flow over a flat plate, illustrating the effect of
Mach number and wall temperature. Pr = 0.75.
(Calculations by E. R. van Driest, NACA Tech. Note 2597).

Figure 18.9 Boundary-layer thickness for laminar,
compressible flow over a flat plate, illustrating the effect
of Mach number and wall temperature. Pr = 0.75.
(Calculations by E. R. van Driest, NACA Tech. Note 2597).

In Equation (18.44), the function F is determined from the numerical solution.
Sample results are given in Figure 18.8, which shows that the product C f

√
Rec

decreases as Me increases. Moreover, the adiabatic wall is warmer than the wall
in the case of Tw/Te = 1.0. Hence, Figure 18.8 demonstrates that a hot wall also
reduces C f

√
Rec.

Return to Equation (18.23) for the thickness of the incompressible flat-plate
boundary layer. The analogous result for compressible flow is

δ = 5.0x√
Rex

G
(

Me, Pr,
Tw

Te

)
(18.45)

In Equation (18.45), the function G is obtained from the numerical solution.
Sample results are given in Figure 18.9, which shows that the product (δ

√
Rex/x)
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increases as Me increases. Everything else being equal, boundary layers are thicker
at higher Mach numbers. This fact was stated earlier, as shown in Figures 18.4
and 18.6. Note also from Figure 18.9 that a hot wall thickens the boundary layer,
as discussed earlier.

Recall our discussion of Couette flow in Chapter 16. There, we introduced
the concept of the recovery factor r where

haw = he + r
u2

e

2
(18.46)

This is a general concept, and can be applied to the boundary-layer solutions here.
If we assume a constant Prandtl number for the compressible flat-plate flow, the
numerical solution shows that

r =
√

Pr (18.47)

for the flat plate. Note that Equation (18.47) is analogous to the result given for
Couette flow in that the recovery factor is a function of the Prandtl number only.
However, for the flat plate, r = √

Pr, whereas for Couette flow, r = Pr.
Aerodynamic heating for the flat plate can be treated via Reynolds analogy.

The Stanton number and skin friction coefficients are defined respectively as

CH = q̇w

ρeue(haw − hw)
(18.48)

c f = τw

1
2ρeu2

e

(18.49)and

(See our discussion of these coefficients in Chapter 16.) Our results for Couette
flow proved that a relation existed between CH and c f —namely, Reynolds anal-
ogy, given by Equation (16.59) for Couette flow. Moreover, in this relation, the
ratio CH/c f was a function of the Prandtl number only. A directly analogous
result holds for the compressible flat-plate flow. If we assume that the Prandtl
number is constant, then for a flat plate, Reynolds analogy is, from the numerical
solution,

CH

c f
= 1

2
Pr−2/3 (18.50)

In Equation (18.50), the local skin friction coefficient c f which is given by Equa-
tion (18.20) for the incompressible flat-plate case, becomes the following form
for the compressible flat-plate flow:

c f = 0.664√
Re

F
(

Me, Pr,
Tw

Te

)
(18.51)

In Equation (18.51), F is the same function as appears in Equation (18.44), and
its variation with Me and Tw/Te is the same as shown in Figure 18.8.
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EXAMPLE 18.1

Consider a flat plate at zero angle of attack in an airflow at standard sea level conditions
(p∞ = 1.01 × 105 N/m2 and T∞ = 288 K). The chord length of the plate (distance
from the leading edge to the trailing edge) is 2 m. The planform area of the plate is
40 m2. At standard sea level conditions, μ∞ = 1.7894 × 10−5 kg/(m)(s). Assume the
wall temperature is the adiabatic wall temperature Taw . Calculate the friction drag on the
plate when the freestream velocity is (a) 100 m/s, (b) 1000 m/s.

■ Solution
(a) The freestream density is

ρ∞ = p∞
RT∞

= 1.01 × 105

(287)(288)
= 1.22 kg/m3

The speed of sound is

a∞ =
√

γ RT∞ =
√

(1.4)(287)(288) = 340.2 m/s

The Mach number is M∞ = 100/340.2 = 0.29. Hence, M∞ is low enough to assume
incompressible flow, and we can use Equation (18.22),

C f = 1.328√
Rec

Please note that for the flow over a flat plate at zero angle of attack, the freestream velocity
and density, V∞ and ρ∞, are the same as the velocity and density at the outer edge of the
boundary layer, ue and ρe. Hence, these quantities can be used interchangeably. Thus,

Rec = ρ∞V∞c

μ∞
= (1.22)(100)(2)

1.7894 × 10−5 = 1.36 × 107

C f = 1.328√
Rec

= 1.328√
1.36 × 107

= 3.60 × 10−4Hence,

The friction drag on one surface of the plate is given by

D f = 1
2ρ∞V 2

∞SC f = 1
2 (1.22)(100)2(40)(3.6 × 10−4) = 87.8 N

The total drag due to friction is generated by the shear stress acting on both the top and
bottom of the plate. Since D f above is the friction drag on only one surface, we have

Total friction drag = D = 2D f = 2(87.8) = 175.6 N

(b) For V∞ = 1000 m/s, we have

M∞ = V∞
a∞

= 1000

340.2
= 2.94

Clearly, the flow is compressible, and we have to use Equation (18.44), or more directly,
Figure 18.8. From Figure 18.8, we have for M∞ = Me = 2.94 and an adiabatic wall,

C f

√
Rec = 1.2
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or C f = 1.2√
Rec

Rec = ρ∞V∞c

μ∞
= (1.22)(1000)(2)

1.7894 × 10−5 = 1.36 × 108

C f = 1.2√
1.36 × 108

= 1.03 × 10−4Thus,

The friction drag on one surface is

D f = 1
2ρ∞V 2∞SC f = 1

2 (1.22)(1000)2(40)(1.03 × 10−4) = 2513 N

Taking into account both the top and bottom surfaces,

Total friction drag = D = 2D f = 2(2513) = 5026 N

18.3.1 A Comment on Drag Variation with Velocity

Beginning with Chapter 1, indeed beginning with the most elementary studies of
fluid dynamics, the point is usually made that the aerodynamic force on a body
immersed in a flowing fluid is proportional to the square of the flow velocity. For
example, from Section 1.5,

L = 1
2ρ∞V 2

∞SCL

and D = 1
2ρ∞V 2

∞SCD

As long as CL and CD are independent of velocity, then clearly L ∝ V 2
∞ and

D ∝ V 2
∞. This is the case for an inviscid, incompressible flow, where CL and

CD depend only on the shape and angle of attack of the body. However, from
the dimensional analysis in Section 1.7, we also discovered that CL and CD in
general are functions of both Reynolds number and Mach number,

CL = f1(Re, M∞)

CD = f2(Re, M∞)

Of course, for an inviscid, incompressible flow, Re and M∞ are not players (in-
deed, for inviscid flow, Re → ∞ and for incompressible flow, M∞ → 0). How-
ever for all other types of flow, Re and M∞ are players, and the values of CL

and CD depend not only on the shape and angle of attack of the body, but also
on Re and M∞. For this reason, in general the aerodynamic force is not exactly
proportional to the square of the velocity. For example, examine the results from
Example 18.1. In part (a), we calculated a value for drag to the 175.6 N when
V∞ = 100 m/s. If the drag were proportional to V 2

∞, then in part (b) where
V∞ = 1000 m/s, a factor of 10 larger, the drag would have been one hundred
times larger, or 17,560 N. In contrast, our calculations in part (b) showed the
drag to be considerably smaller, namely 5026 N. In other words, when V∞ was
increased by a factor of 10, the drag increased by only a factor of 28.6, not by
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a factor of 100. The reason is obvious. The value of C f decreases when the
velocity is increased because: (1) the Reynolds number increases, which from
Equation (18.22) causes C f to decrease, and (2) the Mach number increases,
which from Figure 18.8 causes C f to decrease.

So be careful about thinking that aerodynamic force varies with the square
of the velocity. For cases other than inviscid, incompressible flow, this is not true.

18.4 THE REFERENCE TEMPERATURE METHOD
In this section we discuss an approximate engineering method for predicting
skin friction and heat transfer for laminar compressible flow. It is based on the
simple idea of utilizing the formulas obtained from incompressible flow theory,
wherein the thermodynamic and transport properties in these formulas are eval-
uated at some reference temperature indicative of the temperature somewhere
inside the boundary layer. This idea was first advanced by Rubesin and Johnson
in Reference 76 and was modified by Eckert (Reference 77) to include a refer-
ence enthalpy. In this fashion, in some sense the classical incompressible for-
mulas were “corrected” for compressibility effects. Reference temperature (or
reference enthalpy) methods have enjoyed frequent application in engineering-
oriented analyses, because of their simplicity. For this reason, we briefly describe
the approach here.

Consider the incompressible laminar flow over a flat plate, as discussed in
Section 18.2. The local skin friction coefficient is given by Equation (18.20),
repeated below:

c f = 0.664√
Rex

(18.20)

For the compressible laminar flow over a flat plate, we write the analogous
expression

c∗
f = 0.664√

Re∗
x

(18.52)

except here c∗
f and Re∗

x are evaluated at a reference temperature T ∗. That is,

Re∗
x = ρ∗uex

μ∗

and c∗
f = τw

1
2ρ

∗u2
e

From Section 18.3, we know that for a compressible boundary layer c f is a
function of both Me and Tw/Te. Hence, the reference temperature T ∗ must be
a function of Me and Tw/Te. This function is

T ∗

Te
= 1 + 0.032M2

e + 0.58
(

Tw

Te
− 1

)
(18.53)
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For heat transfer for the compressible boundary layer, we write Reynolds
analogy from Equation (18.50) repeated below.

CH

c f
= 1

2
Pr−2/3 (18.50)

Inserting the incompressible formula for c f , Equation (18.20), into Equa-
tion (18.50), we have

CH = 0.332√
Rex

Pr−2/3 (18.54)

Evaluating Equation (18.54) at the reference temperature, we have

C∗
H = 0.332√

Re∗
x

(Pr∗)−2/3 (18.55)

where C∗
H = q̇w

ρ∗u∗
e(haw − hw)

EXAMPLE 18.2

Use the reference temperature method to calculate the friction drag on the same flat
plate at the same flow conditions as described in Example 18.1b. Compare the reference
temperature results with that obtained in Example 8.1b, which reflected the “exact” laminar
boundary layer theory.

■ Solution
The reference temperature is calculated from Equation (18.53), where we need the ratio
Tw/Te. For the present case, the flat plate is at the adiabatic wall temperature, hence we
need the ratio Taw/Te. To obtain this, we use the recovery factor, which for a flat plate
laminar boundary layer is given by Equation (18.47):

r =
√

Pr where Pr = μcp

k

For air at standard conditions, Pr = 0.71, and it is relatively constant with temperature up
to about 800 K. Hence, we assume Pr = Pr∗ = 0.71, and

r =
√

Pr =
√

0.71 = 0.843

The recovery factor is defined by Equation (16.49) as

r = Taw − Te

T0 − Te
(16.49)

or Taw = Te + r(T0 − Te)

or
Taw

Te
= 1 + r

(
T0

Te
− 1

)
(18.56)
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From Appendix A, for Me = 2.94, T0
Te

= 2.74. Hence, Equation (18.56) yields

Taw

Te
= 1 + r

(
T0

Te
− 1

)
= 1 + 0.843(2.74 − 1) = 2.467

From Equation (18.53),

T ∗

Te
= 1 + 0.032M2

e + 0.58

(
Taw

Te
− 1

)
= 1 + 0.032(2.94)2 + 0.58(2.467 − 1) = 2.1275

Thus, T ∗ = 2.1275Te = 2.1275(288) = 612.7 K

From the equation of state, the value of ρ∗ that corresponds to T ∗ is

ρ∗ = p∗

RT ∗ = 1.01 × 105

(287)(612.7)
= 0.574 kg/m3

Also, the value of μ∗ that corresponds to T ∗ is obtained from Sutherland’s law, given by
Equation (15.3)

μ

μ0
=

(
T

T0

)3/2 T0 + 110

T + 110
(15.3)

Recall: In Equation (15.3), μ0 is the reference viscosity coefficient at the reference temper-
ature T0. In Equation (15.3) T0 denotes the reference temperature, not the total temperature.
Here we have a case of the same notation for two different quantities, but the meaning of
T0 in Equation (15.3) is clear from its context. We will use the standard sea level conditions
for the values of T0 and μ0, that is,

μ0 = 1.7894 × 10−5 kg/(m)(s) and T0 = 288 K

Hence, from Equation (15.3)

μ∗

μ0
=

(
T ∗

T0

)3/2 T0 + 110

T ∗ + 110
=

(
612.7

288

)3/2 288 + 110

612.7 + 110
= 1.709

or μ∗ = 1.709μ0 = (1.709)(1.7894 × 10−5) = 3.058 × 10−5 kg/(m)(s)

Thus, Re∗
c = ρ∗uec

μ∗ = (0.574)(1000)(2)

3.058 × 10−5 = 3.754 × 107

From Equation (18.52) integrated over the entire chord of the plate, we have the same
form as Equation (18.22), namely,

C∗
f = 1.328√

Re∗
c

(18.57)

Thus, C∗
f = 1.328√

Re∗
c

= 1.328√
3.754 × 107

= 2.167 × 10−4

Hence, the friction drag on one side of the plate is

D f = 1
2ρ∗V 2

∞SC∗
f = 1

2 (0.574)(1000)2(40)(2.167 × 10−4) = 2488 N
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The total friction drag taking into account both the top and bottom surfaces of the plate is

D = 2(2488) = 4976 N

The result obtained from classical compressible boundary layer theory in Example 18.1b
is D = 5026 N. The result from the reference temperature method used here is within one
percent of the “exact” value found in Example 18.1b, a stunning example of the accuracy
of the reference temperature method, at least for the case treated here.

18.4.1 Recent Advances: The Meador-Smart Reference
Temperature Method

The reference temperature method discussed in Section 18.4 is a concept that dates
back to the late 1940s, but it is still a work in progress. Very recently, Meador and
Smart (William E. Meador and Michael K. Smart, “Reference Enthalpy Method
Developed from Solutions of the Boundary-Layer Equations,” AIAA Journal,
vol. 43, no. 1, January 2005, pp. 135–139) published improved formulas for the
calculation of the reference temperature, one for laminar flow and another for
turbulent flow. This result for a laminar flow is

T ∗

Te
= 0.45 + 0.55

Tw

Te
+ 0.16 r

(
γ − 1

2

)
M2

e

where r is the recovery factor for laminar flow, r = √
Pr∗.

EXAMPLE 18.3

Repeat Example 18.2, using the Meador-Smart equation for the reference temperature.

■ Solution
Assuming the Prandtl number is reasonably constant,

r =
√

Pr∗ =
√

Pr =
√

0.71 = 0.843

Also, because the flat plate is at the adiabatic wall temperature, from Example 8.2,

Tw

Te
= Taw

Te
= 2.467

So the Meador-Smart equation becomes

T ∗

Te
= 0.45 + 0.55(2.467) + 0.16(0.843)(0.2)M2

e

or T ∗

Te
= 1.807 + 0.027M2

e

For Me = 2.94, we have

T ∗

Te
= 1.807 + 0.027(2.94)2 = 2.04

T ∗ = 2.04 Te = 2.04 (288) = 587.5 K
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ρ∗ = p∗

RT ∗ = 1.01 × 105

(287)(587.5)
= 0.599 kg/m3

μ∗

μ0
=

(
T ∗

T0

)3/2 T0 + 110

T ∗ + 110
=

(
587.5

288

)3/2 288 + 110

587.5 + 110
= 1.664

μ∗ = 1.664 μ0 = 1.664(1.7894 × 10−5) = 2.978 × 10−5

Re∗
c = ρ∗uec

μ∗ = (0.500)(1000)(2)

2.978 × 10−5 = 4.02 × 107

C∗
f = 1.328√

Re∗
c

= 1.328√
4.02 × 107

= 2.09 × 104

D f = 1
2ρ∗V 2

∞SC∗
f = 1

2 (0.599)(1000)2(40)(2.09 × 10−4) = 2504 N

D = 2(2504) = 5008 N

The result from Example 18.2 is D = 4976 N, and the exact result from Example 18.1 is
5026 N. The Meador-Smith method is more accurate than Equation (18.53); it agrees to
within 0.4 percent of the exact amount.

18.5 STAGNATION POINT AERODYNAMIC
HEATING

Contrary to what you might think, even though the flow velocity is zero at a stag-
nation point, the boundary layer at the stagnation point can be defined and has a
finite thickness. The flow conditions at the edge of the stagnation point boundary
layer are given by the inviscid solution for a stagnation point; in particular, at the
boundary-layer edge, the velocity is zero and the temperature is the total tem-
perature, that is, ue = 0 and Te = T0. This is shown in Figure 18.10. Moreover,
along the vertical line in the η-direction shown in Figure 18.10, u = 0 at every
point inside the boundary layer. However, the ratio (u/ue) = (0/0) is an indeter-
minant form that has a finite value at each point in the boundary layer. As in the
case of the flat plate solutions discussed in Sections 18.2 and 18.3, we define a
function f (η) such that (u/ue) = f ′(η), and f ′ has a definite profile through the
boundary layer. Indeed, we can define the edge of the boundary layer as the point
where (u/ue) = f ′(η) = 0.99. Finally, we note that the shear stress at the wall
at the stagnation point (point A in Figure 18.10) is zero. This not only comes out
of the solution of the boundary layer equations, but it is obvious by inspection.
Along the wall above point A the shear stress acts upward, and below point A it
acts downward. Hence right at point A the shear stress must go through zero.

If the above discussion sounds rather theoretical, the temperature profile
through the stagnation point boundary layer is easier to visualize. The temperature
at the outer edge is the total temperature T0. The temperature at the wall at η = 0
is Tw. Hence, there is a temperature profile that exists in the normal direction
through the stagnation point boundary layer. The heat transfer at the stagnation
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Figure 18.10 Schematic of the stagnation
region boundary layer.

point is given by the temperature gradient at point A, namely,

q̇w =
[
−k

(
∂T

∂y

)
w

]
A

(18.58)

The practical purpose of a stagnation point boundary-layer solution is to calculate
the heat transfer, q̇w.

The boundary-layer equations, Equation (17.28)–(17.31), applied at the stag-
nation point region are transformed using a version of the transformation described
in Section 18.3, namely,

ξ =
∫ x

0
ρeμeur dx (18.59)

η = ue√
2ξ

∫ y

0
ρ dy (18.60)

f ′(η) = u

ue
(18.61)

g(η) = h

he
(18.62)

where h is the static enthalpy (since u = 0, the static and total enthalpies are
the same). This leads to the stagnation point boundary layer equations given
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below. For a detailed derivation of these equations, see, for example, Chapter 6
of Reference 52.

(C f ′′)′ + f f ′′ = ( f ′)2 − g (18.63)

(
C

Pr
g′

)′
+ f g′ = 0 (18.64)

where C = (ρμ/ρeμe). Equations (18.63) and (18.64) are the governing equa-
tions for a compressible, stagnation-point boundary layer. Examining these equa-
tions, we see no ξ -dependency. Hence, the stagnation point boundary layer is a
self-similar case.

Numerical solutions to Equations (18.63) and (18.64) can be obtained by the
“shooting technique” as described earlier in the flat-plate case. There is nothing
to be gained in going through the details at this stage of our discussion. Instead,
we simply state the result of solving Equations (18.63) and (18.64), correlated in
the following expression obtained from Reference 78:

Cylinder: q̇w = 0.57 Pr−0.6(ρeμe)
1/2

√
due

dx
(haw − hw) (18.65)

If we had considered an axisymmetric body, the original transformation given
by Equations (18.59) and (18.60) would have been slightly modified as follows:

ξ =
∫ x

0
ρeueμer

2 dx (18.66)

and η = uer√
2ξ

∫ y

0
ρ dy (18.67)

where r is the vertical coordinate measured from the centerline, as shown in Fig-
ure 18.10. Equations (18.66) and (18.67) lead to equations for the axisymmetric
stagnation point almost identical to Equation (18.63) and (18.64), namely,

(C f ′′)′ + f f ′′ = 1
2 [( f ′)2 − g] (18.68)

and
(

C

Pr
g′

)′
+ f g′ = 0 (18.69)

where C = (ρμ/ρeμe). In turn, the resulting heat transfer expression is (Refer-
ence 78):

Sphere: q̇w = 0.763 Pr−0.65(ρeμe)

√
due

dx
(haw − hw) (18.70)

Compare Equation (18.65) for the two-dimensional cylinder with Equa-
tion (18.70) for the axisymmetric sphere. The equations are the same except
for the leading coefficient, which is higher for the sphere. Everything else being
the same, this demonstrates that stagnation point heating to a sphere is larger
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than to a two-dimensional cylinder. Why? The answer lies in a basic difference
between two- and three-dimensional flows. In a two-dimensional flow, the gas has
only two directions to move when it encounters a body—up or down. In contrast,
in an axisymmetric flow, the gas has three directions to move—up, down, and
sideways—and hence the flow is somewhat “relieved,” that is, in comparing two-
and three-dimensional flows over bodies with the same longitudinal section (such
as a cylinder and a sphere), there is a well-known three-dimensional relieving ef-
fect for the three-dimensional flow. As a consequence of this relieving effect, the
boundary-layer thickness δ at the stagnation point is smaller for the sphere than
for the cylinder. In turn, the temperature gradient at the wall, (∂T/∂y)w, which is
of the order of (Te/δ), is larger for the sphere. Since q̇w = k(∂T/∂y)w, then q̇w

is larger for the sphere. This confirms the comparison between Equations (18.65)
and (18.70).

The above results for aerodynamic heating to a stagnation point have a stun-
ning impact on hypersonic vehicle design, namely, they impose the requirement
for the vehicle to have a blunt, rather than a sharp, nose. To see this, consider
the velocity gradient, due/dx , which appears in Equations (18.65) and (18.70).
From Euler’s equation applied at the edge of the boundary layer

dpe = −ρeue due (18.71)

due

dx
= − 1

ρeue

dpe

dx
(18.72)we have

Assuming a newtonian pressure distribution over the surface, we have from
Equation (14.4)

Cp = 2 sin2 θ

where θ is defined as the angle between a tangent to the surface and the freestream
direction. If we define φ as the angle between the normal to the surface and the
freestream, then Equation (14.4) can be written as

Cp = 2 cos2 φ (18.73)

From the definition of Cp, Equation (18.73) becomes

pe − p∞
q∞

= 2 cos2 φ

or pe = 2q∞ cos2 φ + p∞ (18.74)

Differentiating Equation (18.74), we obtain

dpe

dx
= −4q∞ cos φ sin φ

dφ

dx
(18.75)

Combining Equations (18.72) and (18.75), we have

due

dx
= 4q∞

ρeue
cos φ sin φ

dφ

dx
(18.76)
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Figure 18.11 Geometry of the stagnation region.

Equation (18.76) is a general result which applies at all points along the body.
Now consider the stagnation-point region, as sketched in Figure 18.11. In this
region, let 	x be a small increment of surface distance above the stagnation point,
corresponding to the small change in φ, 	φ. The inviscid velocity variation in
the stagnation region can be shown to be

ue =
(

due

dx

)
s

	x (18.77)

Also, in the stagnation region φ is small, hence, from Figure 18.11,

cos φ ≈ 1 (18.78)

sin φ ≈ φ ≈ 	φ ≈ 	x

R
(18.79)

dφ

dx
= 1

R
(18.80)

where R is the local radius of curvature of the body at the stagnation point. Finally,
at the stagnation point, Equation (18.73) becomes

C p = 2 = pe − p∞
q∞

or q∞ = 1
2 (pe − p∞) (18.81)

Substituting Equations (18.77)–(18.81) into (18.76), we have(
due

dx

)2

= 2(pe − p∞)

ρe 	x

(
	x

R

)(
1

R

)
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or
due

dx
= 1

R

√
2(pe − p∞)

ρe
(18.82)

Examine Equations (18.65) and (18.70) in light of Equation (18.82). We see that

q̇w ∝ 1√
R

(18.83)

This states that stagnation-point heating varies inversely with the square root
of the nose radius; hence, to reduce the heating, increase the nose radius. This
is the reason why the nose and leading edge regions of hypersonic vehicles are
blunt; otherwise, the severe aerothermal conditions in the stagnation region would
quickly melt a sharp leading edge.

Return to Section 1.1 and review our qualitative discussion contrasting the
aerodynamic heating for slender and blunt reentry vehicles. There we argued on
a qualitative basis that to minimize aerodynamic heating a blunt nose must be
used. We have now quantitatively proven this fact with the derivation of Equa-
tion (18.83).

The fact that q̇w is inversely proportional to
√

R is experimentally verified
in Figure 18.12. Here, various sets of experimental data for CH at the stagnation
point are plotted versus Reynolds number based on nose diameter; the abscissa is
essentially proportional to R. This is a log-log plot, and the data exhibit a slope
of −0.5, hence verifying that q̇w ∝ 1/

√
R.
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Figure 18.12 Stagnation point Stanton number versus Re based on nose radius.
(Source: Koppenwallner, G.: “Fundamentals of Hypersonics: Aerodynamics and Heat
Transfer,” in the Short Course Notes entitled Hypersonic Aerothermodynamics, presented
at theVon Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, Feb. 1984).
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18.6 BOUNDARY LAYERS OVER ARBITRARY
BODIES: FINITE-DIFFERENCE SOLUTION

“Exact” solutions of the boundary layer equations, Equations (17.28)–(17.31), for
the flow over bodies of arbitrary shape did not occur until the advent of the high-
speed digital computer and ultimately not until the beginnings of computational
fluid dynamics. In this section we discuss a finite-difference technique for solving
the general boundary layer equations; such finite-difference solutions represent
the current state of the art in the analysis of boundary layers.

Let us set the perspective for our discussion. Equations (17.28)–(17.31) are
the general boundary layer equations. For the special case of the flat plate, these
equations reduced to Equations (18.42) and (18.43), and for the stagnation re-
gion they reduced to Equations (18.63) and (18.64). In both special cases, these
equations in terms of the transformed dependent and independent variables led to
self-similar solutions (flow variations only in the transformed η direction). For the
general case of an arbitrary body, it is still useful to transform the full boundary-
layer equations, Equations (17.28)–(17.31), via the transformation given by Equa-
tions (18.59)–(18.62). For a detailed derivation of these transformed equations,
see Chapter 6 of Reference 52. The resulting form of the equation is:

x momentum:

(C f ′′)′ + f f ′′ = 2ξ

ue

[(
( f ′)2 − ρe

ρ

)
due

dξ
+ 2ξ

(
f ′ ∂ f ′

∂ξ
− ∂ f

∂ξ
f ′′

)]
(18.84)

y momentum:
∂p

∂η
= 0 (18.85)

Energy:

(
C

Pr
g′

)′
+ f g′ = 2ξ

[
f ′ ∂g

∂ξ
+ f ′g

he

∂he

∂ξ
− g′ ∂ f

∂ξ
+ ρeue

ρhe
f ′ due

dξ

]
− C

u2
e

he
( f ′′)2

(18.86)

where as before C = ρμ/ρeμe, f ′ = u/ue, and g = h/he. In Equations (18.84)–
(18.86), the prime denotes the partial derivative with respect to η, that is, f ′ ≡
∂ f/∂η. Equations (18.84)–(18.86) are simply the transformed versions of Equa-
tions (17.28)–(17.31), with no loss of authority.

Examine Equations (18.84)–(18.86); they are the transformed compressible
boundary layer equations. They are still partial differential equations, where
both f and g are functions of ξ and η. They contain no further approxima-
tions or assumptions beyond those associated with the original boundary-layer
equations. However, they are certainly in a less recognizable, somewhat more
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complicated-looking form than the original equations. However, do not be dis-
turbed by this; in reality Equations (18.84)–(18.86) are in a form that proves to
be practical and useful.

The above transformed boundary-layer equations must be solved subject
to the following boundary conditions. The physical boundary conditions were
given immediately following Equations (17.28)–(17.31); the corresponding trans-
formed boundary conditions are:

At the wall: η = 0 f = f ′ = 0 g = gw (fixed wall temperature)

or g′ = 0 (adiabatic wall)

At the boundary-layer edge: η → ∞ f ′ = 1 g = 1

In general, solutions of Equations (18.84), (18.85), and (18.86) along with
the appropriate boundary conditions yield variations of velocity and enthalpy
throughout the boundary layer, via u = ue f ′(ξ, η) and h = heg(ξ, η). The
pressure throughout the boundary layer is known, because the known pressure
distribution (or equivalently the known velocity distribution) at the edge of the
boundary is given by pe = pe(ξ), and this pressure is impressed without change
through the boundary layer in the locally normal direction via Equation (18.85),
which says that p = constant in the normal direction at any ξ location. Finally,
knowing h and p throughout the boundary layer, equilibrium thermodynamics
provides the remaining variables through the appropriate equations of state, for
example, T = T (h, p), ρ = ρ(h, p), etc.

18.6.1 Finite-Difference Method

Return for a moment to Section 2.17.2 where we introduced some ideas from com-
putation fluid dynamics, and especially review the finite-difference expressions
derived there. Recall that we can simulate the partial derivatives with forward,
rearward, or central differences. We will use these concepts in the following
discussion.

Also consider Figure 18.13, which shows a schematic of a finite-difference
grid inside the boundary layer. The grid is shown in the physical x-y space,
where it is curvilinear and unequally spaced. However, in the ξ -η space, where
the calculations are made, the grid takes the form of a rectangular grid with
uniform spacing 	ξ and 	η. In Figure 18.13, the portion of the grid at four
different ξ (or x) stations is shown, namely, at (i − 2), (i − 1), i , and (i + 1).

Consider again the general, transformed boundary-layer equations given by
Equations (18.84) and (18.86). Assume that we wish to calculate the boundary
layer at station (i + 1) in Figure 18.13. As discussed in Section 2.17.2, the
general philosophy of finite-difference approaches is to evaluate the governing
partial differential equations at a given grid point by replacing the derivatives
by finite-difference quotients at that point. Consider, for example, the grid point
(i, j) in Figure 18.13. At this point, replace the derivatives in Equations (18.84)
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Figure 18.13 Schematic for finite-difference solution of the
boundary layer.

and (18.86) by finite-difference expressions of the form:

∂ f

∂ξ
= fi+1, j − fi, j

	ξ
(18.87)

∂ f

∂η
= θ( fi+1, j+1 − fi+1, j−1)

2 	η
+ (1 − θ)( fi, j+1 − fi, j−1)

2 	η
(18.88)

∂2 f

∂η2
= θ( fi+1, j+1 − 2 fi+1, j + fi+1, j−1)

(	η)2
+ (1 − θ)( fi, j+1 − 2 fi, j + fi, j−1)

(	η)2

(18.89)

f = θ fi+1, j + (1 − θ) fi, j (18.90)

where θ is a parameter which adjusts Equations (18.87)–(18.90) to various finite-
difference approaches (to be discussed below). Similar relations for the derivatives
of g are employed. When Equations (18.87)–(18.90) are inserted into Equa-
tions (18.84) and (18.86), along with the analogous expressions for g, two alge-
braic equations are obtained. If θ = 0, the only unknowns that appear are fi+1, j

and gi+1, j , which can be obtained directly from the two algebraic equations. This
is an explicit approach. Using this approach, the boundary-layer properties at grid
point (i + 1, j) are solved explicitly in terms of the known properties at points
(i, j + 1), (i, j), and (i, j − 1). The boundary-layer solution is a downstream
marching procedure; we are calculating the boundary-layer profiles at station
(i + 1) only after the flow at the previous station (i) has been obtained.
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When 0 < θ ≤ 1, then fi+1, j+1, fi+1, j , fi+1, j−1, gi+1, j+1, gi+1, j , and gi+1, j−1

appear as unknowns in Equations (18.84) and (18.86). We have six unknowns and
only two equations. Therefore, the finite-difference forms of Equations (18.84)
and (18.86) must be evaluated at all the grid points through the boundary layer at
station (i +1) simultaneously, leading to an implicit formulation of the unknowns.
In particular, if θ = 1

2 , the scheme becomes the well-known Crank-Nicolson
implicit procedure, and if θ = 1, the scheme is called “fully implicit.” These
implicit schemes result in large systems of simultaneous algebraic equations, the
coefficients of which constitute block tridiagonal matrices.

Already the reader can sense that implicit solutions are more elaborate than
explicit solutions. Indeed, we remind ourselves that the subject of this book is
the fundamentals of aerodynamics, and it is beyond our scope to go into great
computational fluid dynamic detail. Therefore, we will not elaborate any further.
Our purpose here is only to give the flavor of the finite-difference approach to
boundary-layer solutions. For more information on explicit and implicit finite-
difference methods, see the author’s book Computational Fluid Dynamics: The
Basics with Applications (Reference 60).

In summary, a finite-difference solution of a general, nonsimilar boundary-
layer proceeds as follows:

1. The solution must be started from a given solution at the leading edge, or at
a stagnation point (say station 1 in Figure 18.13). This can be obtained from
appropriate self-similar solutions.

2. At station 2, the next downstream station, the finite-difference procedure
reflected by Equations (18.87)–(18.90) yields a solution of the flow-field
variables across the boundary layer.

3. Once the boundary-layer profiles of u and T are obtained, the skin friction
and heat transfer at the wall are determined from

τ =
[
μ

(
∂u

∂y

)]
w

and q̇ =
(

k
∂T

∂y

)
w

Here, the velocity gradients can be obtained from the known profiles of u
and T by using one-sided differences (see Reference 60), such as(

∂u

∂y

)
w

= −3u1 + 4u2 − u3

2 	y
(18.91)

(
∂T

∂y

)
w

= −3T1 + 4T2 − T3

2 	y
(18.92)

In Equations (18.91) and (18.92), the subscripts 1, 2, and 3 denote the wall
point and the next two adjacent grid points above the wall. Of course, due to
the specified boundary conditions of no velocity slip and a fixed wall
temperature, u1 = 0 and T1 = Tw in Equations (18.91) and (18.92).
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4. The above steps are repeated for the next downstream location, say station 3
in Figure 18.13. In this fashion, by repeating applications of these steps, the
complete boundary layer is computed, marching downstream from a given
initial solution.

An example of results obtained from such finite-difference boundary-layer
solutions is given in Figures 18.14 and 18.15 obtained by Blottner (Reference 80).
These are calculated for flow over an axisymmetric hyperboloid flying at

0 0.2 0.4 0.6
u �ue or T �Te

u �ue

T �Te

0.8 1.0 1.2

0.05

0.10

0.15

0.20
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0.30

0.35 ue = 12,398 ft/s
Te = 8033�R

y___
RN

M�

x

RN

Figure 18.14 Velocity and temperature profiles across the
boundary layer at x/RN = 50 on an axisymmetric hyperboloid.
(Data Source: Blottner, F. G.: “Finite Difference Methods of
Solution of the Boundary-Layer Equations,” AIAA J., vol. 8,
no. 2, February 1970, pp. 193–205).
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Figure 18.15 Stanton number and skin friction coefficient
(based on freestream properties) along a hyperboloid.
(Data Source: Blottner, F. G.: “Finite Difference Methods
of Solution of the Boundary-Layer Equations,” AIAA J.,
vol. 8, no. 2, February 1970, pp. 193–205).

20,000 ft/s at an altitude of 100,000 ft, with a wall temperature of 1000 K. At
these conditions, the boundary layer will involve dissociation, and such chemical
reactions were included in the calculations of Reference 80. Chemically react-
ing boundary layers are not the purview of this book; however, some results of
Reference 80 are presented here just to illustrate the finite-difference method.
For example, Figure 18.14 gives the calculated velocity and temperature profiles
as a station located at x/RN = 50, where RN is the nose radius. The local val-
ues of velocity and temperature at the boundary layer edge are also quoted in
Figure 18.14. Considering the surface properties, the variations of CH and c f as
functions of distance from the stagnation point are shown in Figure 18.15. Note
the following physical trends illustrated in Figure 18.15.

1. The shear stress is zero at the stagnation point (as is always the case), then
it increases around the nose, reaches a maximum, and decreases further
downstream.

2. The values of CH are relatively constant near the nose, and then decrease
further downstream.

3. Reynolds analogy can be written as

CH = c f

2s
(18.93)

where s is called the “Reynolds analogy factor.” For the flat-plate case, we
see from Equation (18.50) that s = Pr2/3. However, clearly from the results
of Figure 18.15 we see that s is a variable in the nose region because CH

is relatively constant while c f is rapidly increasing. In contrast, for the
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downstream region, c f and CH are essentially equal, and we can state that
Reynolds analogy becomes approximately CH/c f = 1. The point here is
that Reynolds analogy is greatly affected by strong pressure gradients in the
flow, and hence loses its usefulness as an engineering tool in such cases,
at least when CH and c f are based on freestream quantities as shown in
Figure 18.15.

18.7 SUMMARY
This brings to an end our discussion of laminar boundary layers. Return to the
road map in Figure 18.1 and remind yourself of the territory we have covered.
Some of the important results are summarized below.

For incompressible laminar flow over a flat plate, the boundary-layer equations
reduce to the Blasius equation

2 f ′′′ + f f ′′ = 0 (18.15)

where f ′ = u/ue. This produces a self-similar solution where f ′ = f ′(η),
independent of any particular x station along the surface. A numerical solution
of Equation (17.48) yields numbers which lead to the following results.

Local skin friction coefficient: c f = τw

1
2ρ∞V 2∞

= 0.664√
Rex

(18.20)

Integrated friction drag coefficient: C f = 1.328√
Rec

(18.22)

Boundary-layer thickness: δ = 5.0x√
Rex

(18.23)

Displacement thickness: δ∗ = 1.72x√
Rex

(18.26)

Momentum thickness: θ = 0.664x√
Rex

(18.28)

Compressibility effects are such as to make boundary-layer solutions a func-
tion of Mach number, Prandtl number, and wall-to-freestream temperature
ratio. Typical compressibility effects are shown in Figure 18.8. Generally,
compressibility reduces C f and increases δ.
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The reference temperature method is an easy engineering calculation of skin
friction and heat transfer to a flat plate taking into account compressibility
effects, but using the incompressible equations for c f and CH . The reference
temperature T ∗ is given by

T ∗

Te
= 1 + 0.032M2

e + 0.58
(

Tw

Te
− 1

)
(18.53)

The local skin-friction coefficient is given by

c∗
f = 0.644√

Re∗
x

(18.52)

c∗
f = τw

1
2ρ

∗u2
e

where

Re∗
x = ρ∗uex

μ∗and

The Stanton number is given by

C∗
H = 0.332√

Re∗
x

(Pr∗)−2/3 (18.55)

C∗
H = q̇w

ρ∗ue(haw − hw)
where

18.8 PROBLEMS
Note: The homework problems for this chapter are deferred until the end of
Chapter 19 so that both laminar and turbulent boundary layers can be dealt with
together.



C H A P T E R 19
Turbulent Boundary Layers

The one uncontroversial fact about turbulence is that it is the most complicated
kind of fluid motion.

Peter Bradshaw
Imperial College of Science and
Technology, London 1978

Turbulence was, and still is, one of the great unsolved mysteries of science, and
it intrigued some of the best scientific minds of the day. Arnold Sommerfeld,
the noted German theoretical physicist of the 1920s, once told me, for instance,
that before he died he would like to understand two phenomena—quantum
mechanics and turbulence. Sommerfeld died in 1924. I believe he was somewhat
nearer to an understanding of the quantum, the discovery that led to modern
physics, but no closer to the meaning of turbulence.

Theodore von Karman, 1967

PREVIEW BOX

Nature, when left to herself, always goes to the state
of maximum disorder. This is particularly true for
boundary-layer flows under real conditions. For most
practical applications in aerodynamics, the flow in
boundary layers is predominantly turbulent—nature
going to the state of maximum disorder. Turbulent
boundary layers can be bad news; for the same ex-
ternal flow conditions, the turbulent skin friction and
aerodynamic heating is larger, frequently much larger,
than laminar skin friction and aerodynamic heating.
But turbulent boundary layers can also be good news

because they remain attached to a surface for much
larger distances downstream than a laminar boundary
layer under the same external flow conditions. Hence,
pressure drag due to flow separation is usually smaller
for bodies with turbulent boundary layers compared
to those with laminar boundary layers.

Turbulent boundary layers are the subject of this
chapter. There are no stand-alone theoretical results
for turbulent boundary layers—any analysis must
incorporate empirical data in some form. So we will
not beat around the bush. We go directly to empirically

1051
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based formulas that allow the estimation (and it is
truly only an estimation) of turbulent boundary-layer
thickness and skin friction. There are many different
approaches to the calculation of turbulent flows, all
requiring some input from experimental data. Whole

books have been written on the subject of turbulent
flow. The objective of this very short chapter is sim-
ply to give you some ability to compute turbulent
boundary-layer results, albeit imprecisely. Hang on,
and enjoy this short ride.

19.1 INTRODUCTION
The subject of turbulent flow is deep, extensively studied, but at the time of
writing still imprecise. The basic nature of turbulence, and therefore our ability to
predict its characteristics, is still an unsolved problem in classical physics. Many
books have been written on turbulent flows, and many people have spent their
professional lives working on the subject. As a result, it is presumptuous for us to
try to carry out a thorough discussion of turbulent boundary layers in this chapter.
Instead, the purpose of this chapter is simply to provide a contrast with our study
of laminar boundary layers in Chapter 18. Here, we will only be able to provide a
flavor of turbulent boundary layers, but this is all that is necessary in the present
book. Turbulence is a subject that we leave for you to study more extensively as
a subject on its own.

Before proceeding further, return to Section 15.2 and review the basic dis-
cussion of the nature of turbulence that is given there. In the present chapter, we
will pick up where Section 15.2 leaves off.

Also, we note that no pure theory of turbulent flow exists. Every analysis of
turbulent flow requires some type of empirical data in order to obtain a practi-
cal answer. As we examine the calculation of turbulent boundary layers in the
following sections, the impact of this statement will become blatantly obvious.
Finally, because this chapter is short, there is no need for a road map to act as a
guide.

19.2 RESULTS FOR TURBULENT BOUNDARY
LAYERS ON A FLAT PLATE

In this section, we discuss a few results for the turbulent boundary layer on
a flat plate, both incompressible and compressible, simply to provide a basis
of comparison with the laminar results described in the previous section. For
considerably more detail on the subject of turbulent boundary layers, consult
References 40 to 42.

For incompressible flow over a flat plate, the boundary-layer thickness is
given approximately by

δ = 0.37x

Re1/5
x

(19.1)
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Note from Equation (19.1) that the turbulent boundary-layer thickness varies
approximately as Re−1/5

x in contrast to Re−1/2
x for a laminar boundary layer. Also,

turbulent values of δ grow more rapidly with distance along the surface; δ ∝ x4/5

for a turbulent flow in contrast to δ ∝ x1/2 for a laminar flow. With regard to
skin-friction drag, for incompressible turbulent flow over a flat plate, we have

C f = 0.074

Re1/5
c

(19.2)

Note that for turbulent flow, C f varies as Re−1/5
c in comparison with the Re−1/2

c
variation for laminar flow. Hence, Equation (19.2) yields larger friction drag coef-
ficients for turbulent flow in comparison with Equation (18.22) for laminar flow.

The effects of compressibility on Equation (19.2) are shown in Figure 19.1,
where C f is plotted versus Re∞ with M∞ as a parameter. The turbulent flow re-
sults are shown toward the right of Figure 19.1, at the higher values of Reynolds
numbers where turbulent conditions are expected to occur, and laminar flow re-
sults are shown toward the left of the figure, at lower values of Reynolds numbers.
This type of figure—friction drag coefficient for both laminar and turbulent flow
as a function of Re on a log-log plot—is a classic picture, and it allows a ready
contrast of the two types of flow. From this figure, we can see that, for the same

Figure 19.1 Turbulent friction drag coefficient for a flat plate as a function of Reynolds and Mach
numbers. Adiabatic wall Pr = 0.75. For contrast, some laminar results are shown. (Data are from the
calculations of Van Driest, E. R.: “Turbulent Boundary Layer in Compressible Fluids,” J. Aeronaut. Sci.,
vol. 18, no. 3, March 1951, p. 145).
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Re∞, turbulent skin friction is higher than laminar; also, the slopes of the turbulent
curves are smaller than the slopes of the laminar curves—a graphic comparison of
the Re−1/5 variation in contrast to the laminar Re−1/2 variation. Note that the effect
of increasing M∞ is to reduce C f at constant Re and that this effect is stronger on
the turbulent flow results. Indeed, C f for the turbulent results decreases by almost
an order of magnitude (at the higher values of Re∞) when M∞ is increased from
0 to 10. For the laminar flow, the decrease in C f as M∞ is increased though the
same Mach number range is far less pronounced.

19.2.1 Reference Temperature Method for Turbulent Flow

The reference temperature method discussed in Section 18.4 for laminar boundary
layers can be applied to turbulent boundary layers as well. With the reference
temperature T ∗ given by Equation (18.53), the incompressible turbulent flat plate
result for C f given by Equation (19.2) can be modified for compressible turbulent
flow as

C∗
f = 0.074

(Re∗
c)

1/5
(19.3)

where C∗
f = D f

1
2ρ

∗u2
e S

(19.4)

EXAMPLE 19.1

Consider the same flat plate under the same external flow conditions given in Example 18.1.
Calculate the friction drag on the plate assuming a turbulent boundary layer for a freestream
velocity of (a) 100 m/s, and (b) 1000 m/s.

■ Solution
(a) From Example 18.1a, Rec = 1.36 × 107. Hence, from Equation (19.2)

C f = 0.074

(Rec)1/5 = 0.074

(1.36 × 107)1/5 = 0.074

26.71
= 2.77 × 10−3

Also from Example 18.1, we have ρ∞ = 1.22 kg/m3 and S = 40 m2. Hence, for one side
of the plate,

D f = 1
2ρ∞V 2

∞SC f = 1
2 (1.22)(100)2(40)(2.77 × 10−3) = 675.9 N

The total friction drag taking into account both sides of the plate is

D = 2D f = 2(675.9) = 1352 N

Comparing this result for turbulent flow with the laminar result in Example 1.81a, we
have

Dturbulent

Dlaminar
= 1352

175.6
= 7.7
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Turbulent flow causes a factor of 7.7 increase in friction drag compared to the laminar flow.
You can easily see why the understanding of, and prediction of, turbulent flow, especially
the prediction of when the flow will transist from laminar to turbulent flow, is so important.

(b) For V∞ = 1000 m/s, from Example 18.1b, Rec = 1.36 × 108, and M∞ = 2.94.
From Figure 19.1, we have

C f = 1.34 × 10−3

Hence, D f = 1
2ρ∞V 2

∞SC f = 1
2 (1.22)(1000)2(40)(1.34 × 10−3) = 32,700 N.

The total friction drag is

D = 2(32,700) = 65,400 N

Again, comparing this result with that from Example 18.1b, we have

Dturbulent

Dlaminar
= 65,400

5026
= 13

Note that, at the higher Mach number of 2.92, turbulence increased the drag by a factor of
13, whereas for the incompressible case, the increase was 7.7, a smaller amount. The differ-
ence between the drag for laminar and turbulent flow is more pronounced at higher speeds.

EXAMPLE 19.2

Repeat Example 19.1b, except using the reference temperature method. Assume the plate
has an adiabatic wall.

■ Solution
We draw on the results calculated in Example 18.2. The recovery factor for a turbulent
flow is slightly different than that for a laminar flow. However, we will not account for
that difference, and we will assume that the reference temperature for this case is the same
as given in Example 18.2. Hence, from Example 18.2, we have

Re∗
c = 3.754 × 107 and ρ∗ = 0.574 kg/m3

From Equation (19.3), we have

C∗
f = 0.074

(Re∗
c )

1/5 = 0.074

(3.754 × 107)1/5 = 2.26 × 10−3

From Equation (19.4),

D f = 1
2ρ∗u2

e SC∗
f = 1

2 (0.574)(1000)2(40)(2.26 × 10−3) = 25,945 N

Hence, D = 2(25,945) = 51,890 N

Comparing this answer with that obtained in Example 19.1b, we find a 20 percent dis-
crepancy between the two methods of calculations. This is not surprising. It simply points
out the great uncertainty in making calculations of turbulent skin friction.
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19.2.2 The Meador-Smart Reference Temperature
Method for Turbulent Flow

The method developed recently by Meador and Smart, discussed in Section 18.4.1,
gives a reference temperature equation for turbulent flow slightly different than
that for laminar flow. For a turbulent flow, their equation is

T ∗

Te
= 0.5

(
1 + Tw

Te

)
+ 0.16 r

(
γ − 1

2

)
M2

e

They also give a local turbulent skin-friction coefficient for incompressible flow as

c f = τw

1
2ρeu2

e

= 0.02296

(Rex)0.139

When integrated over the entire plate of length c, this gives for the net skin-friction
drag coefficient (prove it to yourself)

C f = D f
1
2ρ∞V 2∞S

= 0.02667

(Rec)0.139

EXAMPLE 19.3

Repeat Example 9.2 using the Meador-Smart reference temperature method.

■ Solution
From the above equation,

T ∗

Te
= 0.5

(
1 + Tw

Te

)
+ 0.16r

(
γ − 1

2

)
M2

e

For turbulent flow, the recovery factor is approximately

r = Pr1/3 = (0.71)1/3 = 0.892

Taw − Te = r(T0 − Te)

or
Taw

Te
= 1 + r

(
T0

Te
− 1

)
For Me = 2.94,

T0

Te
= 2.74

Taw

Tr
= 1 + 0.892(1.74) = 2.55

Since the flat plate has an adiabatic wall, Tw = Taw . The Meador-Smith equation then
becomes

T ∗

Te
= 0.5

(
1 + Tw

Te

)
+ 0.16(0.892)(0.2)(2.94)2 = 0.5(1 + 2.55) + 0.2467 = 2.02
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T ∗ = 2.02 Te = 2.02 (288) = 581.8 K

ρ∗ = p

RT ∗ = 1.01 × 105

(287)(581.8)
= 0.605 kg/m3

From Sutherland’s law (note that T0 in Sutherland’s law is a reference temperature, not
the total temperature)

μ∗

μ0
=

(
T ∗

T0

)3/2 T0 + 110

T ∗ + 110
=

(
581.8

288

)3/2 398

691.8
= 1.651

μ∗ = 1.651 μ0 = 1.651(1.7894 × 10−5) = 2.05 × 10−5 kg/m · s

Re∗
c = ρ∗uec

μ∗ = (0.605)(1000)(2)

2.95 × 10−5 = 4.1 × 107

From the Meador-Smith choice of the turbulent skin-friction coefficient equation,

C∗
f = 0.02667

(Re∗
c )

0.139 = 0.02667

(4.1 × 107)0.139 = 2.32 × 10−3

D f = 1
2ρ∗V 2

∞SC∗
f = 1

2 (0.605)(1000)2(40)(2.32 × 10−3) = 28,070 N

Total drag = D = 2D f = 2(28,070) = 56,140 N

Note: This result is more accurate than that obtained in Example 9.2; it shows a 14 percent
discrepancy compared with the result obtained in Example 19.1b.

19.2.3 Prediction of Airfoil Drag

The flat-plate results obtained in Chapter 18 for laminar flow, and in the present
chapter for turbulent flow, can be used for engineering prediction of skin-friction
drag on thin airfoils. Using results from Chapters 18 and 19, airfoil drag in low-
speed incompressible flow is treated in Section 4.12, and supersonic airfoil drag
is discussed in Section 12.4. If you have not read Sections 4.12 and 12.4, do so
now. They give an important practical application of the boundary-layer results
we have just covered. Indeed, Sections 4.12 and 12.4 provide a vital continuation
of our discussion of viscous flow, and for all practical purposes they can be
considered integral sections of Part 4 of this book, although they were inserted in
the earlier chapters to provide some viscous flow reality to our otherwise inviscid
flow presentations. The prediction of airfoil drag is one of the most important
aspects of aerodynamics. Take it seriously, and make certain that you read, or
have read, Sections 4.12 and 12.4.

19.3 TURBULENCE MODELING
The simple equations given in Section 19.2 for boundary-layer thickness and
skin-friction coefficient for a turbulent flow over a flat plate are simplified results
that are heavily empirically based. Modern calculations of turbulent flows over
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arbitrarily shaped bodies involve the solution of the continuity, momentum, and
energy equations along with some model of the turbulence. The calculations
are carried out by means of computational fluid dynamic techniques. Here we
will discuss only one model of tubulence, the Baldwin-Lomax turbulence model,
which has become popular over the past two decades. We emphasize that the
following discussion is intended only to give you the flavor of what is meant by a
turbulence model.

19.3.1 The Baldwin-Lomax Model

In order to include the effects of turbulence in any analysis or computation, it
is first necessary to have a model for the turbulence itself. Turbulence modeling
is a state-of-the-art subject, and a recent survey of such modeling as applied to
computations is given in Reference 81. Again, it is beyond the scope of the present
book to give a detailed presentation of various turbulence models; the reader is
referred to the literature for such matters. Instead, we choose to discuss only one
such model here, because: (a) it is a typical example of an engineering-oriented
turbulence model, (b) it is the model used in the majority of modern applications
in turbulent, subsonic, supersonic, and hypersonic flows, and (c) we will discuss
in the next chapter several applications which use this model. The model is called
the Baldwin-Lomax turbulence model, first proposed in Reference 82. It is in the
class of what is called an “eddy viscosity” model, where the effects of turbulence
in the governing viscous flow equations (such as the boundary-layer equations
or the Navier-Stokes equations) are included simply by adding an additional
term to the transport coefficients. For example, in all our previous viscous flow
equations, μ is replaced by (μ + μT ) and k by (k + kT ), where μT and kT

are the eddy viscosity and eddy thermal conductivity, respectively—both due to
turbulence. In these expressions, μ and k are denoted as the “molecular” viscosity
and thermal conductivity, respectively. For example, the x momentum boundary-
layer equation for turbulent flow is written as

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ ∂

∂y

[
(μ + μT )

∂u

∂y

]
(19.5)

Moreover, the Baldwin-Lomax model is also in the class of “algebraic,” or “zero-
equation,” models meaning that the formulation of the turbulence model utilizes
just algebraic relations involving the flow properties. This is in contrast to one-
and two-equation models which involve partial differential equations for the con-
vection, creation, and dissipation of the turbulent kinetic energy and (frequently)
the local vorticity. (See Reference 83 for a concise description of such one- and
two-equation turbulence models.)

The Baldwin-Lomax turbulence model is described below. We give just a
“cookbook” prescription for the model; the motivation and justification for the
model are described at length in Reference 82. This, like all other turbulence mod-
els, is highly empirical. The final justification for its use is that it yields reasonable
results across a wide range of Mach numbers, from subsonic to hypersonic. The
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model assumes that the turbulent-boundary layer is split into two layers, an inner
and an outer layer, with different expressions for μT in each layer:

μT =
{

(μT )inner y ≤ ycrossover

(μT )outer y ≥ ycrossover
(19.6)

where y is the local normal distance from the wall, and the crossover point from
the inner to the outer layer is denoted by ycrossover. By definition, ycrossover is that
point in the turbulent boundary where (μT )outer becomes less than (μT )inner. For
the inner region:

(μT )inner = ρl2|ω| (19.7)

where l = ky
[

1 − exp
(−y+

A+

)]
(19.8)

y+ =
√

ρwτw y

μw

(19.9)

and k and A+ are two dimensionless constants, specified later. In Equation (19.7),
ω is the local vorticity, defined for a two dimensional flow as

ω = ∂u

∂y
− ∂v

∂x
(19.10)

For the outer region:

(μT )outer = ρK Ccp Fwake FKleb (19.11)

where K and Ccp are two additional constants, and Fwake and FKleb are related to
the function

f (y) = y|ω|
[

1 − exp
(−y+

A+

)]
(19.12)

Equation (19.12) will have a maximum value along a given normal distance y;
this maximum value and the location where it occurs are denoted by Fmax and
ymax, respectively. In Equation (19.11), Fwake is taken to be either ymax Fmax or
Cwk ymaxU 2

dif/Fmax, whichever is smaller, where Cwk is constant, and

Udif =
√

u2 + v2 (19.13)

Also, in Equation (19.11), FKleb is the Klebanoff intermittency factor, given by

FKleb(y) =
[

1 + 5.5
(

CKleb
y

ymax

)6
]−1

(19.14)

The six dimensionless constants that appear in the above equations are: A+ =
26.0, Ccp = 1.6, CKleb = 0.3, Cwk = 0.25, k = 0.4, and K = 0.0168. These con-
stants are taken directly from Reference 82 with the understanding that, while they
are not precisely the correct constants for most flows in general, they have been
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used successfully for a number of different applications. Note that, unlike many
algebraic eddy viscosity models that are based on a characteristic length, the
Baldwin-Lomax model is based on the local vorticity ω. This is a distinct advan-
tage for the analysis of flows without an obvious mixing length, such as separated
flows. Note that, like all eddy-viscosity turbulent models, the value of μT ob-
tained above is dependent on the flow-field properties themselves (for example ω

and ρ); this is in contrast to the molecular viscosity μ, which is solely a property
of the gas itself.

The molecular values of viscosity coefficient and thermal conductivity are
related through the Prandtl number

k = μcp

Pr
(19.15)

In lieu of developing a detailed turbulence model for the turbulent thermal con-
ductivity kT , the usual procedure is to define a “turbulent” Prandtl number as
PrT = μT cp/kT . Thus, analogous to Equation (19.15), we have

kT = μT cp

PrT
(19.16)

where the usual assumption is that PrT = 1. Therefore,μT is obtained from a given
eddy-viscosity model (such as the Baldwin-Lomax model), and the corresponding
kT is obtained from Equation (19.16).

Turbulence itself is a flow field; it is not a simple property of the gas. This
is why, as mentioned above, in an algebraic eddy viscosity model the values of
μT and kT depend on the solution of the flow field—they are not pure properties
of the gas as are μ and k. This is clearly seen in the Baldwin-Lomax model via
Equation (19.7), where μT is a function of the local vorticity in the flow, ω—a
flow-field variable which comes out as part of the solution for the particular case
at hand.

19.4 FINAL COMMENTS
This chapter and the previous two have dealt with boundary layers, especially
those on a flat plate. We end with the presentation of an artist’s rendering a
photograph in Figure 19.2 showing the development of velocity profiles in the
boundary layer over a flat plate. The fluid is water, which flows from left to right.
The profiles in the original photograph are made visible by the hydrogen bubble
technique, the same used for Figure 16.13. The Reynolds number is low (the
freestream velocity is only 0.6 m/s); hence, the boundary-layer thickness is large.
However, the thickness of the plate is only 0.5 mm, which means that the boundary
layer shown here is on the order of 1 mm thick—still small on an absolute scale.
In any event, if you need any further proof of the existence of boundary layers,
Figure 19.2 is it.
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Figure 19.2 Rendering of velocity profiles for the laminar flow over a flat
plate. Flow is from left to right.

19.5 SUMMARY

Approximations for the turbulent, incompressible flow over a flat plate are

δ = 0.37x

Re1/5
x

(19.1)

C f = 0.074

Re1/5
c

(19.2)

To account for compressibility effects, the data shown in Figure 19.1 can be
used, or alternatively the reference temperature method can be employed.

When the continuity, momentum, and energy equations are used to solve a
turbulent flow, some type of turbulence model must be used. In the eddy
viscosity concept, the viscosity coefficient and thermal conductivity in these
equations must be the sum of the molecular and turbulent values.
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19.6 PROBLEMS
Note: The standard sea level value of viscosity coefficient for air is μ = 1.7894×
10−5 kg/(m · s) = 3.7373 × 10−7 slug/(ft · s).

19.1 The wing on a Piper Cherokee general aviation aircraft is rectangular, with
a span of 9.75 m and a chord of 1.6 m. The aircraft is flying at cruising
speed (141 mi/h) at sea level. Assume that the skin-friction drag on the
wing can be approximated by the drag on a flat plate of the same
dimensions. Calculate the skin-friction drag:
a. If the flow were completely laminar (which is not the case in real life)
b. If the flow were completely turbulent (which is more realistic)

Compare the two results.
19.2 For the case in Problem 19.1, calculate the boundary-layer thickness at the

trailing edge for
a. Completely laminar flow
b. Completely turbulent flow

19.3 For the case in Problem 19.1, calculate the skin-friction drag accounting
for transition. Assume the transition Reynolds number = 5 × 105.

19.4 Consider Mach 4 flow at standard sea level conditions over a flat plate
of chord 5 in. Assuming all laminar flow and adiabatic wall conditions,
calculate the skin-friction drag on the plate per unit span.

19.5 Repeat Problem 19.4 for the case of all turbulent flow.
19.6 Consider a compressible, laminar boundary layer over a flat plate.

Assuming Pr = 1 and a calorically perfect gas, show that the profile of
total temperature through the boundary layer is a function of the velocity
profile via

T0 = Tw + (T0,e − Tw)
u

ue

where Tw = wall temperature and T0,e and ue are the total temperature
and velocity, respectively, at the outer edge of the boundary layer. [Hint:
Compare Equations (18.32) and (18.41).]

19.7 Consider a high-speed vehicle flying at a standard altitude of 35 km,
where the ambient pressure and temperature are 583.59 N/m2 and
246.1 K, respectively. The radius of the spherical nose of the vehicle is
2.54 cm. Assume the Prandtl number for air at these conditions is 0.72,
that cp is 1008 joules/(kg K), and that the viscosity coefficient is given by
Sutherland’s law. The wall temperature at the nose is 400 K. Assume the
recovery factor at the nose is 1.0. Calculate the aerodynamic heat transfer
to the stagnation point for flight velocities of (a) 1500 m/s, and
(b) 4500 m/s. From these results, make a comment about how the heat
transfer varies with flight velocity.



C H A P T E R 20
Navier-Stokes Solutions:
Some Examples

A numerical simulation of the flow over an airfoil using the Reynolds averaged
Navier-Stokes equations can be conducted on today’s supercomputers in less
than a half hour for less than $1000 cost in computer time. If just one such
simulation had been attempted 20 years ago on computers of that time (e.g., the
IBM 704 class) and with algorithms then known, the cost in computer time
would have amounted to roughly $10 million, and the results for that single flow
would not be available until 10 years from now, since the computation would
have taken about 30 years to complete.

Dean R. Chapman, NASA, 1977

PREVIEW BOX

This is a short chapter about a very extensive subject—
the numerical solution of general viscous flows. This
is the ultimate method for solving general flow fields
including friction and thermal conduction throughout
the whole flow field. This chapter is in the purview
of computational fluid dynamics—a whole subject in
itself. The purpose of this chapter is simply to round
out our discussion of viscous flow and to bring some
closure to the subject. So read on, and allow yourself
to be rounded out.

In so doing, pay close attention to the section
dealing with the accuracy of the prediction of skin-
friction drag. You will see that no matter how hard
we try, there is still room for improvement. This is a
good thing. Aerodynamics in general is still an evolv-
ing intellectual subject, and there is plenty of room
for you to make your own personal contributions to
its improvement. I hope that by reading this book you
are inspired to do so.

As we say in aerodynamics—onward and upward.
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20.1 INTRODUCTION
This chapter is short. Its purpose is to discuss the third option for the solution of vis-
cous flows as discussed in Section 15.7, namely, the exact numerical solution of the
complete Navier-Stokes equations. This option is the purview of modern computa-
tional fluid dynamics—it is a state-of-the-art research activity which is currently
in a rapid state of development. This subject now occupies volumes of mod-
ern literature; for a basic treatment, see the definitive text on computational fluid
dynamics listed as Reference 51. We will only list a few sample calculations here.

20.2 THE APPROACH
Return to the complete Navier-Stokes equations, as derived in Chapter 15, and
repeated and renumbered below for convenience:

Continuity: ∂ρ

∂t
= −

[
∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

]
(20.1)

x momentum:

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
+ 1

ρ

[
−∂p

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

]
(20.2)

y momentum:

∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
− w

∂v

∂z
+ 1

ρ

[
−∂p

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

]
(20.3)

z momentum:

∂w

∂t
= −u

∂w

∂x
− v

∂w

∂y
− w

∂w

∂z
+ 1

ρ

[
−∂p

∂z
+ ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

]
(20.4)

Energy:

∂(e + V 2/2)

∂t
= −u

∂(e + V 2/2)

∂x
− v

∂(e + V 2/2)

∂y
− w

∂(e + V 2/2)

∂z
+ q̇

+ 1

ρ

[
∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)

− ∂(pu)

∂x
− ∂(pv)

∂y
− ∂(pw)

∂z
+ ∂(uτxx)

∂x
(20.5)

+ ∂(uτyx)

∂y
+ ∂(uτzx)

∂z
+ ∂(vτxy)

∂x
+ ∂(vτyy)

∂y
+ ∂(vτzy)

∂z

+ ∂(wτxz)

∂x
+∂(wτyz)

∂y
+ ∂(wτzz)

∂z

]
These equations have been written with the time derivatives on the left-hand side
and all spatial derivatives on the right-hand side. This is the form suitable to a
time-dependent solution of the equations, as discussed in Chapters 13 and 16.
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Indeed, Equations (20.1) to (20.5) are partial differential equations that have a
mathematically “elliptic” behavior; that is, on a physical basis they treat flow-
field information and flow disturbances that can travel throughout the flow field,
in both the upstream and downstream directions. The time-dependent technique
is particularly suited to such a problem.

The time-dependent solution of Equations (20.1) to (20.5) can be carried out
in direct parallel to the discussion in Section 16.4. It is important for you to return
to that section and review our discussion of the time-dependent solution of com-
pressible Couette flow using MacCormack’s technique. We suggest doing this be-
fore reading further. The approach to the solution of Equations (20.1) to (20.5) for
other problems is exactly the same. Therefore, we will not elaborate further here.

20.3 EXAMPLES OF SOME SOLUTIONS
In this section, we present samples of a few numerical solutions of the complete
Navier-Stokes equations. Most of these solutions have the following in common:

1. They were obtained by means of a time-dependent solution using
MacCormack’s technique as described in Section 16.4.

2. They utilize the Baldwin-Lomax turbulence model (see Section 19.3.1 for a
discussion of this model). Hence, turbulent flow is modeled in these
calculations.

3. They require anywhere from thousands to close to a million grid points for
their solution. Therefore, these are problems that must be solved on
large-scale digital computers.

20.3.1 Flow over a Rearward-Facing Step

The supersonic viscous flow over a rearward-facing step was examined in Ref-
erence 44. Some results are shown in Figures 20.1 and 20.2. The flow is moving
from left to right. In the velocity vector diagram in Figure 20.1, note the separated,
recirculating flow region just downstream of the step. The calculation of such sep-
arated flows is the forte of solutions of the complete Navier-Stokes equations. In
contrast, the boundary-layer equations discussed in Chapter 17 are not suited for
the analysis of separated flows; boundary-layer calculations usually “blow up” in
regions of separated flow. Figure 20.2 shows the temperature contours (lines of
constant temperature) for the same flow in Figure 20.1.

20.3.2 Flow over an Airfoil

The viscous compressible flow over an airfoil was studied in Reference 53. For
the treatment of this problem, a nonrectangular finite-difference grid is wrapped
around the airfoil, as shown in Figure 20.3. Equations (20.1) to (20.5) have to be
transformed into the new curvilinear coordinate system in Figure 20.3. The details
are beyond the scope of this book; see Reference 53 for a complete discussion.
Some results for the streamline patterns are shown in Figure 20.4a and b. Here,
the flow over a Wortmann airfoil at zero angle of attack is shown. The freestream
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Figure 20.1 Velocity vector diagram for the flow over a rearward-facing step. M = 2.19,
T = 1005 K, Re = 70,000 (based on step height) (Berman, H. A., J. D. Anderson, Jr., and
J. P. Drummond: ‘Supersonic Flow over a Rearward Facing Step with Transverse Nonreacting
Hydrogen Injection,” AIAA J., vol. 21, no. 12, December 1983, pp. 1707–1713.). Note the
recirculating flow region downstream of the step.

Figure 20.2 Temperature contours for the flow shown in Figure 20.1. The separated region
just downstream of the step is a reasonably constant pressure, constant temperature region.

Mach number is 0.5, and the Reynolds number based on chord is relatively low,
Re = 100,000. The completely laminar flow over this airfoil is shown in Fig-
ure 20.4a. Because of the peculiar aerodynamic properties of some low Reynolds
number flows over airfoils (see References 48 and 53), we note that the laminar
flow separated over both the top and bottom surfaces of the airfoil. However, in
Figure 20.4b, the turbulence model is turned on for the calculation; note that the
flow is now completely attached. The differences in Figure 20.4a and b vividly
demonstrate the basic trend that turbulent flow resists flow separation much more
strongly than laminar flow.



Figure 20.3 Curvilinear, boundary-fitted finite-difference grid for the solution of the
flow over an airfoil. (Data Source: Kothari, A. P., and J. D. Anderson: “Flow over Low
Reynolds Number Airfoils—Compressible Navier-Stokes Solutions,” AIAA paper no.
85-0107, January 1985).

(a)

(b)

Figure 20.4 Streamlines for the low Reynolds flow over a Wortmann airfoil.
Re = 100,000. (a) Laminar flow. (b) Turbulent flow. (Data Source: Kothari, A. P.,
and J. D. Anderson: “Flow over Low Reynolds Number Airfoils—Compressible
Navier-Stokes Solutions, AIAA paper no. 85-0107, January 1985).

1067
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20.3.3 Flow over a Complete Airplane

We end this section by noting a history-making calculation. In Reference 54, a
solution of the complete Navier-Stokes equations for the flow field over an entire
airplane was reported—the first such calculation ever made. In this work, Shang
and Scherr carried out a time-dependent solution using MacCormack’s method—
just as we have discussed it in Section 16.4. See Reference 54 for the details. Also,
a lengthy description of this work can be found in Chapter 8 of Reference 52.
Shang and Scherr applied their calculation to the hypersonic viscous flow over
the X-24C hypersonic test vehicle. To illustrate the results, the surface streamline
pattern is shown in Figure 20.5. In reality, since the flow velocity is zero at the

Figure 20.5 Surface shear stress lines on the X-24C (Data Source: Shang, J. S., and S. J. Scherr:
“Navier-Stokes Solution for a Complete Re-Entry Configuration,” J. Aircraft, vol. 23, no. 12,
December 1986, pp. 881–888).



CHAPTER 20 Navier-Stokes Solutions: Some Examples 1069

surface in a viscous flow (the no-slip condition), the lines shown in Figure 20.5
are the surface shear stress directions.

20.3.4 Shock-Wave/Boundary-Layer Interaction

The flow field that results when a shock wave impinges on a boundary layer can
only be calculated in detail by means of a numerical solution of the complete
Navier-Stokes equations. The qualitative physical aspects of a two-dimensional
shock-wave/boundary-layer interaction are sketched in Figure 20.6. Here we see
a boundary layer growing along a flat plate, where at some downstream location
an incident shock wave impinges on the boundary layer. The large pressure rise
across the shock wave acts as a severe adverse pressure gradient imposed on the
boundary layer, thus causing the boundary layer to locally separate from the sur-
face. Because the high pressure behind the shock feeds upstream through the
subsonic portion of the boundary layer, the separation takes place ahead of the
impingement point of the incident shock wave. In turn, the separated boundary
layer induces a shock wave, identified here as the induced separation shock. The
separated boundary layer subsequently turns back toward the plate, reattaching to
the surface at the reattachment shock. Between the separation and reattachment
shocks, expansion waves are generated where the boundary layer is turning back
toward the surface. At the point of reattachment, the boundary layer has become
relatively thin, the pressure is high, and consequently this becomes a region of
high local aerodynamic heating. Further away from the plate, the separation and
reattachment shocks merge to form the conventional “reflected shock wave” that
is expected from the classical inviscid picture (see, for example, Figure 9.17).
The scale and severity of the interaction picture shown in Figure 20.6 depends on
whether the boundary layer is laminar or turbulent. Since laminar boundary layers

M� > 1

x

Boundary layer

Separation
point

Reattachment
shock wave

Induced separation
shock wave

Incident 
    shock wave

Locally
separated flow

Reattachment
point

�0

Figure 20.6 Schematic of the shock-wave/boundary-layer interaction.
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separate more readily than turbulent boundary layers, the laminar interaction usu-
ally takes place more readily with more severe attendant consequences than the
turbulent interaction. However, the general qualitative aspects of the interaction
as sketched in Figure 20.6 are the same.

The first discussion in this book of the physical aspects of shock-wave/
boundary-layer interactions can be found in Section 9.9, with a specific application
to shock waves inside nozzles in Section 10.6. If you have not read Sections 9.9
and 10.6, now is the time to pause and read these two sections.

The fluid dynamic and mathematical details of the interaction region sketched
in Figure 20.6 are complex, and the full prediction of this flow is still a state-of-
the-art research problem. However, great strides have been made in recent years
with the application of computational fluid dynamics to this problem, and so-
lutions of the full Navier-Stokes equations for the flow sketched in Figure 20.6
have been obtained. For example, experimental and computational data for the
two-dimensional interaction of a shock wave impinging on a turbulent flat plate
boundary layer are given in Figure 20.7. In Figure 20.7a, the ratio of surface
pressure to freestream total pressure is plotted versus distance along the surface
(nondimensionalized by δ0, the boundary-layer thickness ahead of the interac-
tion). Here, x0 is taken as the theoretical inviscid flow impingement point for the
incident shock wave. The freestream Mach number is 3. The Reynolds number
based on δ0 is about 106. Note in Figure 20.7a that the surface pressure first in-
creases at the front of the interaction region (ahead of the theoretical incident shock
impingement point), reaches a plateau through the center of the separated region,
and then increases again as the reattachment point is approached. The pressure
variation shown in Figure 20.7a is typical of that for a two-dimensional shock-
wave/boundary-layer interaction. The open circles correspond to experimental
measurements of Reda and Murphy (Reference 84). The curve is obtained from
a numerical solution of the Navier-Stokes equations as reported in Reference 82
and using the Baldwin-Lomax turbulence model discussed in Section 19.3.1. In
Figure 20.7b the variation of surface shear stress plummets to zero, reverses its
direction (negative values) in a rather complex variation, and then recovers to a
positive value in the vicinity of the reattachment point. The two circles on the hor-
izontal axis denote measured separation and reattachment points, and the curve
is obtained from the calculations of Reference 82.

20.3.5 Flow over an Airfoil with a Protuberance

Here we show some very recent Navier-Stokes solutions carried out to study the
aerodynamic effect of a small protuberance extending from the bottom surface of
an airfoil. These calculations represent an example of the state-of-the-art of full
Navier-Stokes solutions at the time of writing. The work was carried out by Beierle
(Reference 85). The basic shape of the airfoil was an NACA 0015 section. The
computational fluid dynamic solution of the Navier-Stokes equations was carried
out using a time-marching finite volume code labeled OVERFLOW, developed by
NASA (Reference 86). The flow was low speed, with a freestream Mach number
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Figure 20.7 Effects of shock-wave/boundary-layer interaction on
(a) pressure distribution, and (b) shear stress for Mach 3 turbulent flow
over a flat plate.

of 0.15 and Reynolds number of 1.5 × 106. The fully turbulent flow field was
simulated using a one-equation turbulence model.

Using a proper grid is vital to the integrity of any Navier-Stokes CFD solution.
For the present case, Figures 20.8–20.11 show the grid used, progressing from
the big picture of the whole grid (Figure 20.8) to the detail of the grid around the
small protuberance on the bottom surface of the airfoil (Figure 20.11). The grid is
an example of a chimera grid, a series of independent but overlapping grids that
are generated about individual parts of the body and for specific flow regions.

Some results for the computed flow field are shown in Figures 20.12 and
20.13. In Figure 20.12, the local velocity vector field is shown; the flow separation
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x

Figure 20.8 Individual grid boundary outlines used in the
chimera grid scheme for calculating the flow over an airfoil
with a protuberance.

and locally reversed flow can be seen downstream of the protuberance. In Fig-
ure 20.13, pressure contours are shown, illustrating how the small protuber-
ance generates a substantially asymmetric flow over the otherwise symmetric
airfoil.

Finally, results for a related flow are shown in Figure 20.14. Here, instead
of a protuberance existing on the bottom surface, an array of small jets that are
distributed over the bottom surface alternately blow and suck air into and out
of the flow in such a manner that the net mass flow added is zero, so-called
“zero-mass synthetic jets.” The resulting series of large-scale vortices is shown
in Figure 20.14—another example of a flow field that can only be solved in
detail by means of a full Navier-Stokes solution. (See Hassan and JanakiRam,
Reference 87, for details.)

20.4 THE ISSUE OF ACCURACY FOR THE
PREDICTION OF SKIN FRICTION DRAG

The aerodynamic drag on a body is the sum of pressure drag and skin friction
drag. For attached flows, the prediction of pressure drag is obtained from inviscid
flow analyses such as those presented in Parts 2 and 3 of this book. For separated
flows, various approximate theories for pressure drag have been advanced over
the last century, but today the only viable and general method of the analysis of
pressure drag for such flows is a complete numerical Navier-Stokes solution.
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x

z

Figure 20.9 Zoom view of the airfoil, wake cut, and
protuberance grids.

The prediction of skin friction on the surface of a body in an attached flow
is nicely accomplished by means of a boundary-layer solution coupled with an
inviscid flow analysis to define the flow conditions at the edge of the boundary
layer. Such an approach is well-developed, and the calculations can be rapidly
carried out on local computer workstations. Therefore, the use of boundary-layer
solutions for skin friction and aerodynamic heating is the preferred engineering
approach. However, as mentioned above, if regions of flow separation are present,
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x

z

Figure 20.10 Zoom view of protuberance grid along the bottom surface of the airfoil.

Figure 20.11 A detail of the grid in the vicinity of the protuberance.

Figure 20.12 Computed velocity vector field around and downstream of the
protuberance.
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Figure 20.13 Computed pressure contours around the
NACA 0012 airfoil with a protuberance.

Figure 20.14 Streamline pattern over the bottom of an NACA 0012 airfoil, over which
a series of jets is distributed which are alternatively blowing or sucking mass into or out
of the flow, with the overall net mass injected into the flow being zero—a zero-mass jet
array. (Data Source: Hassan, A. A., and JanakiRam, R. D.: “Effects of Zero-Mass
‘Synthetic’ Jets on the Aerodynamics of the NACA-0012 Airfoil,” AIAA Paper
No. 97-2326, 1997).

this approach cannot be used. In its place, a full Navier-Stokes solution can be used
to obtain local skin friction and heat transfer, but these Navier-Stokes solutions
are still not in the category of “quick engineering calculations.”

This leads us to the question of the accuracy of CFD Navier-Stokes solutions
for skin friction drag and heat transfer. There are three aspects that tend to diminish
the accuracy of such solutions for the prediction of τw and q̇w (or alternately, c f

and CH ):

1. The need to have a very closely spaced grid in the vicinity of the wall in
order to obtain an accurate numerical value of (∂u/∂y)w and (∂T/∂y)w,
from which τw and q̇w are obtained.

2. The uncertainty in the accuracy of turbulence models when a turbulent flow
is being calculated.

3. The lack of ability of most turbulent models to predict transition from
laminar to turbulent flow.

In spite of all the advances made in CFD to the present, and all the work
that has gone into turbulence modeling, at the time of writing the ability of
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Navier-Stokes solutions to predict skin friction in a turbulent flow seems to be no
better than about 20 percent accuracy, on the average. A study by Lombardi et al.
(Reference 88) has made this clear. They calculated the skin friction drag on an
NACA 0012 airfoil at zero angle of attack in a low-speed flow using both a stan-
dard boundary-layer code and a state-of-the-art Navier-Stokes solver with three
different state-of-the-art turbulence models. The results for friction drag from the
boundary-layer code had been validated with experiment, and were considered
the baseline for accuracy. The boundary-layer code also had a prediction for tran-
sition that was considered reliable. Some typical results reported in Reference 88
for the integrated friction drag coefficient C f are as follows, where NS repre-
sents Navier-Stokes solver and with the turbulence model in parenthesis. The
calculations were all for Re = 3 × 106.

C f × 103

NS (Standard k − ε) 7.486
NS (RNG k − ε) 6.272
NS (Reynolds stress) 6.792
Boundary Layer Solution 5.340

Clearly, the accuracy of the various Navier-Stokes calculations ranged from
18 percent to 40 percent.

More insight can be gained from the spatial distribution of the local skin-
friction coefficient c f along the surface of the airfoil, as shown in Figure 20.15.
Again the three different Navier-Stokes calculations are compared with the results

0 0.2 0.4
x �c

cf

0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

Blows
Fluent standard k-�
Fluent RNG k-�
Fluent RSM

Blows
Fluent standard k-�
Fluent RNG k-�
Fluent RSM

Figure 20.15 Distribution of the skin-friction coefficient over the surface of an
NACA 0012 airfoil at zero angle of attack in low-speed flow. Comparison of three
Navier-Stokes calculations using different turbulent models, and results obtained
from a boundary-layer calculation. The boundary-layer results are given by the
dashed curve labeled “Blows.” (Data Source: Lombardi, G., Salvetti, M. V. and
Pinelli, D.: “Numerical Evaluation of Airfoil Friction Drag,” J. Aircraft, vol. 37,
no. 2, March–April, 2000, pp. 354–356).
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Fluent RSM
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Figure 20.16 Computed skin-friction coefficient distributions over an NACA 0012
airfoil, comparing results from a Navier-Stokes solution and a boundary-layer
solution. The heavy curve is for a flat plate, allowing a comparison with the skin
friction distribution over a curved airfoil surface. (Data Source: Lombardi, G.,
Salvetti, M. V. and Pinelli, D.: “Numerical Evaluation of Airfoil Friction Drag,”
J. Aircraft, vol. 37, no. 2, March–April, 2000, pp. 354–356).

from the boundary layer code. All the Navier-Stokes calculations greatly overes-
timated the peak in c f just downstream of the leading edge, and slightly under-
estimated c f near the trailing edge.

For a completely different reason not having to do with our discussion of
accuracy, but for purposes of showing and contrasting the physically different
distribution of c f along a flat plate compared with that along the surface of the
airfoil, we show Figure 20.16. Here the heavy curve is the variation of c f with
distance from the leading edge for a flat plate; the monotonic decrease is expected
from our previous discussions of flat plate boundary layers. In contrast, for the
airfoil c f rapidly increases from a value of zero at the stagnation point to a peak
value shortly downstream of the leading edge. This rapid increase is due to the
rapidly increasing velocity as the flow external to the boundary layer rapidly ex-
pands around the leading edge. Beyond the peak, c f then monotonically decreases
in the same qualitative manner as for a flat plate. It is simply interesting to note
these different variations for c f over an airfoil compared to that for a flat plate, es-
pecially since we devoted so much attention to flat plates in the previous chapters.

20.5 SUMMARY
With this, we end our discussion of viscous flow. The purpose of all of Part 4
has been to introduce you to the basic aspects of viscous flow. The subject is
so vast that it demands a book in itself—many of which have been written (see,
e.g., References 39 through 43). Here, we have presented only enough material
to give you a flavor for some of the basic ideas and results. This is a subject of
great importance in aerodynamics, and if you wish to expand your knowledge
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and expertise of aerodynamics in general, we encourage you to read further on
the subject.

We are also out of our allotted space for this book. Therefore, we hope
that you have enjoyed and benefited from our presentation of the fundamentals of
aerodynamics. However, before closing the cover, it might be useful to return once
again to Figure 1.44, which is the block diagram categorizing the different general
types of aerodynamic flows. Recall the curious, uninitiated thoughts you might
have had when you first examined this figure during your study of Chapter 1, and
compare these with the informed and mature thoughts that you now have—honed
by the aerodynamic knowledge packed into the intervening pages. Hopefully,
each block in Figure 1.44 has substantially more meaning for you now than when
we first started. If this is true, then my efforts as an author have not gone in vain.



A P P E N D I X A
Isentropic Flow Properties

M
p0

p
ρ0

ρ

T0

T
A
A∗

0.2000 − 01 0.1000 + 01 0.1000 + 01 0.1000 + 01 0.2894 + 02
0.4000 − 01 0.1001 + 01 0.1001 + 01 0.1000 + 01 0.1448 + 02
0.6000 − 01 0.1003 + 01 0.1002 + 01 0.1001 + 01 0.9666 + 01
0.8000 − 01 0.1004 + 01 0.1003 + 01 0.1001 + 01 0.7262 + 01
0.1000 + 00 0.1007 + 01 0.1005 + 01 0.1002 + 01 0.5822 + 01
0.1200 + 00 0.1010 + 01 0.1007 + 01 0.1003 + 01 0.4864 + 01
0.1400 + 00 0.1014 + 01 0.1010 + 01 0.1004 + 01 0.4182 + 01
0.1600 + 00 0.1018 + 01 0.1013 + 01 0.1005 + 01 0.3673 + 01
0.1800 + 00 0.1023 + 01 0.1016 + 01 0.1006 + 01 0.3278 + 01
0.2000 + 00 0.1028 + 01 0.1020 + 01 0.1008 + 01 0.2964 + 01

0.2200 + 00 0.1034 + 01 0.1024 + 01 0.1010 + 01 0.2708 + 01
0.2400 + 00 0.1041 + 01 0.1029 + 01 0.1012 + 01 0.2496 + 01
0.2600 + 00 0.1048 + 01 0.1034 + 01 0.1014 + 01 0.2317 + 01
0.2800 + 00 0.1056 + 01 0.1040 + 01 0.1016 + 01 0.2166 + 01
0.3000 + 00 0.1064 + 01 0.1046 + 01 0.1018 + 01 0.2035 + 01
0.3200 + 00 0.1074 + 01 0.1052 + 01 0.1020 + 01 0.1922 + 01
0.3400 + 00 0.1083 + 01 0.1059 + 01 0.1023 + 01 0.1823 + 01
0.3600 + 00 0.1094 + 01 0.1066 + 01 0.1026 + 01 0.1736 + 01
0.3800 + 00 0.1105 + 01 0.1074 + 01 0.1029 + 01 0.1659 + 01
0.4000 + 00 0.1117 + 01 0.1082 + 01 0.1032 + 01 0.1590 + 01

0.4200 + 00 0.1129 + 01 0.1091 + 01 0.1035 + 01 0.1529 + 01
0.4400 + 00 0.1142 + 01 0.1100 + 01 0.1039 + 01 0.1474 + 01
0.4600 + 00 0.1156 + 01 0.1109 + 01 0.1042 + 01 0.1425 + 01
0.4800 + 00 0.1171 + 01 0.1119 + 01 0.1046 + 01 0.1380 + 01
0.5000 + 00 0.1186 + 01 0.1130 + 01 0.1050 + 01 0.1340 + 01
0.5200 + 00 0.1202 + 01 0.1141 + 01 0.1054 + 01 0.1303 + 01
0.5400 + 00 0.1219 + 01 0.1152 + 01 0.1058 + 01 0.1270 + 01
0.5600 + 00 0.1237 + 01 0.1164 + 01 0.1063 + 01 0.1240 + 01
0.5800 + 00 0.1256 + 01 0.1177 + 01 0.1067 + 01 0.1213 + 01
0.6000 + 00 0.1276 + 01 0.1190 + 01 0.1072 + 01 0.1188 + 01

1079
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0.6200 + 00 0.1296 + 01 0.1203 + 01 0.1077 + 01 0.1166 + 01
0.6400 + 00 0.1317 + 01 0.1218 + 01 0.1082 + 01 0.1145 + 01
0.6600 + 00 0.1340 + 01 0.1232 + 01 0.1087 + 01 0.1127 + 01
0.6800 + 00 0.1363 + 01 0.1247 + 01 0.1092 + 01 0.1110 + 01
0.7000 + 00 0.1387 + 01 0.1263 + 01 0.1098 + 01 0.1094 + 01
0.7200 + 00 0.1412 + 01 0.1280 + 01 0.1104 + 01 0.1081 + 01
0.7400 + 00 0.1439 + 01 0.1297 + 01 0.1110 + 01 0.1068 + 01
0.7600 + 00 0.1466 + 01 0.1314 + 01 0.1116 + 01 0.1057 + 01
0.7800 + 00 0.1495 + 01 0.1333 + 01 0.1122 + 01 0.1047 + 01
0.8000 + 00 0.1524 + 01 0.1351 + 01 0.1128 + 01 0.1038 + 01

0.8200 + 00 0.1555 + 01 0.1371 + 01 0.1134 + 01 0.1030 + 01
0.8400 + 00 0.1587 + 01 0.1391 + 01 0.1141 + 01 0.1024 + 01
0.8600 + 00 0.1621 + 01 0.1412 + 01 0.1148 + 01 0.1018 + 01
0.8800 + 00 0.1655 + 01 0.1433 + 01 0.1155 + 01 0.1013 + 01
0.9000 + 00 0.1691 + 01 0.1456 + 01 0.1162 + 01 0.1009 + 01
0.9200 + 00 0.1729 + 01 0.1478 + 01 0.1169 + 01 0.1006 + 01
0.9400 + 00 0.1767 + 01 0.1502 + 01 0.1177 + 01 0.1003 + 01
0.9600 + 00 0.1808 + 01 0.1526 + 01 0.1184 + 01 0.1001 + 01
0.9800 + 00 0.1850 + 01 0.1552 + 01 0.1192 + 01 0.1000 + 01
0.1000 + 01 0.1893 + 01 0.1577 + 01 0.1200 + 01 0.1000 + 01

0.1020 + 01 0.1938 + 01 0.1604 + 01 0.1208 + 01 0.1000 + 01
0.1040 + 01 0.1985 + 01 0.1632 + 01 0.1216 + 01 0.1001 + 01
0.1060 + 01 0.2033 + 01 0.1660 + 01 0.1225 + 01 0.1003 + 01
0.1080 + 01 0.2083 + 01 0.1689 + 01 0.1233 + 01 0.1005 + 01
0.1100 + 01 0.2135 + 01 0.1719 + 01 0.1242 + 01 0.1008 + 01
0.1120 + 01 0.2189 + 01 0.1750 + 01 0.1251 + 01 0.1011 + 01
0.1140 + 01 0.2245 + 01 0.1782 + 01 0.1260 + 01 0.1015 + 01
0.1160 + 01 0.2303 + 01 0.1814 + 01 0.1269 + 01 0.1020 + 01
0.1180 + 01 0.2363 + 01 0.1848 + 01 0.1278 + 01 0.1025 + 01
0.1200 + 01 0.2425 + 01 0.1883 + 01 0.1288 + 01 0.1030 + 01

0.1220 + 01 0.2489 + 01 0.1918 + 01 0.1298 + 01 0.1037 + 01
0.1240 + 01 0.2556 + 01 0.1955 + 01 0.1308 + 01 0.1043 + 01
0.1260 + 01 0.2625 + 01 0.1992 + 01 0.1318 + 01 0.1050 + 01
0.1280 + 01 0.2697 + 01 0.2031 + 01 0.1328 + 01 0.1058 + 01
0.1300 + 01 0.2771 + 01 0.2071 + 01 0.1338 + 01 0.1066 + 01
0.1320 + 01 0.2847 + 01 0.2112 + 01 0.1348 + 01 0.1075 + 01
0.1340 + 01 0.2927 + 01 0.2153 + 01 0.1359 + 01 0.1084 + 01
0.1360 + 01 0.3009 + 01 0.2197 + 01 0.1370 + 01 0.1094 + 01
0.1380 + 01 0.3094 + 01 0.2241 + 01 0.1381 + 01 0.1104 + 01
0.1400 + 01 0.3182 + 01 0.2286 + 01 0.1392 + 01 0.1115 + 01

0.1420 + 01 0.3273 + 01 0.2333 + 01 0.1403 + 01 0.1126 + 01
0.1440 + 01 0.3368 + 01 0.2381 + 01 0.1415 + 01 0.1138 + 01
0.1460 + 01 0.3465 + 01 0.2430 + 01 0.1426 + 01 0.1150 + 01
0.1480 + 01 0.3566 + 01 0.2480 + 01 0.1438 + 01 0.1163 + 01
0.1500 + 01 0.3671 + 01 0.2532 + 01 0.1450 + 01 0.1176 + 01
0.1520 + 01 0.3779 + 01 0.2585 + 01 0.1462 + 01 0.1190 + 01
0.1540 + 01 0.3891 + 01 0.2639 + 01 0.1474 + 01 0.1204 + 01
0.1560 + 01 0.4007 + 01 0.2695 + 01 0.1487 + 01 0.1219 + 01
0.1580 + 01 0.4127 + 01 0.2752 + 01 0.1499 + 01 0.1234 + 01
0.1600 + 01 0.4250 + 01 0.2811 + 01 0.1512 + 01 0.1250 + 01
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0.1620 + 01 0.4378 + 01 0.2871 + 01 0.1525 + 01 0.1267 + 01
0.1640 + 01 0.4511 + 01 0.2933 + 01 0.1538 + 01 0.1284 + 01
0.1660 + 01 0.4648 + 01 0.2996 + 01 0.1551 + 01 0.1301 + 01
0.1680 + 01 0.4790 + 01 0.3061 + 01 0.1564 + 01 0.1319 + 01
0.1700 + 01 0.4936 + 01 0.3128 + 01 0.1578 + 01 0.1338 + 01
0.1720 + 01 0.5087 + 01 0.3196 + 01 0.1592 + 01 0.1357 + 01
0.1740 + 01 0.5244 + 01 0.3266 + 01 0.1606 + 01 0.1376 + 01
0.1760 + 01 0.5406 + 01 0.3338 + 01 0.1620 + 01 0.1397 + 01
0.1780 + 01 0.5573 + 01 0.3411 + 01 0.1634 + 01 0.1418 + 01
0.1800 + 01 0.5746 + 01 0.3487 + 01 0.1648 + 01 0.1439 + 01

0.1820 + 01 0.5924 + 01 0.3564 + 01 0.1662 + 01 0.1461 + 01
0.1840 + 01 0.6109 + 01 0.3643 + 01 0.1677 + 01 0.1484 + 01
0.1860 + 01 0.6300 + 01 0.3723 + 01 0.1692 + 01 0.1507 + 01
0.1880 + 01 0.6497 + 01 0.3806 + 01 0.1707 + 01 0.1531 + 01
0.1900 + 01 0.6701 + 01 0.3891 + 01 0.1722 + 01 0.1555 + 01
0.1920 + 01 0.6911 + 01 0.3978 + 01 0.1737 + 01 0.1580 + 01
0.1940 + 01 0.7128 + 01 0.4067 + 01 0.1753 + 01 0.1606 + 01
0.1960 + 01 0.7353 + 01 0.4158 + 01 0.1768 + 01 0.1633 + 01
0.1980 + 01 0.7585 + 01 0.4251 + 01 0.1784 + 01 0.1660 + 01
0.2000 + 01 0.7824 + 01 0.4347 + 01 0.1800 + 01 0.1687 + 01

0.2050 + 01 0.8458 + 01 0.4596 + 01 0.1840 + 01 0.1760 + 01
0.2100 + 01 0.9145 + 01 0.4859 + 01 0.1882 + 01 0.1837 + 01
0.2150 + 01 0.9888 + 01 0.5138 + 01 0.1924 + 01 0.1919 + 01
0.2200 + 01 0.1069 + 02 0.5433 + 01 0.1968 + 01 0.2005 + 01
0.2250 + 01 0.1156 + 02 0.5746 + 01 0.2012 + 01 0.2096 + 01
0.2300 + 01 0.1250 + 02 0.6076 + 01 0.2058 + 01 0.2193 + 01
0.2350 + 01 0.1352 + 02 0.6425 + 01 0.2104 + 01 0.2295 + 01
0.2400 + 01 0.1462 + 02 0.6794 + 01 0.2152 + 01 0.2403 + 01
0.2450 + 01 0.1581 + 02 0.7183 + 01 0.2200 + 01 0.2517 + 01
0.2500 + 01 0.1709 + 02 0.7594 + 01 0.2250 + 01 0.2637 + 01

0.2550 + 01 0.1847 + 02 0.8027 + 01 0.2300 + 01 0.2763 + 01
0.2600 + 01 0.1995 + 02 0.8484 + 01 0.2352 + 01 0.2896 + 01
0.2650 + 01 0.2156 + 02 0.8965 + 01 0.2404 + 01 0.3036 + 01
0.2700 + 01 0.2328 + 02 0.9472 + 01 0.2458 + 01 0.3183 + 01
0.2750 + 01 0.2514 + 02 0.1001 + 02 0.2512 + 01 0.3338 + 01
0.2800 + 01 0.2714 + 02 0.1057 + 02 0.2568 + 01 0.3500 + 01
0.2850 + 01 0.2929 + 02 0.1116 + 02 0.2624 + 01 0.3671 + 01
0.2900 + 01 0.3159 + 02 0.1178 + 02 0.2682 + 01 0.3850 + 01
0.2950 + 01 0.3407 + 02 0.1243 + 02 0.2740 + 01 0.4038 + 01
0.3000 + 01 0.3673 + 02 0.1312 + 02 0.2800 + 01 0.4235 + 01

0.3050 + 01 0.3959 + 02 0.1384 + 02 0.2860 + 01 0.4441 + 01
0.3100 + 01 0.4265 + 02 0.1459 + 02 0.2922 + 01 0.4657 + 01
0.3150 + 01 0.4593 + 02 0.1539 + 02 0.2984 + 01 0.4884 + 01
0.3200 + 01 0.4944 + 02 0.1622 + 02 0.3048 + 01 0.5121 + 01
0.3250 + 01 0.5320 + 02 0.1709 + 02 0.3112 + 01 0.5369 + 01
0.3300 + 01 0.5722 + 02 0.1800 + 02 0.3178 + 01 0.5629 + 01
0.3350 + 01 0.6152 + 02 0.1896 + 02 0.3244 + 01 0.5900 + 01
0.3400 + 01 0.6612 + 02 0.1996 + 02 0.3312 + 01 0.6184 + 01
0.3450 + 01 0.7103 + 02 0.2101 + 02 0.3380 + 01 0.6480 + 01
0.3500 + 01 0.7627 + 02 0.2211 + 02 0.3450 + 01 0.6790 + 01
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0.3550 + 01 0.8187 + 02 0.2325 + 02 0.3520 + 01 0.7113 + 01
0.3600 + 01 0.8784 + 02 0.2445 + 02 0.3592 + 01 0.7450 + 01
0.3650 + 01 0.9420 + 02 0.2571 + 02 0.3664 + 01 0.7802 + 01
0.3700 + 01 0.1010 + 03 0.2701 + 02 0.3738 + 01 0.8169 + 01
0.3750 + 01 0.1082 + 03 0.2838 + 02 0.3812 + 01 0.8552 + 01
0.3800 + 01 0.1159 + 03 0.2981 + 02 0.3888 + 01 0.8951 + 01
0.3850 + 01 0.1241 + 03 0.3129 + 02 0.3964 + 01 0.9366 + 01
0.3900 + 01 0.1328 + 03 0.3285 + 02 0.4042 + 01 0.9799 + 01
0.3950 + 01 0.1420 + 03 0.3446 + 02 0.4120 + 01 0.1025 + 02
0.4000 + 01 0.1518 + 03 0.3615 + 02 0.4200 + 01 0.1072 + 02

0.4050 + 01 0.1623 + 03 0.3791 + 02 0.4280 + 01 0.1121 + 02
0.4100 + 01 0.1733 + 03 0.3974 + 02 0.4362 + 01 0.1171 + 02
0.4150 + 01 0.1851 + 03 0.4164 + 02 0.4444 + 01 0.1224 + 02
0.4200 + 01 0.1975 + 03 0.4363 + 02 0.4528 + 01 0.1279 + 02
0.4250 + 01 0.2108 + 03 0.4569 + 02 0.4612 + 01 0.1336 + 02
0.4300 + 01 0.2247 + 03 0.4784 + 02 0.4698 + 01 0.1395 + 02
0.4350 + 01 0.2396 + 03 0.5007 + 02 0.4784 + 01 0.1457 + 02
0.4400 + 01 0.2553 + 03 0.5239 + 02 0.4872 + 01 0.1521 + 02
0.4450 + 01 0.2719 + 03 0.5480 + 02 0.4960 + 01 0.1587 + 02
0.4500 + 01 0.2894 + 03 0.5731 + 02 0.5050 + 01 0.1656 + 02

0.4550 + 01 0.3080 + 03 0.5991 + 02 0.5140 + 01 0.1728 + 02
0.4600 + 01 0.3276 + 03 0.6261 + 02 0.5232 + 01 0.1802 + 02
0.4650 + 01 0.3483 + 03 0.6542 + 02 0.5324 + 01 0.1879 + 02
0.4700 + 01 0.3702 + 03 0.6833 + 02 0.5418 + 01 0.1958 + 02
0.4750 + 01 0.3933 + 03 0.7135 + 02 0.5512 + 01 0.2041 + 02
0.4800 + 01 0.4177 + 03 0.7448 + 02 0.5608 + 01 0.2126 + 02
0.4850 + 01 0.4434 + 03 0.7772 + 02 0.5704 + 01 0.2215 + 02
0.4900 + 01 0.4705 + 03 0.8109 + 02 0.5802 + 01 0.2307 + 02
0.4950 + 01 0.4990 + 03 0.8457 + 02 0.5900 + 01 0.2402 + 02
0.5000 + 01 0.5291 + 03 0.8818 + 02 0.6000 + 01 0.2500 + 02

0.5100 + 01 0.5941 + 03 0.9579 + 02 0.6202 + 01 0.2707 + 02
0.5200 + 01 0.6661 + 03 0.1039 + 03 0.6408 + 01 0.2928 + 02
0.5300 + 01 0.7457 + 03 0.1127 + 03 0.6618 + 01 0.3165 + 02
0.5400 + 01 0.8335 + 03 0.1220 + 03 0.6832 + 01 0.3417 + 02
0.5500 + 01 0.9304 + 03 0.1320 + 03 0.7050 + 01 0.3687 + 02
0.5600 + 01 0.1037 + 04 0.1426 + 03 0.7272 + 01 0.3974 + 02
0.5700 + 01 0.1154 + 04 0.1539 + 03 0.7498 + 01 0.4280 + 02
0.5800 + 01 0.1283 + 04 0.1660 + 03 0.7728 + 01 0.4605 + 02
0.5900 + 01 0.1424 + 04 0.1789 + 03 0.7962 + 01 0.4951 + 02
0.6000 + 01 0.1579 + 04 0.1925 + 03 0.8200 + 01 0.5318 + 02

0.6100 + 01 0.1748 + 04 0.2071 + 03 0.8442 + 01 0.5708 + 02
0.6200 + 01 0.1933 + 04 0.2225 + 03 0.8688 + 01 0.6121 + 02
0.6300 + 01 0.2135 + 04 0.2388 + 03 0.8938 + 01 0.6559 + 02
0.6400 + 01 0.2355 + 04 0.2562 + 03 0.9192 + 01 0.7023 + 02
0.6500 + 01 0.2594 + 04 0.2745 + 03 0.9450 + 01 0.7513 + 02
0.6600 + 01 0.2855 + 04 0.2939 + 03 0.9712 + 01 0.8032 + 02
0.6700 + 01 0.3138 + 04 0.3145 + 03 0.9978 + 01 0.8580 + 02
0.6800 + 01 0.3445 + 04 0.3362 + 03 0.1025 + 02 0.9159 + 02
0.6900 + 01 0.3779 + 04 0.3591 + 03 0.1052 + 02 0.9770 + 02
0.7000 + 01 0.4140 + 04 0.3833 + 03 0.1080 + 02 0.1041 + 03
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0.7100 + 01 0.4531 + 04 0.4088 + 03 0.1108 + 02 0.1109 + 03
0.7200 + 01 0.4953 + 04 0.4357 + 03 0.1137 + 02 0.1181 + 03
0.7300 + 01 0.5410 + 04 0.4640 + 03 0.1166 + 02 0.1256 + 03
0.7400 + 01 0.5903 + 04 0.4939 + 03 0.1195 + 02 0.1335 + 03
0.7500 + 01 0.6434 + 04 0.5252 + 03 0.1225 + 02 0.1418 + 03
0.7600 + 01 0.7006 + 04 0.5582 + 03 0.1255 + 02 0.1506 + 03
0.7700 + 01 0.7623 + 04 0.5928 + 03 0.1286 + 02 0.1598 + 03
0.7800 + 01 0.8285 + 04 0.6292 + 03 0.1317 + 02 0.1694 + 03
0.7900 + 01 0.8998 + 04 0.6674 + 03 0.1348 + 02 0.1795 + 03
0.8000 + 01 0.9763 + 04 0.7075 + 03 0.1380 + 02 0.1901 + 03

0.9000 + 01 0.2110 + 05 0.1227 + 04 0.1720 + 02 0.3272 + 03
0.1000 + 02 0.4244 + 05 0.2021 + 04 0.2100 + 02 0.5359 + 03
0.1100 + 02 0.8033 + 05 0.3188 + 04 0.2520 + 02 0.8419 + 03
0.1200 + 02 0.1445 + 06 0.4848 + 04 0.2980 + 02 0.1276 + 04
0.1300 + 02 0.2486 + 06 0.7144 + 04 0.3480 + 02 0.1876 + 04
0.1400 + 02 0.4119 + 06 0.1025 + 05 0.4020 + 02 0.2685 + 04
0.1500 + 02 0.6602 + 06 0.1435 + 05 0.4600 + 02 0.3755 + 04
0.1600 + 02 0.1028 + 07 0.1969 + 05 0.5229 + 02 0.5145 + 04
0.1700 + 02 0.1559 + 07 0.2651 + 05 0.5880 + 02 0.6921 + 04
0.1800 + 02 0.2311 + 07 0.3512 + 05 0.6580 + 02 0.9159 + 04

0.1900 + 02 0.3356 + 07 0.4584 + 05 0.7320 + 02 0.1195 + 05
0.2000 + 02 0.4783 + 07 0.5905 + 05 0.8100 + 02 0.1538 + 05
0.2200 + 02 0.9251 + 07 0.9459 + 05 0.9780 + 02 0.2461 + 05
0.2400 + 02 0.1691 + 08 0.1456 + 06 0.1162 + 03 0.3783 + 05
0.2600 + 02 0.2949 + 08 0.2165 + 06 0.1362 + 03 0.5624 + 05
0.2800 + 02 0.4936 + 08 0.3128 + 06 0.1578 + 03 0.8121 + 05
0.3000 + 02 0.7978 + 08 0.4408 + 06 0.1810 + 03 0.1144 + 06
0.3200 + 02 0.1250 + 09 0.6076 + 06 0.2058 + 03 0.1576 + 06
0.3400 + 02 0.1908 + 09 0.8216 + 06 0.2322 + 03 0.2131 + 06
0.3600 + 02 0.2842 + 09 0.1092 + 07 0.2602 + 03 0.2832 + 06

0.3800 + 02 0.4143 + 09 0.1430 + 07 0.2898 + 03 0.3707 + 06
0.4000 + 02 0.5926 + 09 0.1846 + 07 0.3210 + 03 0.4785 + 06
0.4200 + 02 0.8330 + 09 0.2354 + 07 0.3538 + 03 0.6102 + 06
0.4400 + 02 0.1153 + 10 0.2969 + 07 0.3882 + 03 0.7694 + 06
0.4600 + 02 0.1572 + 10 0.3706 + 07 0.4242 + 03 0.9603 + 06
0.4800 + 02 0.2116 + 10 0.4583 + 07 0.4618 + 03 0.1187 + 07
0.5000 + 02 0.2815 + 10 0.5618 + 07 0.5010 + 03 0.1455 + 07





A P P E N D I X B
Normal Shock Properties

M
p2

p1

ρ2

ρ1

T2

T1

p02

p01

p02

p1
M2

0.1000 + 01 0.1000 + 01 0.1000 + 01 0.1000 + 01 0.1000 + 01 0.1893 + 01 0.1000 + 01
0.1020 + 01 0.1047 + 01 0.1033 + 01 0.1013 + 01 0.1000 + 01 0.1938 + 01 0.9805 + 00
0.1040 + 01 0.1095 + 01 0.1067 + 01 0.1026 + 01 0.9999 + 00 0.1984 + 01 0.9620 + 00
0.1060 + 01 0.1144 + 01 0.1101 + 01 0.1039 + 01 0.9998 + 00 0.2032 + 01 0.9444 + 00
0.1080 + 01 0.1194 + 01 0.1135 + 01 0.1052 + 01 0.9994 + 01 0.2082 + 01 0.9277 + 00
0.1100 + 01 0.1245 + 01 0.1169 + 01 0.1065 + 01 0.9989 + 00 0.2133 + 01 0.9118 + 00
0.1120 + 01 0.1297 + 01 0.1203 + 01 0.1078 + 01 0.9982 + 00 0.2185 + 01 0.8966 + 00
0.1140 + 01 0.1350 + 01 0.1238 + 01 0.1090 + 01 0.9973 + 00 0.2239 + 01 0.8820 + 00
0.1160 + 01 0.1403 + 01 0.1272 + 01 0.1103 + 01 0.9961 + 00 0.2294 + 01 0.8682 + 00
0.1180 + 01 0.1458 + 01 0.1307 + 01 0.1115 + 01 0.9946 + 00 0.2350 + 01 0.8549 + 00

0.1200 + 01 0.1513 + 01 0.1342 + 01 0.1128 + 01 0.9928 + 00 0.2408 + 01 0.8422 + 00
0.1220 + 01 0.1570 + 01 0.1376 + 01 0.1141 + 01 0.9907 + 00 0.2466 + 01 0.8300 + 00
0.1240 + 01 0.1627 + 01 0.1411 + 01 0.1153 + 01 0.9884 + 00 0.2526 + 01 0.8183 + 00
0.1260 + 01 0.1686 + 01 0.1446 + 01 0.1166 + 01 0.9857 + 00 0.2588 + 01 0.8071 + 00
0.1280 + 01 0.1745 + 01 0.1481 + 01 0.1178 + 01 0.9827 + 00 0.2650 + 01 0.7963 + 00
0.1300 + 01 0.1805 + 01 0.1516 + 01 0.1191 + 01 0.9794 + 00 0.2714 + 01 0.7860 + 00
0.1320 + 01 0.1866 + 01 0.1551 + 01 0.1204 + 01 0.9758 + 00 0.2778 + 01 0.7760 + 00
0.1340 + 01 0.1928 + 01 0.1585 + 01 0.1216 + 01 0.9718 + 00 0.2844 + 01 0.7664 + 00
0.1360 + 01 0.1991 + 01 0.1620 + 01 0.1229 + 01 0.9676 + 00 0.2912 + 01 0.7572 + 00
0.1380 + 01 0.2055 + 01 0.1655 + 01 0.1242 + 01 0.9630 + 00 0.2980 + 01 0.7483 + 00

0.1400 + 01 0.2120 + 01 0.1690 + 01 0.1255 + 01 0.9582 + 00 0.3049 + 01 0.7397 + 00
0.1420 + 01 0.2186 + 01 0.1724 + 01 0.1268 + 01 0.9531 + 00 0.3120 + 01 0.7314 + 00
0.1440 + 01 0.2253 + 01 0.1759 + 01 0.1281 + 01 0.9476 + 00 0.3191 + 01 0.7235 + 00
0.1460 + 01 0.2320 + 01 0.1793 + 01 0.1294 + 01 0.9420 + 00 0.3264 + 01 0.7157 + 00
0.1480 + 01 0.2389 + 01 0.1828 + 01 0.1307 + 01 0.9360 + 00 0.3338 + 01 0.7083 + 00
0.1500 + 01 0.2458 + 01 0.1862 + 01 0.1320 + 01 0.9298 + 00 0.3413 + 01 0.7011 + 00
0.1520 + 01 0.2529 + 01 0.1896 + 01 0.1334 + 01 0.9233 + 00 0.3489 + 01 0.6941 + 00
0.1540 + 01 0.2600 + 01 0.1930 + 01 0.1347 + 01 0.9166 + 00 0.3567 + 01 0.6874 + 00
0.1560 + 01 0.2673 + 01 0.1964 + 01 0.1361 + 01 0.9097 + 00 0.3645 + 01 0.6809 + 00
0.1580 + 01 0.2746 + 01 0.1998 + 01 0.1374 + 01 0.9026 + 00 0.3724 + 01 0.6746 + 00
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M
p2

p1

ρ2

ρ1

T2

T1

p02

p01

p02

p1
M2

0.1600 + 01 0.2820 + 01 0.2032 + 01 0.1388 + 01 0.8952 + 00 0.3805 + 01 0.6684 + 00
0.1620 + 01 0.2895 + 01 0.2065 + 01 0.1402 + 01 0.8877 + 00 0.3887 + 01 0.6625 + 00
0.1640 + 01 0.2971 + 01 0.2099 + 01 0.1416 + 01 0.8799 + 00 0.3969 + 01 0.6568 + 00
0.1660 + 01 0.3048 + 01 0.2132 + 01 0.1430 + 01 0.8720 + 00 0.4053 + 01 0.6512 + 00
0.1680 + 01 0.3126 + 01 0.2165 + 01 0.1444 + 01 0.8639 + 00 0.4138 + 01 0.6458 + 00
0.1700 + 01 0.3205 + 01 0.2198 + 01 0.1458 + 01 0.8557 + 00 0.4224 + 01 0.6405 + 00
0.1720 + 01 0.3285 + 01 0.2230 + 01 0.1473 + 01 0.8474 + 00 0.4311 + 01 0.6355 + 00
0.1740 + 01 0.3366 + 01 0.2263 + 01 0.1487 + 01 0.8389 + 00 0.4399 + 01 0.6305 + 00
0.1760 + 01 0.3447 + 01 0.2295 + 01 0.1502 + 01 0.8302 + 00 0.4488 + 01 0.6257 + 00
0.1780 + 01 0.3530 + 01 0.2327 + 01 0.1517 + 01 0.8215 + 00 0.4578 + 01 0.6210 + 00

0.1800 + 01 0.3613 + 01 0.2359 + 01 0.1532 + 01 0.8127 + 00 0.4670 + 01 0.6165 + 00
0.1820 + 01 0.3698 + 01 0.2391 + 01 0.1547 + 01 0.8038 + 00 0.4762 + 01 0.6121 + 00
0.1840 + 01 0.3783 + 01 0.2422 + 01 0.1562 + 01 0.7948 + 00 0.4855 + 01 0.6078 + 00
0.1860 + 01 0.3870 + 01 0.2454 + 01 0.1577 + 01 0.7857 + 00 0.4950 + 01 0.6036 + 00
0.1880 + 01 0.3957 + 01 0.2485 + 01 0.1592 + 01 0.7765 + 00 0.5045 + 01 0.5996 + 00
0.1900 + 01 0.4045 + 01 0.2516 + 01 0.1608 + 01 0.7674 + 00 0.5142 + 01 0.5956 + 00
0.1920 + 01 0.4134 + 01 0.2546 + 01 0.1624 + 01 0.7581 + 00 0.5239 + 01 0.5918 + 00
0.1940 + 01 0.4224 + 01 0.2577 + 01 0.1639 + 01 0.7488 + 00 0.5338 + 01 0.5880 + 00
0.1960 + 01 0.4315 + 01 0.2607 + 01 0.1655 + 01 0.7395 + 00 0.5438 + 01 0.5844 + 00
0.1980 + 01 0.4407 + 01 0.2637 + 01 0.1671 + 01 0.7302 + 00 0.5539 + 01 0.5808 + 00

0.2000 + 01 0.4500 + 01 0.2667 + 01 0.1687 + 01 0.7209 + 00 0.5640 + 01 0.5774 + 00
0.2050 + 01 0.4736 + 01 0.2740 + 01 0.1729 + 01 0.6975 + 00 0.5900 + 01 0.5691 + 00
0.2100 + 01 0.4978 + 01 0.2812 + 01 0.1770 + 01 0.6742 + 00 0.6165 + 01 0.5613 + 00
0.2150 + 01 0.5226 + 01 0.2882 + 01 0.1813 + 01 0.6511 + 00 0.6438 + 01 0.5540 + 00
0.2200 + 01 0.5480 + 01 0.2951 + 01 0.1857 + 01 0.6281 + 00 0.6716 + 01 0.5471 + 00
0.2250 + 01 0.5740 + 01 0.3019 + 01 0.1901 + 01 0.6055 + 00 0.7002 + 01 0.5406 + 00
0.2300 + 01 0.6005 + 01 0.3085 + 01 0.1947 + 01 0.5833 + 00 0.7294 + 01 0.5344 + 00
0.2350 + 01 0.6276 + 01 0.3149 + 01 0.1993 + 01 0.5615 + 00 0.7592 + 01 0.5286 + 00
0.2400 + 01 0.6553 + 01 0.3212 + 01 0.2040 + 01 0.5401 + 00 0.7897 + 01 0.5231 + 00
0.2450 + 01 0.6836 + 01 0.3273 + 01 0.2088 + 01 0.5193 + 00 0.8208 + 01 0.5179 + 00

0.2500 + 01 0.7125 + 01 0.3333 + 01 0.2137 + 01 0.4990 + 00 0.8526 + 01 0.5130 + 00
0.2550 + 01 0.7420 + 01 0.3392 + 01 0.2187 + 01 0.4793 + 00 0.8850 + 01 0.5083 + 00
0.2600 + 01 0.7720 + 01 0.3449 + 01 0.2238 + 01 0.4601 + 00 0.9181 + 01 0.5039 + 00
0.2650 + 01 0.8026 + 01 0.3505 + 01 0.2290 + 01 0.4416 + 00 0.9519 + 01 0.4996 + 00
0.2700 + 01 0.8338 + 01 0.3559 + 01 0.2343 + 01 0.4236 + 00 0.9862 + 01 0.4956 + 00
0.2750 + 01 0.8656 + 01 0.3612 + 01 0.2397 + 01 0.4062 + 00 0.1021 + 02 0.4918 + 00
0.2800 + 01 0.8980 + 01 0.3664 + 01 0.2451 + 01 0.3895 + 00 0.1057 + 02 0.4882 + 00
0.2850 + 01 0.9310 + 01 0.3714 + 01 0.2507 + 01 0.3733 + 00 0.1093 + 02 0.4847 + 00
0.2900 + 01 0.9645 + 01 0.3763 + 01 0.2563 + 01 0.3577 + 00 0.1130 + 02 0.4814 + 00
0.2950 + 01 0.9986 + 01 0.3811 + 01 0.2621 + 01 0.3428 + 00 0.1168 + 02 0.4782 + 00

0.3000 + 01 0.1033 + 02 0.3857 + 01 0.2679 + 01 0.3283 + 00 0.1206 + 02 0.4752 + 00
0.3050 + 01 0.1069 + 02 0.3902 + 01 0.2738 + 01 0.3145 + 00 0.1245 + 02 0.4723 + 00
0.3100 + 01 0.1104 + 02 0.3947 + 01 0.2799 + 01 0.3012 + 00 0.1285 + 02 0.4695 + 00
0.3150 + 01 0.1141 + 02 0.3990 + 01 0.2860 + 01 0.2885 + 00 0.1325 + 02 0.4669 + 00
0.3200 + 01 0.1178 + 02 0.4031 + 01 0.2922 + 01 0.2762 + 00 0.1366 + 02 0.4643 + 00
0.3250 + 01 0.1216 + 02 0.4072 + 01 0.2985 + 01 0.2645 + 00 0.1407 + 02 0.4619 + 00
0.3300 + 01 0.1254 + 02 0.4112 + 01 0.3049 + 01 0.2533 + 00 0.1449 + 02 0.4596 + 00
0.3350 + 01 0.1293 + 02 0.4151 + 01 0.3114 + 01 0.2425 + 00 0.1492 + 02 0.4573 + 00
0.3400 + 01 0.1332 + 02 0.4188 + 01 0.3180 + 01 0.2322 + 00 0.1535 + 02 0.4552 + 00
0.3450 + 01 0.1372 + 02 0.4225 + 01 0.3247 + 01 0.2224 + 00 0.1579 + 02 0.4531 + 00
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0.3500 + 01 0.1412 + 02 0.4261 + 01 0.3315 + 01 0.2129 + 00 0.1624 + 02 0.4512 + 00
0.3550 + 01 0.1454 + 02 0.4296 + 01 0.3384 + 01 0.2039 + 00 0.1670 + 02 0.4492 + 00
0.3600 + 01 0.1495 + 02 0.4330 + 01 0.3454 + 01 0.1953 + 00 0.1716 + 02 0.4474 + 00
0.3650 + 01 0.1538 + 02 0.4363 + 01 0.3525 + 01 0.1871 + 00 0.1762 + 02 0.4456 + 00
0.3700 + 01 0.1580 + 02 0.4395 + 01 0.3596 + 01 0.1792 + 00 0.1810 + 02 0.4439 + 00
0.3750 + 01 0.1624 + 02 0.4426 + 01 0.3669 + 01 0.1717 + 00 0.1857 + 02 0.4423 + 00
0.3800 + 01 0.1668 + 02 0.4457 + 01 0.3743 + 01 0.1645 + 00 0.1906 + 02 0.4407 + 00
0.3850 + 01 0.1713 + 02 0.4487 + 01 0.3817 + 01 0.1576 + 00 0.1955 + 02 0.4392 + 00
0.3900 + 01 0.1758 + 02 0.4516 + 01 0.3893 + 01 0.1510 + 00 0.2005 + 02 0.4377 + 00
0.3950 + 01 0.1804 + 02 0.4544 + 01 0.3969 + 01 0.1448 + 00 0.2056 + 02 0.4363 + 00

0.4000 + 01 0.1850 + 02 0.4571 + 01 0.4047 + 01 0.1388 + 00 0.2107 + 02 0.4350 + 00
0.4050 + 01 0.1897 + 02 0.4598 + 01 0.4125 + 01 0.1330 + 00 0.2159 + 02 0.4336 + 00
0.4100 + 01 0.1944 + 02 0.4624 + 01 0.4205 + 01 0.1276 + 00 0.2211 + 02 0.4324 + 00
0.4150 + 01 0.1993 + 02 0.4650 + 01 0.4285 + 01 0.1223 + 00 0.2264 + 02 0.4311 + 00
0.4200 + 01 0.2041 + 02 0.4675 + 01 0.4367 + 01 0.1173 + 00 0.2318 + 02 0.4299 + 00
0.4250 + 01 0.2091 + 02 0.4699 + 01 0.4449 + 01 0.1126 + 00 0.2372 + 02 0.4288 + 00
0.4300 + 01 0.2140 + 02 0.4723 + 01 0.4532 + 01 0.1080 + 00 0.2427 + 02 0.4277 + 00
0.4350 + 01 0.2191 + 02 0.4746 + 01 0.4616 + 01 0.1036 + 00 0.2483 + 02 0.4266 + 00
0.4400 + 01 0.2242 + 02 0.4768 + 01 0.4702 + 01 0.9948 − 01 0.2539 + 02 0.4255 + 00
0.4450 + 01 0.2294 + 02 0.4790 + 01 0.4788 + 01 0.9550 − 01 0.2596 + 02 0.4245 + 00

0.4500 + 01 0.2346 + 02 0.4812 + 01 0.4875 + 01 0.9170 − 01 0.2654 + 02 0.4236 + 00
0.4550 + 01 0.2399 + 02 0.4833 + 01 0.4963 + 01 0.8806 − 01 0.2712 + 02 0.4226 + 00
0.4600 + 01 0.2452 + 02 0.4853 + 01 0.5052 + 01 0.8459 − 01 0.2771 + 02 0.4217 + 00
0.4650 + 01 0.2506 + 02 0.4873 + 01 0.5142 + 01 0.8126 − 01 0.2831 + 02 0.4208 + 00
0.4700 + 01 0.2560 + 02 0.4893 + 01 0.5233 + 01 0.7809 − 01 0.2891 + 02 0.4199 + 00
0.4750 + 01 0.2616 + 02 0.4912 + 01 0.5325 + 01 0.7505 − 01 0.2952 + 02 0.4191 + 00
0.4800 + 01 0.2671 + 02 0.4930 + 01 0.5418 + 01 0.7214 − 01 0.3013 + 02 0.4183 + 00
0.4850 + 01 0.2728 + 02 0.4948 + 01 0.5512 + 01 0.6936 − 01 0.3075 + 02 0.4175 + 00
0.4900 + 01 0.2784 + 02 0.4966 + 01 0.5607 + 01 0.6670 − 01 0.3138 + 02 0.4167 + 00
0.4950 + 01 0.2842 + 02 0.4983 + 01 0.5703 + 01 0.6415 − 01 0.3201 + 02 0.4160 + 00

0.5000 + 01 0.2900 + 02 0.5000 + 01 0.5800 + 01 0.6172 − 01 0.3265 + 02 0.4152 + 00
0.5100 + 01 0.3018 + 02 0.5033 + 01 0.5997 + 01 0.5715 − 01 0.3395 + 02 0.4138 + 00
0.5200 + 01 0.3138 + 02 0.5064 + 01 0.6197 + 01 0.5297 − 01 0.3528 + 02 0.4125 + 00
0.5300 + 01 0.3260 + 02 0.5093 + 01 0.6401 + 01 0.4913 − 01 0.3663 + 02 0.4113 + 00
0.5400 + 01 0.3385 + 02 0.5122 + 01 0.6610 + 01 0.4560 − 01 0.3801 + 02 0.4101 + 00
0.5500 + 01 0.3512 + 02 0.5149 + 01 0.6822 + 01 0.4236 − 01 0.3941 + 02 0.4090 + 00
0.5600 + 01 0.3642 + 02 0.5175 + 01 0.7038 + 01 0.3938 − 01 0.4084 + 02 0.4079 + 00
0.5700 + 01 0.3774 + 02 0.5200 + 01 0.7258 + 01 0.3664 − 01 0.4230 + 02 0.4069 + 00
0.5800 + 01 0.3908 + 02 0.5224 + 01 0.7481 + 01 0.3412 − 01 0.4378 + 02 0.4059 + 00
0.5900 + 01 0.4044 + 02 0.5246 + 01 0.7709 + 01 0.3180 − 01 0.4528 + 02 0.4050 + 00

0.6000 + 01 0.4183 + 02 0.5268 + 01 0.7941 + 01 0.2965 − 01 0.4682 + 02 0.4042 + 00
0.6100 + 01 0.4324 + 02 0.5289 + 01 0.8176 + 01 0.2767 − 01 0.4837 + 02 0.4033 + 00
0.6200 + 01 0.4468 + 02 0.5309 + 01 0.8415 + 01 0.2584 − 01 0.4996 + 02 0.4025 + 00
0.6300 + 01 0.4614 + 02 0.5329 + 01 0.8658 + 01 0.2416 − 01 0.5157 + 02 0.4018 + 00
0.6400 + 01 0.4762 + 02 0.5347 + 01 0.8905 + 01 0.2259 − 01 0.5320 + 02 0.4011 + 00
0.6500 + 01 0.4912 + 02 0.5365 + 01 0.9156 + 01 0.2115 − 01 0.5486 + 02 0.4004 + 00
0.6600 + 01 0.5065 + 02 0.5382 + 01 0.9411 + 01 0.1981 − 01 0.5655 + 02 0.3997 + 00
0.6700 + 01 0.5220 + 02 0.5399 + 01 0.9670 + 01 0.1857 − 01 0.5826 + 02 0.3991 + 00
0.6800 + 01 0.5378 + 02 0.5415 + 01 0.9933 + 01 0.1741 − 01 0.6000 + 02 0.3985 + 00
0.6900 + 01 0.5538 + 02 0.5430 + 01 0.1020 + 02 0.1635 − 01 0.6176 + 02 0.3979 + 00
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0.7000 + 01 0.5700 + 02 0.5444 + 01 0.1047 + 02 0.1535 − 01 0.6355 + 02 0.3974 + 00
0.7100 + 01 0.5864 + 02 0.5459 + 01 0.1074 + 02 0.1443 − 01 0.6537 + 02 0.3968 + 00
0.7200 + 01 0.6031 + 02 0.5472 + 01 0.1102 + 02 0.1357 − 01 0.6721 + 02 0.3963 + 00
0.7300 + 01 0.6200 + 02 0.5485 + 01 0.1130 + 02 0.1277 − 01 0.6908 + 02 0.3958 + 00
0.7400 + 01 0.6372 + 02 0.5498 + 01 0.1159 + 02 0.1202 − 01 0.7097 + 02 0.3954 + 00
0.7500 + 01 0.6546 + 02 0.5510 + 01 0.1188 + 02 0.1133 − 01 0.7289 + 02 0.3949 + 00
0.7600 + 01 0.6722 + 02 0.5522 + 01 0.1217 + 02 0.1068 − 01 0.7483 + 02 0.3945 + 00
0.7700 + 01 0.6900 + 02 0.5533 + 01 0.1247 + 02 0.1008 − 01 0.7680 + 02 0.3941 + 00
0.7800 + 01 0.7081 + 02 0.5544 + 01 0.1277 + 02 0.9510 − 02 0.7880 + 02 0.3937 + 00
0.7900 + 01 0.7264 + 02 0.5555 + 01 0.1308 + 02 0.8982 − 02 0.8082 + 02 0.3933 + 00

0.8000 + 01 0.7450 + 02 0.5565 + 01 0.1339 + 02 0.8488 − 02 0.8287 + 02 0.3929 + 00
0.9000 + 01 0.9433 + 02 0.5651 + 01 0.1669 + 02 0.4964 − 02 0.1048 + 03 0.3898 + 00
0.1000 + 02 0.1165 + 03 0.5714 + 01 0.2039 + 02 0.3045 − 02 0.1292 + 03 0.3876 + 00
0.1100 + 02 0.1410 + 03 0.5762 + 01 0.2447 + 02 0.1945 − 02 0.1563 + 03 0.3859 + 00
0.1200 + 02 0.1678 + 03 0.5799 + 01 0.2894 + 02 0.1287 − 02 0.1859 + 03 0.3847 + 00
0.1300 + 02 0.1970 + 03 0.5828 + 01 0.3380 + 02 0.8771 − 03 0.2181 + 03 0.3837 + 00
0.1400 + 02 0.2285 + 03 0.5851 + 01 0.3905 + 02 0.6138 − 03 0.2528 + 03 0.3829 + 00
0.1500 + 02 0.2623 + 03 0.5870 + 01 0.4469 + 02 0.4395 − 03 0.2902 + 03 0.3823 + 00
0.1600 + 02 0.2985 + 03 0.5885 + 01 0.5072 + 02 0.3212 − 03 0.3301 + 03 0.3817 + 00
0.1700 + 02 0.3370 + 03 0.5898 + 01 0.5714 + 02 0.2390 − 03 0.3726 + 03 0.3813 + 00

0.1800 + 02 0.3778 + 03 0.5909 + 01 0.6394 + 02 0.1807 − 03 0.4176 + 03 0.3810 + 00
0.1900 + 02 0.4210 + 03 0.5918 + 01 0.7114 + 02 0.1386 − 03 0.4653 + 03 0.3806 + 00
0.2000 + 02 0.4665 + 03 0.5926 + 01 0.7872 + 02 0.1078 − 03 0.5155 + 03 0.3804 + 00
0.2200 + 02 0.5645 + 03 0.5939 + 01 0.9506 + 02 0.6741 − 04 0.6236 + 03 0.3800 + 00
0.2400 + 02 0.6718 + 03 0.5948 + 01 0.1129 + 03 0.4388 − 04 0.7421 + 03 0.3796 + 00
0.2600 + 02 0.7885 + 03 0.5956 + 01 0.1324 + 03 0.2953 − 04 0.8709 + 03 0.3794 + 00
0.2800 + 02 0.9145 + 03 0.5962 + 01 0.1534 + 03 0.2046 − 04 0.1010 + 04 0.3792 + 00
0.3000 + 02 0.1050 + 04 0.5967 + 01 0.1759 + 03 0.1453 − 04 0.1159 + 04 0.3790 + 00
0.3200 + 02 0.1194 + 04 0.5971 + 01 0.2001 + 03 0.1055 − 04 0.1319 + 04 0.3789 + 00
0.3400 + 02 0.1348 + 04 0.5974 + 01 0.2257 + 03 0.7804 − 05 0.1489 + 04 0.3788 + 00

0.3600 + 02 0.1512 + 04 0.5977 + 01 0.2529 + 03 0.5874 − 05 0.1669 + 04 0.3787 + 00
0.3800 + 02 0.1684 + 04 0.5979 + 01 0.2817 + 03 0.4488 − 05 0.1860 + 04 0.3786 + 00
0.4000 + 02 0.1866 + 04 0.5981 + 01 0.3121 + 03 0.3477 − 05 0.2061 + 04 0.3786 + 00
0.4200 + 02 0.2058 + 04 0.5983 + 01 0.3439 + 03 0.2727 − 05 0.2272 + 04 0.3785 + 00
0.4400 + 02 0.2258 + 04 0.5985 + 01 0.3774 + 03 0.2163 − 05 0.2493 + 04 0.3785 + 00
0.4600 + 02 0.2468 + 04 0.5986 + 01 0.4124 + 03 0.1733 − 05 0.2725 + 04 0.3784 + 00
0.4800 + 02 0.2688 + 04 0.5987 + 01 0.4489 + 03 0.1402 − 05 0.2967 + 04 0.3784 + 00
0.5000 + 02 0.2916 + 04 0.5988 + 01 0.4871 + 03 0.1144 − 05 0.3219 + 04 0.3784 + 00



A P P E N D I X C
Prandtl-Meyer Function
and Mach Angle

M ν μ

0.1000 + 01 0.0000 0.9000 + 02
0.1020 + 01 0.1257 + 00 0.7864 + 02
0.1040 + 01 0.3510 + 00 0.7406 + 02
0.1060 + 01 0.6367 + 00 0.7063 + 02
0.1080 + 01 0.9680 + 00 0.6781 + 02
0.1100 + 01 0.1336 + 01 0.6538 + 02
0.1120 + 01 0.1735 + 01 0.6323 + 02
0.1140 + 01 0.2160 + 01 0.6131 + 02
0.1160 + 01 0.2607 + 01 0.5955 + 02
0.1180 + 01 0.3074 + 01 0.5794 + 02

0.1200 + 01 0.3558 + 01 0.5644 + 02
0.1220 + 01 0.4057 + 01 0.5505 + 02
0.1240 + 01 0.4569 + 01 0.5375 + 02
0.1260 + 01 0.5093 + 01 0.5253 + 02
0.1280 + 01 0.5627 + 01 0.5138 + 02
0.1300 + 01 0.6170 + 01 0.5028 + 02
0.1320 + 01 0.6721 + 01 0.4925 + 02
0.1340 + 01 0.7279 + 01 0.4827 + 02
0.1360 + 01 0.7844 + 01 0.4733 + 02
0.1380 + 01 0.8413 + 01 0.4644 + 02

0.1400 + 01 0.8987 + 01 0.4558 + 02
0.1420 + 01 0.9565 + 01 0.4477 + 02
0.1440 + 01 0.1015 + 02 0.4398 + 02
0.1460 + 01 0.1073 + 02 0.4323 + 02
0.1480 + 01 0.1132 + 02 0.4251 + 02
0.1500 + 01 0.1191 + 02 0.4181 + 02
0.1520 + 01 0.1249 + 02 0.4114 + 02
0.1540 + 01 0.1309 + 02 0.4049 + 02
0.1560 + 01 0.1368 + 02 0.3987 + 02
0.1580 + 01 0.1427 + 02 0.3927 + 02

M ν μ

0.1600 + 01 0.1486 + 02 0.3868 + 02
0.1620 + 01 0.1545 + 02 0.3812 + 02
0.1640 + 01 0.1604 + 02 0.3757 + 02
0.1660 + 01 0.1663 + 02 0.3704 + 02
0.1680 + 01 0.1722 + 02 0.3653 + 02
0.1700 + 01 0.1781 + 02 0.3603 + 02
0.1720 + 01 0.1840 + 02 0.3555 + 02
0.1740 + 01 0.1898 + 02 0.3508 + 02
0.1760 + 01 0.1956 + 02 0.3462 + 02
0.1780 + 01 0.2015 + 02 0.3418 + 02

0.1800 + 01 0.2073 + 02 0.3375 + 02
0.1820 + 01 0.2130 + 02 0.3333 + 02
0.1840 + 01 0.2188 + 02 0.3292 + 02
0.1860 + 01 0.2245 + 02 0.3252 + 02
0.1880 + 01 0.2302 + 02 0.3213 + 02
0.1900 + 01 0.2359 + 02 0.3176 + 02
0.1920 + 01 0.2415 + 02 0.3139 + 02
0.1940 + 01 0.2471 + 02 0.3103 + 02
0.1960 + 01 0.2527 + 02 0.3068 + 02
0.1980 + 01 0.2583 + 02 0.3033 + 02

0.2000 + 01 0.2638 + 02 0.3000 + 02
0.2050 + 01 0.2775 + 02 0.2920 + 02
0.2100 + 01 0.2910 + 02 0.2844 + 02
0.2150 + 01 0.3043 + 02 0.2772 + 02
0.2200 + 01 0.3173 + 02 0.2704 + 02
0.2250 + 01 0.3302 + 02 0.2639 + 02
0.2300 + 01 0.3428 + 02 0.2577 + 02
0.2350 + 01 0.3553 + 02 0.2518 + 02
0.2400 + 01 0.3675 + 02 0.2462 + 02
0.2450 + 01 0.3795 + 02 0.2409 + 02
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M ν μ

0.2500 + 01 0.3912 + 02 0.2358 + 02
0.2550 + 01 0.4028 + 02 0.2309 + 02
0.2600 + 01 0.4141 + 02 0.2262 + 02
0.2650 + 01 0.4253 + 02 0.2217 + 02
0.2700 + 01 0.4362 + 02 0.2174 + 02
0.2750 + 01 0.4469 + 02 0.2132 + 02
0.2800 + 01 0.4575 + 02 0.2092 + 02
0.2850 + 01 0.4678 + 02 0.2054 + 02
0.2900 + 01 0.4779 + 02 0.2017 + 02
0.2950 + 01 0.4878 + 02 0.1981 + 02

0.3000 + 01 0.4976 + 02 0.1947 + 02
0.3050 + 01 0.5071 + 02 0.1914 + 02
0.3100 + 01 0.5165 + 02 0.1882 + 02
0.3150 + 01 0.5257 + 02 0.1851 + 02
0.3200 + 01 0.5347 + 02 0.1821 + 02
0.3250 + 01 0.5435 + 02 0.1792 + 02
0.3300 + 01 0.5522 + 02 0.1764 + 02
0.3350 + 01 0.5607 + 02 0.1737 + 02
0.3400 + 01 0.5691 + 02 0.1710 + 02
0.3450 + 01 0.5773 + 02 0.1685 + 02

0.3500 + 01 0.5853 + 02 0.1660 + 02
0.3550 + 01 0.5932 + 02 0.1636 + 02
0.3600 + 01 0.6009 + 02 0.1613 + 02
0.3650 + 01 0.6085 + 02 0.1590 + 02
0.3700 + 01 0.6160 + 02 0.1568 + 02
0.3750 + 01 0.6233 + 02 0.1547 + 02
0.3800 + 01 0.6304 + 02 0.1526 + 02
0.3850 + 01 0.6375 + 02 0.1505 + 02
0.3900 + 01 0.6444 + 02 0.1486 + 02
0.3950 + 01 0.6512 + 02 0.1466 + 02

0.4000 + 01 0.6578 + 02 0.1448 + 02
0.4050 + 01 0.6644 + 02 0.1429 + 02
0.4100 + 01 0.6708 + 02 0.1412 + 02
0.4150 + 01 0.6771 + 02 0.1394 + 02
0.4200 + 01 0.6833 + 02 0.1377 + 02
0.4250 + 01 0.6894 + 02 0.1361 + 02
0.4300 + 01 0.6954 + 02 0.1345 + 02
0.4350 + 01 0.7013 + 02 0.1329 + 02
0.4400 + 01 0.7071 + 02 0.1314 + 02
0.4450 + 01 0.7127 + 02 0.1299 + 02

0.4500 + 01 0.7183 + 02 0.1284 + 02
0.4550 + 01 0.7238 + 02 0.1270 + 02
0.4600 + 01 0.7292 + 02 0.1256 + 02
0.4650 + 01 0.7345 + 02 0.1242 + 02
0.4700 + 01 0.7397 + 02 0.1228 + 02
0.4750 + 01 0.7448 + 02 0.1215 + 02
0.4800 + 01 0.7499 + 02 0.1202 + 02
0.4850 + 01 0.7548 + 02 0.1190 + 02
0.4900 + 01 0.7597 + 02 0.1178 + 02
0.4950 + 01 0.7645 + 02 0.1166 + 02

M ν μ

0.5000 + 01 0.7692 + 02 0.1154 + 02
0.5100 + 01 0.7784 + 02 0.1131 + 02
0.5200 + 01 0.7873 + 02 0.1109 + 02
0.5300 + 01 0.7960 + 02 0.1088 + 02
0.5400 + 01 0.8043 + 02 0.1067 + 02
0.5500 + 01 0.8124 + 02 0.1048 + 02
0.5600 + 01 0.8203 + 02 0.1029 + 02
0.5700 + 01 0.8280 + 02 0.1010 + 02
0.5800 + 01 0.8354 + 02 0.9928 + 01
0.5900 + 01 0.8426 + 02 0.9758 + 01

0.6000 + 01 0.8496 + 02 0.9594 + 01
0.6100 + 01 0.8563 + 02 0.9435 + 01
0.6200 + 01 0.8629 + 02 0.9282 + 01
0.6300 + 01 0.8694 + 02 0.9133 + 01
0.6400 + 01 0.8756 + 02 0.8989 + 01
0.6500 + 01 0.8817 + 02 0.8850 + 01
0.6600 + 01 0.8876 + 02 0.8715 + 01
0.6700 + 01 0.8933 + 02 0.8584 + 01
0.6800 + 01 0.8989 + 02 0.8457 + 01
0.6900 + 01 0.9044 + 02 0.8333 + 01

0.7000 + 01 0.9097 + 02 0.8213 + 01
0.7100 + 01 0.9149 + 02 0.8097 + 01
0.7200 + 01 0.9200 + 02 0.7984 + 01
0.7300 + 01 0.9249 + 02 0.7873 + 01
0.7400 + 01 0.9297 + 02 0.7766 + 01
0.7500 + 01 0.9344 + 02 0.7662 + 01
0.7600 + 01 0.9390 + 02 0.7561 + 01
0.7700 + 01 0.9434 + 02 0.7462 + 01
0.7800 + 01 0.9478 + 02 0.7366 + 01
0.7900 + 01 0.9521 + 02 0.7272 + 01

0.8000 + 01 0.9562 + 02 0.7181 + 01
0.9000 + 01 0.9932 + 02 0.6379 + 01
0.1000 + 02 0.1023 + 03 0.5739 + 01
0.1100 + 02 0.1048 + 03 0.5216 + 01
0.1200 + 02 0.1069 + 03 0.4780 + 01
0.1300 + 02 0.1087 + 03 0.4412 + 01
0.1400 + 02 0.1102 + 03 0.4096 + 01
0.1500 + 02 0.1115 + 03 0.3823 + 01
0.1600 + 02 0.1127 + 03 0.3583 + 01
0.1700 + 02 0.1137 + 03 0.3372 + 01

0.1800 + 02 0.1146 + 03 0.3185 + 01
0.1900 + 02 0.1155 + 03 0.3017 + 01
0.2000 + 02 0.1162 + 03 0.2866 + 01
0.2200 + 02 0.1175 + 03 0.2605 + 01
0.2400 + 02 0.1186 + 03 0.2388 + 01
0.2600 + 02 0.1195 + 03 0.2204 + 01
0.2800 + 02 0.1202 + 03 0.2047 + 01
0.3000 + 02 0.1209 + 03 0.1910 + 01
0.3200 + 02 0.1215 + 03 0.1791 + 01
0.3400 + 02 0.1220 + 03 0.1685 + 01
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M ν μ

0.3600 + 02 0.1225 + 03 0.1592 + 01
0.3800 + 02 0.1229 + 03 0.1508 + 01
0.4000 + 02 0.1233 + 03 0.1433 + 01
0.4200 + 02 0.1236 + 03 0.1364 + 01

M ν μ

0.4400 + 02 0.1239 + 03 0.1302 + 01
0.4600 + 02 0.1242 + 03 0.1246 + 01
0.4800 + 02 0.1245 + 03 0.1194 + 01
0.5000 + 02 0.1247 + 03 0.1146 + 01





A P P E N D I X D
Standard Atmosphere, SI Units

D.1 NOTE ABOUT THE STANDARD ATMOSPHERE
TABLES IN APPENDICES D AND E

The following Standard Atmosphere Tables are compiled from mean experimental
data for the temperature variation with altitude, combined with the laws of physics
to compute the corresponding variation of pressure and density. The laws of
physics used are the hydrostatic equation (Equation 1.52) and the equation of state
(Equation 7.1). The construction of the Standard Atmosphere Tables is discussed
in detail in Chapter 3 of Reference 2, which you should read to learn the whole
story. In Appendices D and E, the temperature, pressure, and density are tabulated
versus altitude. Two columns for altitude are given, the first for the geometric
altitude, hG , and the second for the geopotential altitude, h. The geometric altitude
is the actual height above standard sea level, and the geopotential altitude is a
related altitude based on the assumption of a constant value of the acceleration
of gravity used for the calculations. See Reference 2 for an explanation of the
difference. In this book, whenever a reference is made to a certain value of the
standard altitude, it means the value of hG , the first column in the tables.

Appendix D gives the Standard Atmosphere in SI units, and Appendix E
gives the Standard Atmosphere in English Engineering units. There exist tables
of the standard atmosphere compiled by various organizations over the years. The
values tabulated in Appendices D and E are taken from the 1959 ARDC model
atmosphere compiled by the U.S. Air Force.
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

−5,000 −5,004 320.69 1.7761 + 5 1.9296 + 0
−4,900 −4,904 320.03 1.7587 1.9145
−4,800 −4,804 319.38 1.7400 1.8980
−4,700 −4,703 318.73 1.7215 1.8816
−4,600 −4,603 318.08 1.7031 1.8653
−4,500 −4,503 317.43 1.6848 1.8491
−4,400 −4,403 316.78 1.6667 1.8330
−4,300 −4,303 316.13 1.6488 1.8171
−4,200 −4,203 315.48 1.6311 1.8012
−4,100 −4,103 314.83 1.6134 1.7854

−4,000 −4,003 314.18 1.5960 + 5 1.7698 + 0
−3,900 −3,902 313.53 1.5787 1.7542
−3,800 −3,802 312.87 1.5615 1.7388
−3,700 −3,702 212.22 1.5445 1.7234
−3,600 −3,602 311.57 1.5277 1.7082
−3,500 −3,502 310.92 1.5110 1.6931
−3,400 −3,402 310.27 1.4945 1.6780
−3,300 −3,302 309.62 1.4781 1.6631
−3,200 −3,202 308.97 1.4618 1.6483
−3,100 −3,102 308.32 1.4457 1.6336

−3,000 −3,001 307.67 1.4297 + 5 1.6189 + 0
−2,900 −2,901 307.02 1.4139 1.6044
−2,800 −2,801 306.37 1.3982 1.5900
−2,700 −2,701 305.72 1.3827 1.5757
−2,600 −2,601 305.07 1.3673 1.5615
−2,500 −2,501 304.42 1.3521 1.5473
−2,400 −2,401 303.77 1.3369 1.5333
−2,300 −2,301 303.12 1.3220 1.5194
−2,200 −2,201 302.46 1.3071 1.5056
−2,100 −2,101 301.81 1.2924 1.4918

−2,000 −2,001 301.16 1.2778 + 5 1.4782 + 0
−1,900 −1,901 300.51 1.2634 1.4646
−1,800 −1,801 299.86 1.2491 1.4512
−1,700 −1,701 299.21 1.2349 1.4379
−1,600 −1,600 298.56 1.2209 1.4246
−1,500 −1,500 297.91 1.2070 1.4114
−1,400 −1,400 297.26 1.1932 1.3984
−1,300 −1,300 296.61 1.1795 1.3854
−1,200 −1,200 295.96 1.1660 1.3725
−1,100 −1,100 295.31 1.1526 1.3597

−1,000 −1,000 294.66 1.1393 + 5 1.3470 + 0
−900 −900 294.01 1.1262 1.3344
−800 −800 293.36 1.1131 1.3219
−700 −700 292.71 1.1002 1.3095
−600 −600 292.06 1.0874 1.2972
−500 −500 291.41 1.0748 1.2849
−400 −400 290.76 1.0622 1.2728
−300 −300 290.11 1.0498 1.2607
−200 −200 289.46 1.0375 1.2487
−100 −100 288.81 1.0253 1.2368
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

0 0 288.16 1.01325 + 5 1.2250 + 0

100 100 287.51 1.0013 1.2133
200 200 286.86 9.8945 + 4 1.2071
300 300 286.21 9.7773 1.1901
400 400 285.56 9.6611 1.1787
500 500 284.91 9.5461 1.1673
600 600 284.26 9.4322 1.1560
700 700 283.61 9.3194 1.1448
800 800 282.96 9.2077 1.1337
900 900 282.31 9.0971 1.1226

1,000 1,000 281.66 8.9876 + 4 1.1117 + 0
1,100 1,100 281.01 8.8792 1.1008
1,200 1,200 280.36 8.7718 1.0900
1,300 1,300 279.71 8.6655 1.0793
1,400 1,400 279.06 8.5602 1.0687
1,500 1,500 278.41 8.4560 1.0581
1,600 1,600 277.76 8.3527 1.0476
1,700 1,700 277.11 8.2506 1.0373
1,800 1,799 276.46 8.1494 1.0269
1,900 1,899 275.81 8.0493 1.0167

2,000 1,999 275.16 7.9501 + 4 1.0066 + 0
2,100 2,099 274.51 7.8520 9.9649 − 1
2,200 2,199 273.86 7.7548 9.8649
2,300 2,299 273.22 7.6586 9.7657
2,400 2,399 272.57 7.5634 9.6673
2,500 2,499 271.92 7.4692 9.5696
2,600 2,599 271.27 7.3759 9.4727
2,700 2,699 270.62 7.2835 9.3765
2,800 2,799 269.97 7.1921 9.2811
2,900 2,899 269.32 7.1016 9.1865

3,000 2,999 268.67 7.0121 + 4 9.0926 − 1
3,100 3,098 268.02 6.9235 8.9994
3,200 3,198 267.37 6.8357 8.9070
3,300 3,298 266.72 6.7489 8.8153
3,400 3,398 266.07 6.6630 8.7243
3,500 3,498 265.42 6.5780 8.6341
3,600 3,598 264.77 6.4939 8.5445
3,700 3,698 264.12 6.4106 8.4557
3,800 3,798 263.47 6.3282 8.3676
3,900 3,898 262.83 6.2467 8.2802

4,000 3,997 262.18 6.1660 + 4 8.1935 − 1
4,100 4,097 261.53 6.0862 8.1075
4,200 4,197 260.88 6.0072 8.0222
4,300 4,297 260.23 5.9290 7.9376
4,400 4,397 259.58 5.8517 7.8536
4,500 4,497 258.93 5.7752 7.7704
4,600 4,597 258.28 5.6995 7.6878
4,700 4,697 257.63 5.6247 7.6059
4,800 4,796 256.98 5.5506 7.5247
4,900 4,896 256.33 5.4773 7.4442
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

5,000 4,996 255.69 5.4048 + 4 7.3643 − 1
5,100 5,096 255.04 5.3331 7.2851
5,200 5,196 254.39 5.2621 7.2065
5,400 5,395 253.09 5.1226 7.0513
5,500 5,495 252.44 5.0539 6.9747
5,600 5,595 251.79 4.9860 6.8987
5,700 5,695 251.14 4.9188 6.8234
5,800 5,795 250.49 4.8524 6.7486
5,900 5,895 249.85 4.7867 6.6746

6,000 5,994 249.20 4.7217 + 4 6.6011 − 1
6,100 6,094 248.55 4.6575 6.5283
6,200 6,194 247.90 4.5939 6.4561
6,300 6,294 247.25 4.5311 6.3845
6,400 6,394 246.60 4.4690 6.3135
6,500 6,493 245.95 4.4075 6.2431
6,600 6,593 245.30 4.3468 6.1733
6,700 6,693 244.66 4.2867 6.1041
6,800 6,793 244.01 4.2273 6.0356
6,900 6,893 243.36 4.1686 5.9676

7,000 6,992 242.71 4.1105 + 4 5.9002 − 1
7,100 7,092 242.06 4.0531 5.8334
7,200 7,192 241.41 3.9963 5.7671
7,300 7,292 240.76 3.9402 5.7015
7,400 7,391 240.12 3.8848 5.6364
7,500 7,491 239.47 3.8299 5.5719
7,600 7,591 238.82 3.7757 5.5080
7,700 7,691 238.17 3.7222 5.4446
7,800 7,790 237.52 3.6692 5.3818
7,900 7,890 236.87 3.6169 5.3195

8,000 7,990 236.23 3.5651 + 4 5.2578 − 1
8,100 8,090 235.58 3.5140 5.1967
8,200 8,189 234.93 3.4635 5.1361
8,300 8,289 234.28 3.4135 5.0760
8,400 8,389 233.63 3.3642 5.0165
8,500 8,489 232.98 3.3154 4.9575
8,600 8,588 232.34 3.2672 4.8991
8,700 8,688 231.69 3.2196 4.8412
8,800 8,788 231.04 3.1725 4.7838
8,900 8,888 230.39 3.1260 4.7269

9,000 8,987 229.74 3.0800 + 4 4.6706 − 1
9,100 9,087 229.09 3.0346 4.6148
9,200 9,187 228.45 2.9898 4.5595
9,300 9,286 227.80 2.9455 4.5047
9,400 9,386 227.15 2.9017 4.4504
9,500 9,486 226.50 2.8584 4.3966
9,600 9,586 225.85 2.8157 4.3433
9,700 9,685 225.21 2.7735 4.2905
9,800 9,785 224.56 2.7318 4.2382
9,900 9,885 223.91 2.6906 4.1864
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

10,000 9,984 223.26 2.6500 + 4 4.1351− 1
10,100 10,084 222.61 2.6098 4.0842
10,200 10,184 221.97 2.5701 4.0339
10,300 10,283 221.32 2.5309 3.9840
10,400 10,383 220.67 2.4922 3.9346
10,500 10,483 220.02 2.4540 3.8857
10,600 10,582 219.37 2.4163 3.8372
10,700 10,682 218.73 2.3790 3.7892
10,800 10,782 218.08 2.3422 3.7417
10,900 10,881 217.43 2.3059 3.6946

11,000 10,981 216.78 2.2700 + 4 3.6480 − 1
11,100 11,081 216.66 2.2346 3.5932
11,200 11,180 216.66 2.1997 3.5371
11,300 11,280 216.66 2.1654 3.4820
11,400 11,380 216.66 2.1317 3.4277
11,500 11,479 216.66 2.0985 3.3743
11,600 11,579 216.66 2.0657 3.3217
11,700 11,679 216.66 2.0335 3.2699
11,800 11,778 216.66 2.0018 3.2189
11,900 11,878 216.66 1.9706 3.1687

12,000 11,977 216.66 1.9399 + 4 3.1194 − 1
12,100 12,077 216.66 1.9097 3.0707
12,200 12,177 216.66 1.8799 3.0229
12,300 12,276 216.66 1.8506 2.9758
12,400 12,376 216.66 1.8218 2.9294
12,500 12,475 216.66 1.7934 2.8837
12,600 12,575 216.66 1.7654 2.8388
12,700 12,675 216.66 1.7379 2.7945
12,800 12,774 216.66 1.7108 2.7510
12,900 12,874 216.66 1.6842 2.7081

13,000 12,973 216.66 1.6579 + 4 2.6659 − 1
13,100 13,073 216.66 1.6321 2.6244
13,200 13,173 216.66 1.6067 2.5835
13,300 13,272 216.66 1.5816 2.5433
13,400 13,372 216.66 1.5570 2.5036
13,500 13,471 216.66 1.5327 2.4646
13,600 13,571 216.66 1.5089 2.4262
13,700 13,671 216.66 1.4854 2.3884
13,800 13,770 216.66 1.4622 2.3512
13,900 13,870 216.66 1.4394 2.3146

14,000 13,969 216.66 1.4170 + 4 2.2785 − 1
14,100 14,069 216.66 1.3950 2.2430
14,200 14,168 216.66 1.3732 2.2081
14,300 14,268 216.66 1.3518 2.1737
14,400 14,367 216.66 1.3308 2.1399
14,500 14,467 216.66 1.3101 2.1065
14,600 14,567 216.66 1.2896 2.0737
14,700 14,666 216.66 1.2696 2.0414
14,800 14,766 216.66 1.2498 2.0096
14,900 14,865 216.66 1.2303 1.9783
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

15,000 14,965 216.66 1.2112 + 4 1.9475 − 1
15,100 15,064 216.66 1.1923 1.9172
15,200 15,164 216.66 1.1737 1.8874
15,300 15,263 216.66 1.1555 1.8580
15,400 15,363 216.66 1.1375 1.8290
15,500 15,462 216.66 1.1198 1.8006
15,600 15,562 216.66 1.1023 1.7725
15,700 15,661 216.66 1.0852 1.7449
15,800 15,761 216.66 1.0683 1.7178
15,900 15,860 216.66 1.0516 1.6910

16,000 15,960 216.66 1.0353 + 4 1.6647 − 1
16,100 16,059 216.66 1.0192 1.6388
16,200 16,159 216.66 1.0033 1.6133
16,300 16,258 216.66 9.8767 + 3 1.5882
16,400 16,358 216.66 9.7230 1.5634
16,500 16,457 216.66 9.5717 1.5391
16,600 16,557 216.66 9.4227 1.5151
16,700 16,656 216.66 9.2760 1.4916
16,800 16,756 216.66 9.1317 1.4683
16,900 16,855 216.66 8.9895 1.4455

17,000 16,955 216.66 8.8496 + 3 1.4230 − 1
17,100 17,054 216.66 8.7119 1.4009
17,200 17,154 216.66 8.5763 1.3791
17,300 17,253 216.66 8.4429 1.3576
17,400 17,353 216.66 8.3115 1.3365
17,500 17,452 216.66 8.1822 1.3157
17,600 17,551 216.66 8.0549 1.2952
17,700 17,651 216.66 7.9295 1.2751
17,800 17,750 216.66 7.8062 1.2552
17,900 17,850 216.66 7.6847 1.2357

18,000 17,949 216.66 7.5652 + 3 1.2165 − 1
18,100 18,049 216.66 7.4475 1.1975
18,200 18,148 216.66 7.3316 1.1789
18,300 18,247 216.66 7.2175 1.1606
18,400 18,347 216.66 7.1053 1.1425
18,500 18,446 216.66 6.9947 1.1247
18,600 18,546 216.66 6.8859 1.1072
18,700 18,645 216.66 6.7788 1.0900
18,800 18,745 216.66 6.6734 1.0731
18,900 18,844 216.66 6.5696 1.0564

19,000 18,943 216.66 6.4674 + 3 1.0399 − 1
19,100 19,043 216.66 6.3668 1.0238
19,200 19,142 216.66 6.2678 1.0079
19,300 19,242 216.66 6.1703 9.9218 − 2
19,400 19,341 216.66 6.0744 9.7675
19,500 19,440 216.66 5.9799 9.6156
19,600 19,540 216.66 5.8869 9.4661
19,700 19,639 216.66 5.7954 9.3189
19,800 19,739 216.66 5.7053 9.1740
19,900 19,838 216.66 5.6166 9.0313
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

20,000 19,937 216.66 5.5293 + 3 8.8909 − 2
20,200 20,136 216.66 5.3587 8.6166
20,400 20,335 216.66 5.1933 8.3508
20,600 20,533 216.66 5.0331 8.0931
20,800 20,732 216.66 4.8779 7.8435
21,000 20,931 216.66 4.7274 7.6015
21,200 21,130 216.66 4.5816 7.3671
21,400 21,328 216.66 4.4403 7.1399
21,600 21,527 216.66 4.3034 6.9197
21,800 21,725 216.66 4.1706 6.7063

22,000 21,924 216.66 4.0420 + 3 6.4995 − 2
22,200 22,123 216.66 3.9174 6.2991
22,400 22,321 216.66 3.7966 6.1049
22,600 22,520 216.66 3.6796 5.9167
22,800 22,719 216.66 3.5661 5.7343
23,000 22,917 216.66 3.4562 5.5575
23,200 23,116 216.66 3.3497 5.3862
23,400 23,314 216.66 3.2464 5.2202
23,600 23,513 216.66 3.1464 5.0593
23,800 23,711 216.66 3.0494 4.9034

24,000 23,910 216.66 2.9554 + 3 4.7522 − 2
24,200 24,108 216.66 2.8644 4.6058
24,400 24,307 216.66 2.7761 4.4639
24,600 24,505 216.66 2.6906 4.3263
24,800 24,704 216.66 2.6077 4.1931
25,000 24,902 216.66 2.5273 4.0639
25,200 25,100 216.96 2.4495 3.9333
25,400 25,299 217.56 2.3742 3.8020
25,600 25,497 218.15 2.3015 3.6755
25,800 25,696 218.75 2.2312 3.5535

26,000 25,894 219.34 2.1632 + 3 3.4359 − 2
26,200 26,092 219.94 2.0975 3.3225
26,400 26,291 220.53 2.0339 3.2131
26,600 26,489 221.13 1.9725 3.1076
26,800 26,687 221.72 1.9130 3.0059
27,000 26,886 222.32 1.8555 2.9077
27,200 27,084 222.91 1.7999 2.8130
27,400 27,282 223.51 1.7461 2.7217
27,600 27,481 224.10 1.6940 2.6335
27,800 27,679 224.70 1.6437 2.5484

28,000 27,877 225.29 1.5949 + 3 2.4663 − 2
28,200 28,075 225.89 1.5477 2.3871
28,400 28,274 226.48 1.5021 2.3106
28,600 28,472 227.08 1.4579 2.2367
28,800 28,670 227.67 1.4151 2.1654
29,000 28,868 228.26 1.3737 2.0966
29,200 29,066 228.86 1.3336 2.0301
29,400 29,265 229.45 1.2948 1.9659
29,600 29,463 230.05 1.2572 1.9039
29,800 29,661 230.64 1.2208 1.8440
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

30,000 29,859 231.24 1.1855 + 3 1.7861 − 2
30,200 30,057 231.83 1.1514 1.7302
30,400 30,255 232.43 1.1183 1.6762
30,600 30,453 233.02 1.0862 1.6240
30,800 30,651 233.61 1.0552 1.5734
31,000 30,850 234.21 1.0251 1.5278
31,200 31,048 234.80 9.9592 + 2 1.4777
31,400 31,246 235.40 9.6766 1.4321
31,600 31,444 235.99 9.4028 1.3881
31,800 31,642 236.59 9.1374 1.3455

32,000 31,840 237.18 8.8802 + 2 1.3044 − 2
32,200 32,038 237.77 8.6308 1.2646
32,400 32,236 238.78 8.3890 1.2261
32,600 32,434 238.96 8.1546 1.1889
32,800 32,632 239.55 7.9273 1.1529
33,000 32,830 240.15 7.7069 1.1180
33,200 33,028 240.74 7.4932 1.0844
33,400 33,225 214.34 7.2859 1.0518
33,600 33,423 241.93 7.0849 1.0202
33,800 33,621 242.52 6.8898 9.8972 − 3

34,000 33,819 243.12 6.7007 + 2 9.6020 − 3
34,200 34,017 243.71 6.5171 9.3162
34,400 34,215 244.30 6.3391 9.0396
34,600 34,413 244.90 6.1663 8.7720
34,800 34,611 245.49 5.9986 8.5128
35,000 34,808 246.09 5.8359 8.2620
35,200 35,006 246.68 5.6780 8.0191
35,400 35,204 247.27 5.5248 7.7839
35,600 35,402 247.87 5.3760 7.5562
35,800 35,600 248.46 5.2316 7.3357

36,000 35,797 249.05 5.0914 + 2 7.1221 − 3
36,200 35,995 249.65 4.9553 6.9152
36,400 36,193 250.24 4.8232 6.7149
36,600 36,390 250.83 4.6949 6.5208
36,800 36,588 251.42 4.5703 6.3328
37,000 36,786 252.02 4.4493 6.1506
37,200 36,984 252.61 4.3318 5.9741
37,400 37,181 253.20 4.2176 5.8030
37,600 37,379 253.80 4.1067 5.6373
37,800 37,577 254.39 3.9990 5.4767

38,000 37,774 254.98 3.8944 + 2 5.3210 − 3
38,200 37,972 255.58 3.7928 5.1701
38,400 38,169 256.17 3.6940 5.0238
38,600 38,367 256.76 3.5980 4.8820
38,800 38,565 257.35 3.5048 4.7445
39,000 38,762 257.95 3.4141 4.6112
39,200 38,960 258.54 3.3261 4.4819
39,400 39,157 259.13 3.2405 4.3566
39,600 39,355 259.72 3.1572 4.2350
39,800 39,552 260.32 3.0764 4.1171
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

40,000 39,750 260.91 2.9977 + 2 4.0028 − 3
40,200 39,947 261.50 2.9213 3.8919
40,400 40,145 262.09 2.8470 3.7843
40,600 40,342 262.69 2.7747 3.6799
40,800 40,540 263.28 2.7044 3.5786
41,000 40,737 263.87 2.6361 3.4804
41,200 40,935 264.46 2.5696 3.3850
41,400 41,132 265.06 2.5050 3.2925
41,600 41,300 265.65 2.4421 3.2027
41,800 41,527 266.24 2.3810 3.1156

42,000 41,724 266.83 2.3215 + 2 3.0310 − 3
42,400 41,922 267.43 2.2636 2.9489
42,400 42,119 268.02 2.2073 2.8692
42,600 42,316 268.61 2.1525 2.7918
42,800 42,514 269.20 2.0992 2.7167
43,000 42,711 269.79 2.0474 2.6438
43,200 42,908 270.39 1.9969 2.5730
43,400 43,106 270.98 1.9478 2.5042
43,600 43,303 271.57 1.9000 2.4374
43,800 43,500 272.16 1.8535 2.3726

44,000 43,698 272.75 1.8082 + 2 2.3096 − 3
44,200 43,895 273.34 1.7641 2.2484
44,400 44,092 273.94 1.7212 2.1889
44,600 44,289 274.53 1.6794 2.1312
44,800 44,486 275.12 1.6387 2.0751
45,000 44,684 275.71 1.5991 2.0206
45,200 44,881 276.30 1.5606 1.9677
45,400 45,078 276.89 1.5230 1.9162
45,600 45,275 277.49 1.4865 1.8662
45,800 45,472 278.08 1.4508 1.8177

46,000 45,670 278.67 1.4162 + 2 1.7704 − 3
46,200 45,867 279.26 1.3824 1.7246
46,400 46,064 279.85 1.3495 1.6799
46,600 46,261 280.44 1.3174 1.6366
46,800 46,458 281.03 1.2862 1.5944
47,000 46,655 281.63 1.2558 1.5535
47,200 46,852 282.22 1.2261 1.5136
47,400 47,049 282.66 1.1973 1.4757
47,600 47,246 282.66 1.1691 1.4409
47,800 47,443 282.66 1.1416 1.4070

48,000 47,640 282.66 1.1147 + 2 1.3739 − 3
48,200 47,837 282.66 1.0885 1.3416
48,400 48,034 282.66 1.0629 1.3100
48,600 48,231 282.66 1.0379 1.2792
48,800 48,428 282.66 1.0135 1.2491
49,000 48,625 282.66 9.8961 + 1 1.2197
49,200 48,822 282.66 9.6633 1.1910
49,400 49,019 282.66 9.4360 1.1630
49,600 49,216 282.66 9.2141 1.1357
49,800 49,413 282.66 8.9974 1.1089
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Altitude

hG , m h, m Temperature T , K Pressure p, N/m2 Density ρ, kg/m3

50,000 49,610 282.66 8.7858 + 1 1.0829 − 3
50,500 50,102 282.66 8.2783 1.0203
51,000 50,594 282.66 7.8003 9.6140 − 4
51,500 51,086 282.66 7.3499 9.0589
52,000 51,578 282.66 6.9256 8.5360
52,500 52,070 282.66 6.5259 8.0433
53,000 52,562 282.66 6.1493 7.5791
53,500 53,053 282.42 5.7944 7.1478
54,000 53,545 280.21 5.4586 6.7867
54,500 54,037 277.99 5.1398 6.4412

55,000 54,528 275.78 4.8373 + 1 6.1108 − 4
55,500 55,020 273.57 4.5505 5.7949
56,000 55,511 271.36 4.2786 5.4931
56,500 56,002 269.15 4.0210 5.2047
57,000 56,493 266.94 3.7770 4.9293
57,500 56,985 264.73 3.5459 4.6664
58,000 57,476 262.52 3.3273 4.4156
58,500 57,967 260.31 3.1205 4.1763
59,000 58,457 258.10 2.9250 3.9482
59,500 58,948 255.89 2.7403 3.7307



A P P E N D I X E
Standard Atmosphere, English
Engineering Units

Altitude

hG , ft h, ft Temperature T , ◦R Pressure p, lb/ft2 Density ρ, slugs/ft3

−16,500 −16,513 577.58 3.6588 + 3 3.6905 − 3
−16,000 −16,012 575.79 3.6641 3.7074
−15,500 −15,512 574.00 3.6048 3.6587
−15,000 −15,011 572.22 3.5462 3.6105
−14,500 −14,510 570.43 3.4884 3.5628
−14,000 −14,009 568.65 3.4314 3.5155
−13,500 −13,509 566.86 3.3752 3.4688
−13,000 −13,008 565.08 3.3197 3.4225
−12,500 −12,507 563.29 3.2649 3.3768
−12,000 −12,007 561.51 3.2109 3.3314

−11,500 −11,506 559.72 3.1576 + 3 3.2866 − 3
−11,000 −11,006 557.94 3.1050 3.2422
−10,500 −10,505 556.15 3.0532 3.1983
−10,000 −10,005 554.37 3.0020 3.1548
−9,500 −9,504 552.58 2.9516 3.1118
−9,000 −9,004 550.80 2.9018 3.0693
−8,500 −8,503 549.01 2.8527 3.0272
−8,000 −8,003 547.23 2.8043 2.9855
−7,500 −7,503 545.44 2.7566 2.9443
−7,000 −7,002 543.66 2.7095 2.9035

−6,500 −6,502 541.88 2.6631 + 3 2.8632− 3
−6,000 −6,002 540.09 2.6174 2.8233
−5,500 −5,501 538.31 2.5722 2.7838
−5,000 −5,001 536.52 2.5277 2.7448
−4,500 −4,501 534.74 2.4839 2.7061
−4,000 −4,001 532.96 2.4406 2.6679
−3,500 −3,501 531.17 2.3980 2.6301
−3,000 −3,000 529.39 2.3560 2.5927

1103
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Altitude

hG , ft h, ft Temperature T , ◦R Pressure p, lb/ft2 Density ρ, slugs/ft3

−2,500 −2,500 527.60 2.3146 2.5558
−2,000 −2,000 525.82 2.2737 2.5192

−1,500 −1,500 524.04 2.2335 + 3 2.4830 − 3
−1,000 −1,000 522.25 2.1938 2.4473

−500 −500 520.47 2.1547 2.4119

0 0 518.69 2.1162 2.3769

500 500 516.90 2.0783 2.3423
1,000 1,000 515.12 2.0409 2.3081
1,500 1,500 513.34 2.0040 2.2743
2,000 2,000 511.56 1.9677 2.2409
2,500 2,500 509.77 1.9319 2.2079
3,000 3,000 507.99 1.8967 2.1752

3,500 3,499 506.21 1.8619 + 3 2.1429− 3
4,000 3,999 504.43 1.8277 2.1110
4,500 4,499 502.64 1.7941 2.0794
5,000 4,999 500.86 1.7609 2.0482
5,500 5,499 499.08 1.7282 2.0174
6,000 5,998 497.30 1.6960 1.9869
6,500 6,498 495.52 1.6643 1.9567
7,000 6,998 493.73 1.6331 1.9270
7,500 7,497 491.95 1.6023 1.8975
8,000 7,997 490.17 1.5721 1.8685

8,500 8,497 488.39 1.5423 + 3 1.8397 − 3
9,000 8,996 486.61 1.5129 1.8113
9,500 9,496 484.82 1.4840 1.7833

10,000 9,995 483.04 1.4556 1.7556
10,500 10,495 481.26 1.4276 1.7282
11,000 10,994 479.48 1.4000 1.7011
11,500 11,494 477.70 1.3729 1.6744
12,000 11,993 475.92 1.3462 1.6480
12,500 12,493 474.14 1.3200 1.6219
13,000 12,992 472.36 1.2941 1.5961

13,500 13,491 470.58 1.2687 + 3 1.5707 − 3
14,000 13,991 468.80 1.2436 1.5455
14,500 14,490 467.01 1.2190 1.5207
15,000 14,989 465.23 1.1948 1.4962
15,500 15,488 463.45 1.1709 1.4719
16,000 15,988 461.67 1.1475 1.4480
16,500 16,487 459.89 1.1244 1.4244
17,000 16,986 458.11 1.1017 1.4011
17,500 17,485 456.33 1.0794 1.3781
18,000 17,984 454.55 1.0575 1.3553

18,500 18,484 452.77 1.0359 + 3 1.3329 − 3
19,000 18,983 450.99 1.0147 1.3107
19,500 19,482 449.21 9.9379 + 2 1.2889
20,000 19,981 447.43 9.7327 1.2673
20,500 20,480 445.65 9.5309 1.2459
21,000 20,979 443.87 9.3326 1.2249
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Altitude

hG , ft h, ft Temperature T , ◦R Pressure p, lb/ft2 Density ρ, slugs/ft3

21,500 21,478 442.09 9.1376 1.2041
22,000 21,977 440.32 8.9459 1.1836
22,500 22,476 438.54 8.7576 1.1634
23,000 22,975 436.76 8.5724 1.1435

23,500 23,474 434.98 8.3905 + 2 1.1238 − 3
24,000 23,972 433.20 8.2116 1.1043
24,500 24,471 431.42 8.0359 1.0852
25,000 24,970 429.64 7.8633 1.0663
25,500 25,469 427.86 7.6937 1.0476
26,000 25,968 426.08 7.5271 1.0292
26,500 26,466 424.30 7.3634 1.0110
27,000 26,965 422.53 7.2026 9.9311 − 4
27,500 27,464 420.75 7.0447 9.7544
28,000 27,962 418.97 6.8896 9.5801

28,500 28,461 417.19 6.7373 + 2 9.4082 − 4
29,000 28,960 415.41 6.5877 9.2387
29,500 29,458 413.63 6.4408 9.0716
30,000 29,957 411.86 6.2966 8.9068
30,500 30,455 410.08 6.1551 8.7443
31,000 30,954 408.30 6.0161 8.5841
31,500 31,452 406.52 5.8797 8.4261
32,000 31,951 404.75 5.7458 8.2704
32,500 32,449 402.97 5.6144 8.1169
33,000 32,948 401.19 5.4854 7.9656

33,500 33,446 399.41 5.3589 + 2 7.8165 − 4
34,000 33,945 397.64 5.2347 7.6696
34,500 34,443 395.86 5.1129 7.5247
35,000 34,941 394.08 4.9934 7.3820
35,500 35,440 392.30 4.8762 7.2413
36,000 35,938 390.53 4.7612 7.1028
36,500 36,436 389.99 4.6486 6.9443
37,000 36,934 389.99 4.5386 6.7800
37,500 37,433 389.99 4.4312 6.6196
38,000 37,931 389.99 4.3263 6.4629

38,500 38,429 389.99 4.2240 + 2 6.3100 − 4
39,000 38,927 389.99 4.1241 6.1608
39,500 39,425 389.99 4.0265 6.0150
40,000 39,923 389.99 3.9312 5.8727
40,500 40,422 389.99 3.8382 5.7338
41,000 40,920 389.99 3.7475 5.5982
41,500 41,418 389.99 3.6588 5.4658
42,000 41,916 389.99 3.5723 5.3365
42,500 42,414 389.99 3.4878 5.2103
43,000 42,912 389.99 3.4053 5.0871

43,500 43,409 389.99 3.3248 + 2 4.9668 − 4
44,000 43,907 389.99 3.2462 4.8493
44,500 44,405 389.99 3.1694 4.7346
45,000 44,903 389.99 3.0945 4.6227
45,500 45,401 389.99 3.0213 4.5134
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Altitude

hG , ft h, ft Temperature T , ◦R Pressure p, lb/ft2 Density ρ, slugs/ft3

46,000 45,899 389.99 2.9499 4.4067
46,500 46,397 389.99 2.8801 4.3025
47,000 46,894 389.99 2.8120 4.2008
47,500 47,392 389.99 2.7456 4.1015
48,000 47,890 389.99 2.6807 4.0045

48,500 48,387 389.99 2.2173 + 2 3.9099 − 4
49,000 48,885 389.99 2.5554 3.8175
49,500 49,383 389.99 2.4950 3.7272
50,000 49,880 389.99 2.4361 3.6391
50,500 50,378 389.99 2.3785 3.5531
51,000 50,876 389.99 2.3223 3.4692
51,500 51,373 389.99 2.2674 3.3872
52,000 51,871 389.99 2.2138 3.3072
52,500 52,368 389.99 2.1615 3.2290
53,000 52,866 389.99 2.1105 3.1527

53,500 53,363 389.99 2.0606 + 2 3.0782 − 4
54,000 53,861 389.99 2.0119 3.0055
54,500 54,358 389.99 1.9644 2.9345
55,000 54,855 389.99 1.9180 2.8652
55,500 55,353 389.99 1.8727 2.7975
56,000 55,850 389.99 1.8284 2.7314
56,500 56,347 389.99 1.7853 2.6669
57,000 56,845 389.99 1.7431 2.6039
57,500 57,342 389.99 1.7019 2.5424
58,000 57,839 389.99 1.6617 2.4824

58,500 58,336 389.99 1.6225 + 2 2.4238 − 4
59,000 58,834 389.99 1.5842 2.3665
59,500 59,331 389.99 1.5468 2.3107
60,000 59,828 389.99 1.5103 2.2561
60,500 60,325 389.99 1.4746 2.2028
61,000 60,822 389.99 1.4398 2.1508
61,500 61,319 389.99 1.4058 2.1001
62,000 61,816 389.99 1.3726 2.0505
62,500 62,313 389.99 1.3402 2.0021
63,000 62,810 389.99 1.3086 1.9548

63,500 63,307 389.99 1.2777 + 2 1.9087 − 4
64,000 63,804 389.99 1.2475 1.8636
64,500 64,301 389.99 1.2181 1.8196
65,000 64,798 389.99 1.1893 1.7767
65,500 65,295 389.99 1.1613 1.7348
66,000 65,792 389.99 1.1339 1.6938
66,500 66,289 389.99 1.1071 1.6539
67,000 66,785 389.99 1.0810 1.6148
67,500 67,282 389.99 1.0555 1.5767
68,000 67,779 389.99 1.0306 1.5395

68,500 68,276 389.99 1.0063 + 2 1.5032 − 4
69,000 68,772 389.99 9.8253 + 1 1.4678
69,500 69,269 389.99 9.5935 1.4331
70,000 69,766 389.99 9.3672 1.3993
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Altitude

hG , ft h, ft Temperature T , ◦R Pressure p, lb/ft2 Density ρ, slugs/ft3

70,500 70,262 389.99 9.1462 1.3663
71,000 70,759 389.99 8.9305 1.3341
71,500 74,256 389.99 8.7199 1.3026
72,000 71,752 389.99 8.5142 1.2719
72,500 72,249 389.99 8.3134 1.2419
73,000 72,745 389.99 8.1174 1.2126

73,500 73,242 389.99 7.9259 + 1 1.1840 − 4
74,000 73,738 389.99 7.7390 1.1561
74,500 74,235 389.99 7.5566 1.1288
75,000 74,731 389.99 7.3784 1.1022
75,500 75,228 389.99 7.2044 1.0762
76,000 75,724 389.99 7.0346 1.0509
76,500 76,220 389.99 6.8687 1.0261
77,000 76,717 389.99 6.7068 1.0019
77,500 77,213 389.99 6.5487 9.7829 − 5
78,000 77,709 389.99 6.3944 9.5523

78,500 78,206 389.99 6.2437 + 1 9.3271 − 5
79,000 78,702 389.99 6.0965 9.1073
79,500 79,198 389.99 5.9528 8.8927
80,000 79,694 389.99 5.8125 8.6831
80,500 80,190 389.99 5.6755 8.4785
81,000 80,687 389.99 5.5418 8.2787
81,500 81,183 389.99 5.4112 8.0836
82,000 81,679 389.99 5.2837 7.8931
82,500 82,175 390.24 5.1592 7.7022
83,000 82,671 391.06 5.0979 7.5053

83,500 83,167 391.87 4.9196 + 1 7.3139 − 5
84,000 83,663 392.69 4.8044 7.1277
84,500 84,159 393.51 4.6921 6.9467
85,000 84,655 394.32 4.5827 6.7706
85,500 85,151 395.14 4.4760 6.5994
86,000 85,647 395.96 4.3721 6.4328
86,500 86,143 396.77 4.2707 6.2708
87,000 86,639 397.59 4.1719 6.1132
87,500 87,134 398.40 4.0757 5.9598
88,000 87,630 399.22 3.9818 5.8106

88,500 88,126 400.04 3.8902 + 1 5.6655 − 5
89,000 88,622 400.85 3.8010 5.5243
89,500 89,118 401.67 3.7140 5.3868
90,000 89,613 402.48 3.6292 5.2531
90,500 90,109 403.30 3.5464 5.1230
91,000 90,605 404.12 3.4657 4.9963
91,500 91,100 404.93 3.3870 4.8730
92,000 91,596 405.75 3.3103 4.7530
92,500 92,092 406.56 3.2354 4.6362
93,000 92,587 407.38 3.1624 4.5525

93,500 93,083 408.19 3.0912 + 1 4.4118 − 5
94,000 93,578 409.01 3.0217 4.3041
94,500 94,074 409.83 2.9539 4.1992
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Altitude

hG , ft h, ft Temperature T , ◦R Pressure p, lb/ft2 Density ρ, slugs/ft3

95,000 94,569 410.64 2.8878 4.0970
95,500 95,065 411.46 2.8233 3.9976
96,000 95,560 412.27 2.7604 3.9007
96,500 96,056 413.09 2.6989 3.8064
97,000 96,551 413.90 2.6390 3.7145
97,500 97,046 414.72 2.5805 3.6251
98,000 97,542 415.53 2.5234 3.5379

98,500 98,037 416.35 2.4677 + 1 3.4530 − 5
99,000 98,532 417.16 2.4134 3.3704
99,500 99,028 417.98 2.3603 3.2898

100,000 99,523 418.79 2.3085 3.2114
100,500 100,018 419.61 2.2580 3.1350
101,000 100,513 420.42 2.2086 3.0605
101,500 101,008 421.24 2.1604 2.9879
102,000 101,504 422.05 2.1134 2.9172
102,500 101,999 422.87 2.0675 2.8484
103,000 102,494 423.68 2.0226 2.7812

103,500 102,989 424.50 1.9789 + 1 2.7158 − 5
104,000 103,484 425.31 1.9361 2.6520
104,500 103,979 426.13 1.8944 2.5899
105,000 104,474 426.94 1.8536 2.5293
106,000 105,464 428.57 1.7749 2.4128
107,000 106,454 430.20 1.6999 2.3050
108,000 107,444 431.83 1.6282 2.1967
109,000 108,433 433.46 1.5599 2.0966
110,000 109,423 435.09 1.4947 2.0014
111,000 110,412 436.72 1.4324 1.9109

112,000 111,402 438.35 1.3730 + 1 1.8247 − 5
113,000 112,391 439.97 1.3162 1.7428
114,000 113,380 441.60 1.2620 1.6649
115,000 114,369 443.23 1.2102 1.5907
116,000 115,358 444.86 1.1607 1.5201
117,000 116,347 446.49 1.1134 1.4528
118,000 117,336 448.11 1.0682 1.3888
119,000 118,325 449.74 1.0250 1.3278
120,000 119,313 451.37 9.8372 + 0 1.2697
121,000 120,302 453.00 9.4422 1.2143

122,000 121,290 454.62 9.0645 + 0 1.1616 − 5
123,000 122,279 456.25 8.7032 1.1113
124,000 123,267 457.88 8.3575 1.0634
125,000 124,255 459.50 8.0267 1.0177
126,000 125,243 461.13 7.7102 9.7410 − 6
127,000 126,231 462.75 7.4072 9.3253
128,000 127,219 464.38 7.1172 8.9288
129,000 128,207 466.01 6.8395 8.5505
130,000 129,195 467.63 6.5735 8.1894
131,000 130,182 469.26 6.3188 7.8449

132,000 131,170 470.88 6.0748 + 0 7.5159 − 6
133,000 132,157 472.51 5.8411 7.2019
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Altitude

hG , ft h, ft Temperature T , ◦R Pressure p, lb/ft2 Density ρ, slugs/ft3

134,000 133,145 474.13 5.6171 6.9020
135,000 134,132 475.76 5.4025 6.6156
136,000 135,119 477.38 5.1967 6.3420
137,000 136,106 479.01 4.9995 6.0806
138,000 137,093 480.63 4.8104 5.8309
139,000 138,080 482.26 4.6291 5.5922
140,000 139,066 483.88 4.4552 5.3640
141,000 140,053 485.50 4.2884 5.1460

142,000 141,040 487.13 4.1284 + 0 4.9374 − 6
143,000 142,026 488.75 3.9749 4.7380
144,000 143,013 490.38 3.8276 4.5473
145,000 143,999 492.00 3.6862 4.3649
146,000 144,985 493.62 3.5505 4.1904
147,000 145,971 495.24 3.4202 4.0234
148,000 146,957 496.87 3.2951 3.8636
149,000 147,943 498.49 3.1750 3.7106
150,000 148,929 500.11 3.0597 3.5642
151,000 149,915 501.74 2.9489 3.4241

152,000 150,900 503.36 2.8424 + 0 3.2898 − 6
153,000 151,886 504.98 2.7402 3.1613
154,000 152,871 506.60 2.6419 3.0382
155,000 153,856 508.22 2.5475 2.9202
156,000 154,842 508.79 2.4566 2.8130
157,000 155,827 508.79 2.3691 2.7127
158,000 156,812 508.79 2.2846 2.6160
159,000 157,797 508.79 2.2032 2.5228
160,000 158,782 508.79 2.1247 2.4329
161,000 159,797 508.79 2.0490 2.3462
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A
Absolute viscosity coefficient, 71–72
Ackeret, Jakob, 528
Adiabatic flows

energy equation, 547–48, 576–81
Adiabatic process, 536
Adiabatic wall temperature, 954
Adverse pressure gradients, 934
Aerodonetics (Lanchester), 411
Aerodynamic center

concepts, 365–67
defined, 331
varying location in airfoils, 368–69

Aerodynamic coefficients, 23–26,
93–96. See also specific
coefficients

Aerodynamic efficiency, 49
Aerodynamic flows. See Flows
Aerodynamic forces and moments

center of pressure, 32–33
dimensional analysis, 34–40
overview, 19–26

Aerodynamic heating
defined, 931
increases with velocity, 72–73
as major aspect of hypersonic flows,

874–76
major discoveries, 9–10
at stagnation points, 1037–42

Aerodynamic moments, 23
Aerodynamics

external, 13
fundamental variables, 15–19
historical developments, 5–11
internal, 13
objectives, 11–14
sample applications, 3–5

Aerodynamics (Lanchester), 411, 488
Aerodynamic twist, 435
Airfoils. See also Wings

aerodynamic center, 331, 365–67
center of pressure, 32–33, 89–93
characteristics, 328–31
defined, 324
development for supersonic flows,

816–18

early high-speed research, 788–92
effects of angle of attack changes,

395–406
finite wings vs., 427–28, 453–54
historical developments, 326–28,

406–11
Kelvin’s circulation theorem,

342–45
Kutta condition, 338–42
modern low-speed, 375–77
Navier-Stokes solution, 1065–67
supercritical, 775–77
symmetric, 326, 346–55
terminology, 326–28
thin, 346–55
thin cambered, 356–61
transonic, 777–82
viscous flow mechanisms, 379–80
Wright brothers’ development, 7–9

Airfoils in subsonic compressible
flows

area rule, 773–75
critical Mach number, 756–60
early high-speed research, 788–92
linearized velocity potential

equation, 745–50
Prandtl-Glauert compressibility

correction, 750–55
simplified velocity potential

equation, 742–45
supercritical, 775–77, 785–86
velocity measurement, 603–4

Airplane lift and drag
CFD approaches, 519–23
drag calculations, 514–15
lift analyses, 512–13
lift-to-drag ratio, 516–19

Airspeed, equivalent, 231
Airspeed measurement, 216–17,

226–29
Allen, H. Julian, 9
Altitude, 54, 59–60
American Institute of Aeronautics and

Astronautics, 10
Angle of attack

defined, 20

designing for high values, 465–69
downwash effects on, 428–30
geometric, 428
impact on flow separation, 389–92
impact on lift and drag coefficients,

881–88
impact on real flows, 395–406
independent of, 365
in Prandtl’s lifting-line theory,

440–41
zero-lift, 329

Angular velocity, 165–72
Apollo flights, 872–73, 876
Applied aerodynamics, 75–87

airplane lift and drag, 512–23
blended wing bodies, 782–88
delta wing analysis, 476–87
drag coefficients, 76–83
flow over airfoil, 395–406
flows over spheres, 509–12
hypersonic waveriders, 908–21
lift coefficients, 83–87

Arbitrary bodies, boundary layers for,
1043–49

Archimedes principle, 57
Area–Mach number relation, 702
Area rule, 773–75, 786, 821–22
Area-velocity relation, 699
Armada, 5
Aspect ratio

defined, 444
relation to induced drag, 445–46,

450–53
Axial force, 20, 22, 93–94
Axial force coefficient, 24, 817
Axisymmetric flow, 504, 860
Axisymmetric stagnation point

boundary layer equations,
1039–40

B
Back pressure, 708–10
Baldwin-Lomax model, 1058–60
Ballistic pendulum, 788
Beechcraft Baron 58, 423–24
Bell X-1, 4
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Bell XS-1, 767, 768
Berlin Society of Sciences, 306
Bernoulli, Daniel, 303–5
Bernoulli, Nikolaus, 303
Bernoulli’s equation

deriving, 209–12
for incompressible flows only, 229

Biot-Savart law, 432–36
Biplane wing wires, 300–301
Blasius’ equation, 1014–21
Blended wing body (BWB), 4,

782–88
Blow-down tunnels, 534
Blunt bodies

aerodynamic heating in hypersonic
flows, 9–10, 11, 1040–42

detached shock waves, 644–46
pressure drag, 80
solving supersonic flows with

time-dependent techniques,
850–57

Blunt reentry bodies, 9–10, 11
Body forces, 133
Boeing 707, 3, 4
Boeing 747, 509
Boeing 777, 740
Boeing 787, 105–6
Boeing B-52 strategic bomber, 86
Boeing Stratoliner, 234
Boundaries of thermodynamic

systems, 535
Boundary conditions, 240–42,

953–55
Boundary-layer equations

approaches to solving, 1009–11
deriving, 1006–9
utility of, 998

Boundary layers
aerodynamic heating at stagnation

points, 1037–42
basic concepts, 68–75, 998–1000
compressible laminar flows over flat

plate, 1021–30
defined, 997
fundamental properties, 1000–1006
in hypersonic flows, 873–74
incompressible laminar flows over

flat plate, 1014–21
interactions with shock waves,

669–71, 724–25, 1069–70
over arbitrary bodies, 1043–49
reference temperature method,

1033–37

turbulence in, 1051–60
vorticity in, 337

Bow shocks
flows behind, 65
in front of blunt body, properties of,

644–46
normal shock waves associated

with, 562
Bracing wires, 300–301
Buckingham pi theorem, 34–40
Bulk viscosity coefficient, 938–39
Buoyancy force, 52–57
Busemann, Adolf

biography, 792–94
supersonic wind tunnel, 691

BWB. See Blended wing body (BWB)

C
Caldwell, F. W., 768
Calorically perfect gas, 531, 570
Camber

airfoils without, 327
defined, 326
in thin airfoil theory, 356–61
Wright brothers’ discoveries, 8

Camber line, 326, 338, 347–50
Cartesian coordinate system

Couette flow geometry in, 962–63
curl of vector field, 116
divergence of vector field, 115
elements of, 109–10
gradient of scalar field, 114
Laplace’s equation, 239
scalar and vector products, 112–13
stream function in, 182
streamline equation, 162–63
substantial derivative, 154
velocity field, 126
velocity potential, 183

Cayley, George, 89–90, 406
Centered expansion wave, 649
Center of pressure

basic calculation, 32–33
early investigations, 89–93
for thin cambered airfoils,

360–61
Central differences, 844
Cessna 340, 208
Cessna 560 Citation V, 51
CFD. See Computational fluid

dynamics (CFD)
Chain rule of partial differentiation,

751

Characteristic lines, 833, 834–38,
840–43

Characteristic Mach number, 580–81
Chimera grid, 1071
Choked flow, 707
Chord, 20
Chord length, 8
Chord line, 326, 347–50
Chu, C. K., 829
Circular cylinders, nonlifting flow

over, 255–60
Circulation

around lifting airfoils, 282–84
basic concepts, 176–78
for incompressible uniform

flows, 245
Kelvin’s theorem, 342–45
for lifting flow over cylinders, 272
for thin cambered airfoils, 358–59
of vortex flows, 265–66
in vortex panel method, 373

Circulation theory of lift, 284, 321–22,
411–13

Classical lifting-line theory. See
Lifting-line theory

Closed-circuit tunnels, 218
Closed-form solutions, 188–89
Cold wall cases

defined, 962
Communications blackout, 876
Compatibility equations, 836
Compressibility

defined, 542–43
skin-friction drag and, 822–23

Compressibility corrections
Prandtl-Glauert rule, 750–55

Compressible flows. See also
Subsonic compressible flows

area rule, 773–75, 786
basic concepts, 64
Couette flow analytical

considerations, 990–94
defined, 527, 543, 584–87
early studies, 528–29
energy equation for, 146–51
flat plate laminar boundary layer

flows, 1021–30
governing equations, 543–45
governing equations for Couette

flow, 980–82
governing equations for

quasi-one-dimensional flows,
692–701
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in nozzles, 701–10
results with Couette flows, 988–90
shock waves, 542–43
shooting method for Couette flows,

982–84
tables to calculate, 602–3
through diffusers, 716–18
through wind tunnels, 718–23
time-dependent finite-difference

method for Couette flows,
984–88

total conditions, 545–50
velocity measurement, 603–5

Compression waves, 655
Computational fluid dynamics (CFD)

basic concepts, 189–96
to calculate lift and drag on

airplanes, 519–23
finite-difference method

approaches, 843–50
impact on airfoil design, 378–79
importance with hypersonic flows,

898–901
limitations for predicting drag,

521–22
method of characteristics basics,

832–38
with nonlinear supersonic conical

flows, 858–69
philosophy of, 830–32
time-dependent techniques, 850–57
for transonic airfoil design, 777–82
use in blended wing body design,

786
Computational plane, 847
Cones

supersonic flow over, 634–38,
858–69

Conservation form of fundamental
equations, 160

Constant Prandtl number, 991
Continuity equation, 130, 131

for axisymmetric conical
flows, 860

for compressible flows, 544
conservation form, 846–47
for finite control volumes, 127–32
Laplace’s equation and, 239–40
Navier-Stokes, 1064
for normal shock waves, 565, 566
for oblique shock waves, 621
for quasi-one-dimensional flow,

215, 693

in terms of substantial derivative,
158–59

for viscous flows, 947
Continuum flows, 62
Control surface, 121
Control volumes

change in, 122–23
continuity equation for, 127–32
defined, 121
energy equation principles, 147–51
fluid models based on, 120–21
momentum equation, 132–37
momentum equation example for

two-dimensional flow, 137–43
Convair F-102, 773
Convair F-102A, 476, 477
Convective derivative, 154
Convective heating, 876
Convergent-divergent ducts, 700–701
Convergent-divergent nozzles, 703–10
Convergent ducts, 699, 700
Convergent nozzles, 689–90
Coordinate systems, 114–15
Corrector step in finite-difference

methods, 849–50, 854–57
Couette flow

adiabatic wall
conditions/temperature,
973–75

compressible, solving with shooting
method, 982–84

compressible, typical results,
988–90

compressible viscous flows,
980–82, 990–94

equal wall temperatures, 971–73
governing equations, 960–63
incompressible/constant property,

964–70
negligible viscous dissipation,

970–71
recovery factor, 976–77
Reynolds analogy, 977–78
time-dependent finite-difference

method, 984–88
Courant-Friedrichs-Lewy (CFL)

criterion, 988
Cramer’s rule, 833
Cranked-Arrow Wing Aerodynamics

Project, 521, 522–23
Critical Mach number

airfoil thickness and, 775–77
estimating, 756–60

Critical pressure coefficient, 758–59
Crocco’s theorem, 648, 861
Cropped delta planform, 479
Cross product, 109
Curl of vector field, 116, 169
Cusped trailing edge, 341
Cylinders

lifting flow over, 268–78
nonlifting flow over, 255–60
observed behavior of uniform flows,

294–302
Cylindrical coordinate system

curl of vector field, 116
divergence of vector field, 115
elements of, 110–11
gradient of scalar field, 115
Laplace’s equation, 239
scalar and vector products in, 113
velocity potential, 183

D
D. H. 108 Swallow, 739, 740
d’Alembert, Jean LeRond, 6, 258,

307–8
d’Alembert’s paradox

as challenge to early scientists, 307
defined, 258, 379
for subsonic compressible flows,

754–55
DC-3 aircraft, 3, 34
Deflection angle, 624–27, 639–40
Deformation of fluids vs. solids,

11–12
DeHaviland DHC-6 Twin Otter, 323
deHavilland, Geoffrey, 740
Delta wing design

classical lifting-line theory
shortcomings, 469

subsonic flow analysis, 476–87
Density. See also Compressibility

defined, 16
relation to Mach number, 579
substantial derivative, 152–54
variation at increasing Mach

numbers, 584–87
Density ratios, 892, 894–95
Design analysis

aerodynamic center of airfoils,
368–69

airfoil shapes, 377–79
high-aspect-ratio wings, 474–75
high-speed aircraft design, 768–72
lift and drag coefficients, 46–51
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Design analysis Cont.
Pitot-static probes, 231–35
SCRAMjet engines, 654–58
supersonic area rule, 821–22
wing planform selection, 462–65

Detached shock waves
in front of blunt body, 644–46

Diamond-shaped airfoils, 661–62
Difference equations, 195
Diffusers, 218–19, 716–18
Diffusion, 927–28
Dilatation of fluid element, 171
Dimensional analysis, 34–40
Dimensionless force and moment

coefficients, 23–25
Directed motion, 878
Directional derivatives, 114
Direct problem, 377
Discretizing partial derivatives,

191–94
Displacement thickness, 1001–4
Distortion of fluid elements in flow

fields, 166–67
Distributed loads, 32
Divergence of vector field, 115
Divergence of velocity, 122–23
Divergence theorem, 119
Divergent ducts, 699, 700
Divergent nozzles, 689–90
Dividing streamline, 251
Dot product, 108
Double delta planform, 479
Doublet flows, 253–55, 502–4
Douglas DC-3, 3, 34
Downwash

defined, 428
effects on local relative wind,

428–30
with elliptical lift distribution, 443

Drag, 20
defined, 430
due to flow separation, 389–94
form, 80, 330
in hypersonic flows, 881–88
induced, 86, 430
interference, 514
limitations of CFD calculation

methods, 521–22
per unit span, 23
real forces on airplanes, 512–23
skin friction, 25, 380–89 (See also

Skin-friction drag)
supersonic wave, 675–78

on two-dimensional body in a flow,
137–43

variation with velocity, 1032–33
wave (See Wave drag)

Drag coefficients
analyzing aircraft designs for, 46–51
for common configurations, 76–83
for complete airplanes, 514–15
defined, 24
for flow over spheres, 510–12
for lifting fows over cylinders,

273–74
and Mach number, 765–68
measured over circular cylinders,

294–302
minimum, 47
skin friction, 383–84, 388–89
in supersonic flows, 664, 822–23

Drag-divergence Mach number,
765–68, 776

Drag polars
defned, 452
equation for, 515

Drake, Francis, 5
Ducts

incompressible flows in, 213–21
two-dimensional supersonic flow

analysis, 844–50
Dynamically similar flows, 948–52
Dynamic pressure, 24, 96, 228, 748
Dynamic similarity of flows, 41–45

E
Eddy thermal conductivity, 939–40
Eddy viscosity, 939–40
Effective angle of attack, 429, 430,

440–41
Effective body, 1003–4
Efficiency, 633
Eiffel, Gustave, 94, 220
Elizabeth I, 5
Elliptical lift distribution

aerodynamic properties with,
442–47

of blended wing body designs,
784–85

induced drag, 449–50
Elliptical wing planforms, 450, 462
Encyclopedia, 308
Energy equation

for adiabatic flows, 576–81
conservation form, 846–47
for Couette flows, 966–67

deriving, 146–51
importance for compressible flows,

544, 545
Navier-Stokes, 1064
for oblique shock waves, 623
quasi-one-dimensional flow, 695
relation to Bernoulli’s equation,

212
in terms of substantial derivative,

160
for viscous flows, 944–47

English units, 18–19
Enthalpy, 530–32

for compressible flows, 546–47
for Couette flows, 966–68

Entropy, 537. See also Isentropic flows
and second law of thermodynamics,

536–38
in supersonic blunt-body flow field,

851–52
Entropy gradient, 852
Equal wall temperatures, 971–73
Equations

aerodynamic center, 367
angular velocity, 168
area-Mach number relation, 702
area-velocity relation, 699
axial force coefficient, 24
axial force on elemental areas, 22
axial force per unit span, 22
Bernoulli’s equation, 209
Biot-Savart law, 432–36
Blasius’ equation, 1016
Buckingham pi theorem, 36–39
buoyancy force, 56–57
center of pressure, 32, 33
circulation, 176
compressibility, 542, 543
condition of irrotationality for

two-dimensional flow, 170
continuity, 130, 131
continuity, for normal shock waves,

565, 566
continuity, for oblique shock

waves, 621
continuity, quasi-one-dimensional

flow, 215, 693
Courant-Friedrichs-Lewy

criterion, 988
critical pressure coefficient,

758, 759
Crocco’s theorem, 861
density at a point, 16
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difference, 195
displacement thickness, 1001
divergence theorem, 119
downwash, 443
drag, 20, 78, 142
drag coefficient, 24
drag polars, 515
dynamic pressure, 228
energy, 150–51
energy, for oblique shock waves,

623
energy, in terms of substantial

derivative, 160
energy, quasi-one-dimensional

flow, 695
Euler’s equation, 211
first law of thermodynamics, 147,

150, 535
flow field, 123–24
gradient theorem, 119
hydrostatic, 53
Karman-Tsien rule, 755
Kelvin’s circulation theorem, 343
Kutta-Joukowski theorem, 275
Laitone’s rule, 755
Laplace’s equation, 238
lift, 20
lift coefficient, 24
lifting-surface theory, 472
lift per unit span, 275
lift-to-drag ratio, 49
local shear stress, 17
Mach angle, 618
Mach number, 543
mass flow, 128, 129
mass flow between streamlines,

180, 181–82
mass flux, 128
mixing length theory, 940
moment coefficient, 24
moment per unit span, 23
momentum, 134, 135, 136–37
momentum, for normal shock

waves, 565, 566
momentum, for oblique shock

waves, 622
momentum, in terms of substantial

derivative, 159–60
net pressure force, 53
Newton’s second law, 132
normal force coefficient, 24
normal force on elemental

areas, 22

normal force per unit span, 22
normal shock wave, 563–67
numerical solutions, 189–94
Prandtl-Glauert rule, 754
Prandtl-Meyer function, 653
pressure at a point, 15
pressure coefficient, 25, 235
Rayleigh Pitot tube formula, 605
scalar field, 112
second law of thermodynamics,

536–37
skin-friction coefficient, 25
source panel method, 288
Stokes’ theorem, 119
strain, 171
streamlines, 162–63
substantial derivative, 154
Sutherland’s law, 936
Taylor-Maccoll, 864
theoretical solution approach,

187–89
thin airfoil theory, 350
three-dimensional doublets, 503
three-dimensional source, 502
total enthalpy, 548
vector field, 112
vector product, 109
velocity, 228
velocity potential for uniform

flows, 244
volume change, 122–23
volumetric heating rate, 147
vorticity, 169
work rate, 148–49
zero-lift, 360

Equipotential lines, 186–87
Equivalent airspeed, 231
ETA sailplane, 446
Eteve, A., 217
Euler, Leonhard, 6–7, 209, 305–6
Euler’s equation, 211, 305, 697,

778–79
Exact oblique shock theory,

894, 895
Exercitationes Mathematicae

(Bernoulli), 304
Expansion section of nozzle, 842
Expansion waves

formation of, 614–15
Prandtl-Meyer, 648–53
shock-expansion theory applied to

airfoils, 660–63
External aerodynamics, 13

F
F-16 aircraft, 821–22
F-22 aircraft, 4
F-102 aircraft, 476, 477, 773
F-104 aircraft, 4, 819
Fales, E. N., 768
F-86H, 232, 233
Finite-angle trailing edge, 340–41
Finite control volume approach,

120–21. See also Control
volumes

Finite-difference methods
boundary layers over arbitrary

bodies, 1043–49
elements of, 843–50
time-dependent techniques, 850–57

Finite drag, 662
Finite wings. See Wings
Finite-wing theory, 488–91
First law of thermodynamics, 146–47,

150, 535–36
First-order accuracy, 192, 193
First throat, 721–23
Five-digit NACA airfoils, 327
Flaps, 401–6
Flat plates

compressible laminar boundary
layer flows, 1021–30

incompressible laminar boundary
layer flows, 1014–21

modeling wings in hypersonic flows
as, 881–88

as models for thin airfoils, 350,
398–401

turbulent boundary layer flow
analysis, 1052–57

Flettner, Anton, 278
Flow fields

dynamic similarity, 41–45
variation, 123–25
velocities, 180, 184

Flows. See also Fluid dynamics
boundary layers, 68–75
dynamic similarity, 41–45
pathlines/streamlines/streaklines,

160–64
types, 62–68
velocities defined, 16–17

Flow separation
boundary layer concepts, 63,

69, 70
causes and consequences for

airfoils, 389–94
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Flow velocity, 16–17. See also
Velocity

Fluid dynamics
angular velocity/vorticity/strain,

165–72
Bernoulli’s equation, 209–12
computational methods, 189–96

(See also Computational fluid
dynamics (CFD))

continuity equation, 127–32
early work in, 6–7
energy equation, 147–51
momentum equation, 132–37
pathlines/streamlines/streaklines,

160–64
Prandtl’s contributions, 68
rationale for study, 12
stream function, 179–83
substantial derivative, 152–54,

158–60
theoretical, 302–7
velocity potential, 183–84

Fluid elements
angular velocity/vorticity/strain,

165–72
density change, 152–53
pathlines/streamlines/streaklines,

160–64
rotation, 116, 166–67
volume change, 115, 123

Fluid models
continuity equation for control

volumes, 127–32
momentum equation for control

volumes, 132–37
Fluids’ shear stress behavior, 11–12
Flux variables, 847
Fokker, Anthony, 409–10
Fokker Dr-1 triplane, 409–10
Fokker D-VII, 410–11
Foppl, August, 492
Foppl, O., 489–90
Force coefficients, 23–26
Forest destruction, 301–2
Form drag, 80, 330. See also Pressure

drag
Forward differences, 192, 849
Four-digit NACA airfoils, 327
Fourier sine series, 447
Francis Marion National Forest, 301–2
Frederick the Great, 306
Free molecular flows, 62
Freestream, defined, 20

Freestream turbulence, 934
Freestream velocity, 20
Friction. See also Drag

aerodynamic heating and, 9–10, 11
basic role in flows, 17–18
boundary layers, 68–75
skin-friction coefficient, 25
skin-friction drag (See Skin-friction

drag)
Frictional dissipation, 71
Frontal projected area, 78
F-86 Sabre, 772
Fuid element

basic motions, 17
buoyancy force, 52–57

Fuid statics, 52–57
Full-scale wind tunnel, 82
F-16XL aircraft, 520

G
Gas-dynamic lasers, 13
Gases

distinction from other states, 11–12
internal energy, 531
sound wave conduction, 567–71

Gates Lear jet, 760
Geometric altitude, 59
Geometric angle of attack, 428, 429
Geopotential altitude, 59–60
Glauert, Hermann, 450, 754
Glenn L. Martin Wind Tunnel, 221,

222, 223
Gliders

of Cayley, 406, 407
of Wright brothers, 7–9

Göttingen 298 airfoil, 409–10
Gradient lines, 114
Gradients

of scalar fields, 113–15
Gradient theorem, 119
Gravity, buoyancy force, 52–57
Grid, 190, 191
Grid points, 190, 191

H
Harmonic functions, 238
Heat flux, 970. See also Aerodynamic

heating; Heat transfer
Heating. See also Aerodynamic

heating
as major aspect of hypersonic flows,

874–76
major discoveries, 9–10, 11

Heat transfer. See also Aerodynamic
heating; Thermal conduction

in Couette flow model, 966–68
at stagnation points, 1037–42

Helmbold’s equation, 474
Helmholtz’s vortex theorems, 435
High-aspect-ratio straight wing, 771
High-energy flow, 527
High-lift devices, 47, 402–5
Horseshoe vortices

in Prandtl’s lifting-line theory,
436–39, 456–57

use with lifting-surface theory,
473–74

Hot wall cases, 962
Hunter, Craig A., 724
Hurricane Hugo, 301–2
Hydraulica (Bernoulli Sr.), 304–5
Hydrodynamica (Bernoulli), 304
Hydrodynamic force, 6
Hydrostatic equation, 53
Hypersonic flight, 105, 871–72

history, 872–73
Hypersonic flows. See also Supersonic

flows
aerodynamic heating, 874–76,

901–7, 1040–42
defined, 30
importance of CFD methods,

898–901
Mach number, 65, 67, 896–98
Newtonian theory basics, 877–81
qualitative aspects, 873–77
shock wave relations, 892–95

Hypersonic waveriders
for inviscid, compressible flows,

908–21
Hyper-X hypersonic research vehicle,

658

I
Incident shock waves, 639–40
Incompressible flows. See also

Inviscid, incompressible flows;
Three-dimensional,
incompressible flows

basic concepts, 64
condition on velocity for, 237–38
Couette flow concepts, 964–70
doublet flows, 253–55, 502–4
in ducts, 213–21
flat plate laminar boundary layer

flows, 1014–21
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Laplace’s equation, 238–42
Mach number, 78
pressure coefficient, 235–37
source flows, 245–49
uniform flow over circular

cylinders, 255–60
uniform flow principles, 243–45
vortex flows, 264–67

Induced angle of attack, 430
with elliptical lift distribution,

433–34
for general lift distributions, 448–49

Induced drag
coefficient, 431, 442
defined, 86, 430
origin of term, 491
as percentage of total drag, 464–65
relation to aspect ratio, 450–53
relation to lift, 444–45

Induced drag coefficient, 444–45,
448–49

Infinitesimal fluid element approach,
121

Infinity boundary conditions, 241
Inflows, 129
Institute of the Aeronautical

Sciences, 10
Intercontinental ballistic missiles

(ICBMs), 9–10
Interference drag, 514
Interferometers, 672
Intermolecular forces, 530
Internal aerodynamics, 13
Internal energy, 530–32
Inverse problem, 377
Inviscid, compressible flows. See also

Compressible flows; Subsonic
compressible flows

governing equations, 543–45
in nozzles, 701–10
shock waves, 542–43
through diffusers, 716–18
through wind tunnels, 718–23

Inviscid, incompressible flows
airfoil theory, 336–38
airspeed measurement, 226–29
as approximations, 205
Bernoulli’s equation, 209–12
condition on velocity, 237–38
doublet flows, 253–55
in ducts, 213–21
Laplace’s equation, 238–42
lifting flow over cylinder, 268–78

pressure coefficient, 235–37
source flows, 245–49
uniform flow over circular

cylinders, 255–60
uniform flow principles, 243–45
vortex flows, 264–67

Inviscid flows, 62–64
Ionization, 875–76
Irrotational flows

angular velocity, 169–70
Bernoulli’s equation, 211
conical flows as, 862
Laplace’s equation, 238–42
source flows, 245–49
uniform flows as, 176
velocity potential, 183–84, 186–87
vortex flows as, 266

Irrotationality condition, 862
Isentropic compressibility, 542
Isentropic compression waves, 655
Isentropic flows

defined, 536
from diffusers, 717–18
equations for, 538–40
through sound waves, 569

Isentropic process, 536
Isolines, 113
Isothermal compressibility, 542

J
Jacobs, Eastman, 528
Jet aircraft development, 528
Jet engine inlet design, 634
Joukowski, Nikolai, 176, 275, 412–13

K
Karman-Tsien rule, 755, 756
Karman vortex street, 298
Kelvin’s circulation theorem, 342–45
Kinematic viscosity, 1015
Kinetic theory, 121–22
Kutta, M. Wilhelm, 176, 275, 412
Kutta condition

basic principles, 338–42
in central problem of thin airfoil

theory, 350
discovery, 412
vortex panel method and, 371–72

Kutta-Joukowski theorem, 275,
282–84

L
Laitone’s rule, 755, 756
Lambda shock pattern, 724

Laminar boundary layer flow
aerodynamic heating at stagnation

points, 1037–42
compressible, over flat plate,

1021–30
early attempts to achieve in

rockets, 9
incompressible, over flat plate,

1014–21
reference temperature methods,

1033–37
thickness, 1006

Laminar flow, 73
defined, 932
over spheres, 510

Laminar-flow airfoil, 322
Lanchester, Frederick W., 176,

411–12, 488–91
Langley, Samuel P., 7, 90–91, 406
Laplace’s equation

boundary condition and, 241–42
overview, 238–41
relating compressible to

incompressible flows with,
752–53

Lasers, 13
L/D ratio, 85–86
Leading-edge flaps, 484–85
Leading edges. See also Airfoils;

Blunt bodies
defined, 326
delta wing analysis, 476–87

Leading-edge slats, 403–4
Leading-edge stall, 396, 397
Left-running waves, 641–42
Lift

circulation theory, 284, 321–22,
411–13

defined, 20
in hypersonic flows, 881–88
real forces on airplanes, 512–13

Lift coefficients
affecting maximums, 401–6
for common configurations, 83–87
defined, 24
delta wing design, 482–83
for lifting flows over cylinders,

274–75
Prandtl-Glauert rule, 754
relation to induced drag

coefficients, 445
relation to Reynolds number, 329
in supersonic flows, 664
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Lift distribution, 435
elliptical, 442–47, 449–50, 784–85
general model, 447–50

Lifting flow over cylinders, 268–78
Lifting-line theory

aspect ratio effects, 450–56
development of, 436–42
elliptical lift distributions, 442–47
general lift distributions, 447–50
numerical nonlinear method,

465–69
Lifting-surface theory, 469–74
Lift per unit span

calculating, 274–75
defined, 23

Lift slope
defined, 328
of finite wings, 453–56

Lift-to-drag ratio
complete airplane, 516–19
defined, 49
delta wing design, 483

Lighter-than-air vehicles, 57
Lilienthal, Otto, 7, 93–94, 406
Limiting characteristic, 841–42
Limiting forms, 892–95
Linearized supersonic flows

airfoil development for, 816–18
area rule, 821–22
pressure coefficient formula,

812–15
skin-friction drag, 822–23

Linearized velocity potential equation,
745–50, 812

Line integrals, 116–17, 119
Liquids, distinction from other states,

11–12
Local derivatives, 154
Local relative wind, 428–30
Local skin-friction coefficient. See

Skin-friction coefficient
Lockheed F-104, 4, 819
Lockheed-Martin F-22, 4
Lockheed SR-71 Blackbird, 607
Lockheed U-2, 463
Loftin, Larry, 516
Low-aspect-ratio wings, 469
Low-density flows, 62
Low-speed airfoils, 375–77
Low-speed wind tunnels, 217–20,

314–18
wall effects on measurements,

415–19

M
MacCormack’s finite-difference

technique, 844–50, 984–88
MacCormack’s method, 848
Mach, Ernst, 671–73
Mach angle, 618, 672
Mach line, 813
Mach lines, 835–36
Mach number

compressibility and, 584–87
critical, 756–60
defined, 39
drag-divergence, 765–68, 776
in ducts, 701–3
effect of increase on drag, 82–83,

84, 1032–33
as gage of flow compressibility,

543
for incompressible flows, 78, 237
independence principle for

hypersonic flows, 896–98
measuring in compressible flows,

603–5
in nozzles, 703–6
oblique shock wave characteristics

and, 623–24
relation to flow regimes, 64–67,

580–81
wind tunnel simulation, 44–45

Mach reflections, 641
Mach waves

as characteristic lines, 835–36
formation of, 618
propagation in flows, 813–14

Magnus effect, 276
Manometers, 55–56, 220
Mass diffusion, 927–28
Mass flow

across cylinder surface, 247–48
of boundary layer, 1001–3
controlling variables, 715–16
defined, 127–28
through convergent-divergent

nozzles, 706–7
between two streamlines, 180

Mass flux, 128–29
Maximum deflection angle, 624–27
Maximum lift coefficient

impact of thick airfoil development,
407–11

manipulating, 401–6
McCormick, B.W., 450
McLellan, C. H., 665

Meador-Smart reference temperature
method, 1056

Me 262 aircraft, 773
Mean camber line, 326. See also

Camber line
Mean-free path, 62
Measurement units, 18–19
Method of characteristics

elements of, 832–38
nozzle analysis using, 838–40
nozzle design using, 840–43

Minimum drag coefficient, 47
Missing mass flow, 1001–2
Mitchell, Reginald, 462
Mixing length theory, 940
Modeling turbulent flows, 1057–60
Molecular approach in fluid modeling,

121–22
Molecular motions, 567–71
Molecular structures, 12
Molecules, internal energy, 530–31
Moment about leading edge, 352–54
Moment coefficient

defined, 24
Prandtl-Glauert rule, 754
relation to Reynolds number, 330
for thin airfoils, 360

Moments, sign convention for, 23, 32
Momentum equation

applied to drag on two-dimensional
body, 137–43

for compressible flows, 544
conservation form, 846–47
deriving, 132–37
Navier-Stokes, 1064
normal shock waves, 565, 566
oblique shock waves, 622
quasi-one-dimensional flow, 694–95
relation to Bernoulli’s equation, 212
in terms of substantial derivative,

159–60
Momentum thickness, 1004–5
Multielement flaps, 405
Munk, Max, 338, 491

N
NACA 0012 airfoil, 327, 353, 374–75,

765, 780
NACA 63-210 airfoil, 81–82
NACA 65-218 airfoil, 327
NACA 2412 airfoil, 327, 329–31
NACA 4412 airfoil, 33–34, 395–97,

399, 404
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NACA 4421 airfoil, 397–399
NACA 23012 airfoil, 327, 363–65
NACA 23015 airfoil, 423–26
NACA 64 series airfoils, 775–76
NACA TR-1135, 602
NASA low-speed airfoils, 375–77
NASA LS(1)-0417 airfoil, 375–76,

377
NASA LS(1)-0417 airfoils, 389–92
National Advisory Committee for

Aeronautics
airfoil specifications, 326, 327, 328
pressurized wind tunnel, 44–45

Naval ships, 5–6
Navier-Stokes equations

accurate prediction of skin-friction
drag, 1072–77

boundary layer concept and, 998
in CFD methods, 189
in Couette flow model, 962–63
deriving, 940–44
sample solutions, 1065–72

Navier-Stokes solution to flow with
protuberance over, 1070–72

Negligible viscous dissipation, 970–71
Net rate of work, 944–46
Newton, Isaac

fluid flow model, 6
shear stress recognition, 965–66
speed of sound calculation, 574–75

Newtonian fluids, 965–66
Newtonian theory

basic application to hypersonic
flows, 877–81

flat plate applications, 881–88
Newton’s second law, 132
Nonadiabatic flows, 548, 549
Nonconservation form of fundamental

equations, 160
Nondimensional velocity, 864–65
Nonisentropic flows, 548–49
Nonlifting flow, 255–60, 284–90
Nonlinear supersonic flows

finite-difference method
approaches, 843–50

method of characteristics basics,
832–38

over cones, 858–69
time-dependent techniques, 850–57

Normal force
defined, 20
Lilienthal’s equation, 93–94
per unit span, 22

Normal shock waves. See also Shock
waves

calculating properties, 587–93
equations for, 563–67
overview, 562
speed of sound and, 567–71

North American F-86H, 232, 233
North American F-86 Sabre, 772
Northrop T-38A jet trainer, 83, 84,

85–86
Nose radii, 1040–42
No-slip condition, 69–70, 928

in Couette flow model, 960–61
Notched delta planform, 479
Nozzles

analyzing with method of
characteristics, 838–40

compressible flows in, 701–10
designing with method of

characteristics, 840–43
normal shock waves associated

with, 562
shock wave/boundary layer

interactions in, 724–25
of space shuttle engines, 689–90
in supersonic wind tunnels, 718–23

Numerical lifting-line method, 465–69
Numerical panel techniques

numerical source panel method,
284–90

three-dimensional, incompressible
flows, 507–9

vortex panel method, 369–75
Numerical solution approach, 189–94.

See also Computational fluid
dynamics (CFD)

O
Oblique expansion waves. See

Expansion waves
Oblique shock equations, 892–95
Oblique shock waves. See also Shock

waves
causes of, 614–18
in hypersonic flows, 873–74,

892–95
interactions and reflections, 638–43
over cones and wedges, 634–38
overview, 613, 614
properties, 620–30
shock-expansion theory, 660–63
total pressure loss, 633–34

One-dimensional flow, 567

Open-circuit tunnels, 218
Optimization techniques, 378–79
Ordinary differential equations, 1016
Orthogonal coordinate systems,

109–12
Oswald, W. Bailey, 515
Oswald efficiency factor, 515
Outflows, 129
OVERFLOW, 1070

P
P-35 aircraft

aerodynamics of, 207
cruise velocity, 88
drag coefficient on, 82
engine, 89
wing planform, 516

Panel methods of calculating flow
numerical source panel method,

284–90
three-dimensional, incompressible

flows, 507–9
vortex panel method, 369–75

Parasite drag, 464–65, 931
Parasite drag coefficient, 514–15
Partial derivatives, discretizing,

191–94
Partial differential equations, 305
Pathlines, 160–64
Perfect gases, 530
Perturbations, 745, 749
Perturbation velocities, 745–46, 749
Perturbation velocity potential

equation, 812
Philip II, 5
Phillips, Horatio F., 326
Physical plane, 847
Piper Aztec, 760
Piper PA-38 Tomahawk, 377
Pitot, Henri, 226
Pitot rakes, 142, 143
Pitot-static probes, 228, 231–35
Pitot tubes

basic concepts, 206, 226–29
with compressible flows, 603–5
designing, 231–35

Planform area, 80, 81
Point properties, 15–16
Point sinks, 502
Point sources in three-dimensional

flows, 501–2
Polar coordinates, 182
Position vectors, 110
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Potential flows, 184
Potential theory, 433
Prandtl, Ludwig, 68

approach to wing studies, 323,
436–38

brief biography, 492–95
Lanchester’s potential influence on,

489–91
mixing length theory, 940
as originator of boundary layer

concept, 998
rectangular wing data, 456, 457
Volta Conference presentation, 528

Prandtl-Glauert compressibility
correction, 750–55

Prandtl-Meyer expansion waves,
648–53

Prandtl-Meyer function, 653, 837
Prandtl number

assuming constant, 990–94
constant, 991
for Couette flows, 968–69
defined, 951, 952
relation to boundary layer thickness,

1001
Predictor step in finite-difference

methods, 849, 854
Pressure. See also Total pressure

across boundary layer, 1008
buoyancy force, 52–57
center of, 32–33, 89–93
in Couette flow, 963
defined, 15–16
distribution principles, 19–26
dynamic, 24, 228, 748
flows through convergent-divergent

nozzles, 704–10
relation to Mach number, 579
relation to velocity, 212
static, 227, 230
through boundary layer, 70
units of measure, 18
venturi principles, 216–17

Pressure coefficient
critical, 758–59
defined, 25, 235
incompressible flows, 235–37
for lifting flow over cylinders, 272
linearized supersonic flows, 812–17
over circular cylinders, 259–60
Prandtl-Glauert rule, 753–54

Pressure distribution
across boundary layer, 1008

in flow over solid surface, 929–30
transonic wing design, 779–80

Pressure drag, 69
flow separation principles, 389–94
skin friction drag vs., 79–80
viscosity and, 930–31

Primitive variables, 847
Principia (Newton), 6, 574–75
Profile drag, 931
Profile drag coefficients, 331, 431
Propeller blades, 788–89

Q
Quarter chord, 354
Quasi-one-dimensional flow

governing equations, 692–701
incompressible, 214, 215

Quasi-two-dimensional flow, 858

R
Radial flows, 245–49
Radiative heating, 876
Random motion, 878
Rankine oval, 253
Rate of work, 944–46
Rayleigh Pitot tube formula, 605
Rearward differences, 844, 849
Recovery factor, 976–77
Reentry vehicles

major discoveries, 11, 9–10
Reference areas, 24–25
Reference temperature method,

1033–37, 1054
Reflected shock waves, 640
Relative wind, 20, 428–30
Relieving effect, three-dimensional,

506–7
Reversed flow, 328
Reversible process, 536
Reynolds analogy

applying to Couette flows, 977–78
Reynolds number

boundary layer assumptions for,
1007

defined, 38
of flows over circular cylinders,

294–302
for incompressible flows, 237
local, 73
relation to flows over spheres,

510–12
relation to flow viscosity, 63
relation to lift coefficient, 329

relation to moment coefficient,
330

for transition regions, 384–85
wind tunnel simulation, 44–45

Right-hand rule, 109
Right-running waves, 641–42
Rocket reentry vehicle design, 9–10,

11
Rotational flows

around blunt bodies, 851–52
defined, 169
irrotational vs., 169–70
viscous flows as, 174–75

Rotation of fluid elements, 166–67

S
Scalar fields, 112, 113–15, 123–24
Scalar products, 108, 112–13
Schempp-Hirth Nimbus 4 sailplane,

445–46
Schlieren system, 672
SCRAMjet engines

current status, 871–72
design analysis, 654–58

Second law of thermodynamics,
536–38

Second-order accuracy, 193
Second-order vortex panel method,

374–75
Second throat, 721–23
Self-similar solutions, 1018
Semi-infinite vortex filament,

434–35
Separated flows. See Flow separation
Separation bubbles, 400
Seversky P-35 aircraft

aerodynamics of, 207
cruise velocity, 88
drag coefficient on, 82
engine, 89
wing planform, 516

Shadowgraphs, 998
Shear layers, 997
Shear stress. See also Viscous flows

basic properties, 17–18
causing rotational flows, 174–75
in Couette flow model, 961,

964–65
defined, 17, 928
distribution principles, 19–26
on fluids versus solids, 11–12
units of measure, 18

Shock detachment distance, 645
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Shock-expansion theory, 660–63
Shock layers, 65
Shock waves. See also Normal shock

waves; Oblique shock waves
in axisymmetric conical flows,

865–69
basic features, 542–43, 561, 562
in blended wing body designs, 786
causes of, 614–18
in convergent-divergent nozzles,

707–10
drag from, 29
flows behind, 65, 66
in hypersonic flows, 873–74,

892–95
interactions with boundary layers,

669–71, 724–25, 1069–70
Mach’s studies, 672
in supersonic blunt-body flow

fields, 850–57
Shooting method

for solution of compressible
Couette flow, 982–84

use with Blasius’ equation, 1017
Sign conventions, 23, 32
Similarity parameters, 39, 948–52
Simple delta planform, 479
Sine-squared law

early model, 6
for hypersonic flow, 30

Sink flows
doublet, 253–55
source flows vs., 256
uniform flows, 249–53

SI units, 18–19
Skin-friction coefficient, 383–84,

388–89
defined, 25

Skin-friction drag. See also Drag
accuracy of prediction, 1072–77
pressure drag vs., 79–80
supersonic flows, 822–23
transition region, 384–89
turbulent flows, 382–84
viscosity and, 930–31

Slip lines, 641–42
Small-angle approximation, 893
Smeaton’s coefficient, 96
Solids, distinction from other states,

11–12
Sonic boom, 613, 678–81
Sonic line, 644, 645, 841
Sopwith Camel, 410

Sound barrier. See also Mach number;
Shock waves

basic principles, 765–68
early views, 528, 740
first piloted aircraft to exceed, 811
Mach number and, 39

Sound wave conduction, 567–71
Source flows

doublet, 253–55
for incompressible flows, 245–49
uniform flows, 249–53

Source panel method, 284–90, 508
Source sheets, 285–86, 333
Source strength, 248
Space flight, 9–10
Space shuttle

communications blackout on
reentry, 13

delta wing design, 476, 478
flows when coupled to Boeing 747,

509
main engine design, 689–90
use of CFD in design, 898–901

SPAD XIII, 300, 301, 410
Span loading, 464
Specific volume, 530
Speed of sound. See also Sound barrier

Mach number and, 39
normal shock wave equations,

567–71, 575–76
Spheres, flows over, 504–7, 509–12
Spherical coordinate system

curl of vector field, 116
divergence of vector field, 115
elements of, 111–12
gradient of scalar field, 115
Laplace’s equation, 239
scalar and vector products in, 113
velocity potential, 184

Spinning cylinders, 268–78
SR-71 Blackbird, 607
St. Petersburg Academy, 304
Stagnation points

aerodynamic heating at, 1037–42
defined, 227
for lifting flow over cylinders,

270–72
source/sink flows, 250–51, 252
in three-dimensional flow over

sphere, 505
Stagnation pressure, 227
Stalled condition

defined, 328

leading edge, 396, 397
thin airfoil, 398–401
trailing edge, 397–98

Stalling velocity, 47, 329
Starting vortex, 344–45
Static pressure, 227, 230
Static pressure taps, 232
Statics, 52–57
Static temperature, 579. See also

Temperature
Steady flow fields, 125, 132, 161
Stokes, George, 938
Stokes flow, 295
Stokes’ theorem, 119
Straightening section of nozzle, 842
Strain, 171
Streaklines, 164–65, 298
Stream function

basic concepts, 179–83
for incompressible uniform flows,

244
Laplace’s equation and, 239–40
for two-dimensional source flows,

249
uniform flow over circular

cylinders, 256
for uniform source and sink flows,

251–52
velocity potential vs., 184, 186–87
for vortex flows, 267

Streamlines, 161–62
defined, 17, 186
dividing, 251
effects of finite wing surfaces on,

427, 428
equations for, 162–63
equipotential lines vs., 186–87
for incompressible uniform flows,

244
of source flows, 246
stagnation, 252
of subsonic flows, 65
in three-dimensional doublets, 503

Streamtube, 164, 180
Strong shock solutions, 627–28
Subsonic compressible flows. See also

Compressible flows
area rule, 773–75
critical Mach number, 756–60
linearized velocity potential

equation, 745–50
Prandtl-Glauert compressibility

correction, 750–55
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Subsonic compressible flows. Cont.
simplified velocity potential

equation, 742–45
velocity measurement, 603–4

Subsonic incompressible flows, 65,
190, 191. See also
Incompressible flows

Substantial derivative
basic concepts, 152–54
fundamental equations in terms of,

158–60
Supercritical airfoils

basic principles, 775–77
in blended wing body designs,

785–86
development of, 323

Supermarine Spitfire, 450, 451, 462
Supersonic aircraft

airfoil shapes, 323
first piloted, 811
reentry vehicle design, 9–10

Supersonic combustion ramjet
engines. See SCRAMjet engines

Supersonic flows. See also Hypersonic
flows; Oblique shock waves;
Shock waves

airfoil development for, 816–18
area rule, 821–22
finite-difference method

approaches, 843–50
linearized supersonic pressure

coefficient formula, 812–15
Mach number, 65–67
method of characteristics basics,

832–38
over cones and wedges, 634–38,

858–69
skin-friction drag, 822–23
through convergent-divergent

nozzles, 707–10
time-dependent techniques, 850–57
velocity measurement, 604–5
wave formation, 616–18

Supersonic inlets, 634
Supersonic transport, 613, 614
Supersonic wave drag, 675–78
Supersonic wind tunnels, 534, 690–91,

718–23
conceptual design of, 727–36

Surface forces, 133
Surface integrals, 117–18, 119
Surface roughness, 934
Surface velocity over spheres, 506

Surroundings, thermodynamic, 535
Sutherland’s law, 936
Swallow aircraft, 739, 740
Swept wing design

Busemann’s introduction, 528
classical lifting-line theory

shortcomings, 469
origin of, 792–801

Sylvanus Albert Reed Award, 10
Symmetric airfoils, 326, 346–55
Systems, thermodynamic, 535

T
Tables for compressible flow

problems, 602–3
Tapered wings, 450, 462
Taylor-Maccoll equation, 864
Temperature. See also Aerodynamic

heating; Total temperature
adiabatic wall, 973–75
defined, 16
in hypersonic flows, 874–76

Temperature fields, 961–62
Temperature profiles

functions of, 70–71, 1000
slope, 72
at stagnation points, 1037–38

Temperature ratios, 892
Test sections of wind tunnels, 721
Theoretical solutions, 187–89
Thermal boundary-layer thickness,

1000
Thermal conduction, viscosity and,

935–40
Thermal conductivity

defined, 936
effect on aerodynamic heating rate,

72, 73
Thermal protection, 871–72
Thermodynamics

defined, 527
first law of, 146–47, 150, 535–36
isentropic relations, 538–40
second law, 536–38
variables in, 530–32

Thickness, airfoil. See also Airfoils
defined, 326
early discoveries, 406–11
relation to lift coefficient, 400–401

Thin airfoil sections, 768
Thin airfoil stall, 398–401
Thin airfoil theory

cambered airfoils, 356–61

origins, 322
symmetric, 346–55

Thin shear layer approximation, 779
Three-dimensional, incompressible

flows
doublet flows, 502–4
over spheres, 504–7, 509–12
overview, 499–500
panel techniques, 507–9
point source calculations, 500–502

Three-dimensional relieving effect,
506–7

Throats (duct)
defined, 216, 700–701

Throats in supersonic wind tunnels,
721–23

Time-dependent techniques
for solution of compressible

Couette flow, 984–88
solving supersonic blunt-body flows

with, 850–57
Time-marching techniques, 850
Time rate of strain, 171, 938
T-38 jet trainer, 83, 84, 85–86
Torricelli, Evangelista, 220
Total conditions for compressible

flows, 545–50
Total energy, 149
Total enthalpy, 546–47, 622
Total pressure, 311–14

defined, 716–17
maintaining in diffusers, 717–18
relation to flow efficiency, 633
static vs., 227–28, 230

Total temperature
across oblique shock waves, 622
defined, 546
relation to static temperature,

578–79
Trailing-edge flaps, 402–3
Trailing edges, 326, 340–41
Trailing-edge shock, 65
Trailing-edge stall, 397–98
Trailing vortices, 469–71
Transformation, between coordinate

systems, 110–11
Transition point, 934
Transition region, 384–89
Transonic airfoils, 777–82
Transonic flows, 65, 756–60
Truncation errors, 192
Turbulent boundary layer flow

early attempts to avoid in rockets, 9
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flat plate results, 1052–57
Navier-Stokes solutions, 1075–76
overview, 1051–52
thickness, 1006

Turbulent flows, 73
defined, 932
modeling, 522, 1057–60
over spheres, 510, 511, 512
skin-friction drag, 382–84

Two-dimensional body, 25, 137–43
Two-dimensional flows, 165–72,

179–83
Two-point boundary value problems,

981

U
U-2 aircraft, 445, 463
Uniform flows, 176, 243–45
Unit force coefficient, 94, 96
Units of measure, 18–19
Unit vector, 108
Unstarted wind tunnels, 723
Unsteady flow fields, 124–25, 132
U-tube manometers, 55–56

V
Variable density tunnel, 44–45, 46
Vector addition, 108
Vector fields

curl of, 116
defined, 112
divergence, 115
variation, 123–24

Vector products, 109, 112–13
Vector quantities, 107

algebraic techniques, 108–9
coordinate systems, 109–12
fields and products, 112–13

Velocity
defined for flows, 16–17
divergence, 122–23
drag variation with, 1032–33
measuring in compressible flows,

603–5
nondimensional, 864–65
relation to pressure, 212
tools for measuring, 216–17,

226–35, 603–5
of vortex flows, 264–67

Velocity boundary-layer thickness,
1000

Velocity fields
source/sink flows, 246–48, 250

uniform flow over circular
cylinders, 256–57

Velocity potential
basic concepts, 183–84
linearized velocity potential

equation, 745–50
simplified equation for subsonic

compressible flows, 742–45
stream function vs., 184, 186–87
uniform flows, 243

Velocity profiles
defined, 928, 1000
functions of, 70
for incompressible laminar

boundary layer flows, 1017–18
Venturis, 216–17
Viscosity, thermal conduction and,

935–40
Viscosity coefficient

defined, 18, 936
shear stress and, 71–72

Viscous dissipation
in Couette flows, 962, 968–69
negligible, 970–71

Viscous flows, 62–64, 68. See also
Drag; Drag coefficients

basic mechanisms, 379–80
boundary layer concepts,

1000–1006
Couette flow concepts, 960–63
Couette flow governing equations,

980–82
energy equation, 944–47
numerical solutions, 1064–77
over supersonic airfoils, 822–23
oveview, 926–27
qualitative aspects, 927–35
rotational nature, 174–75
separation, 389–94
shock wave-boundary layer

interactions, 669–71
similarity parameters, 948–52
skin-friction drag, 380–89
solution principles, 952–55
thermal conduction in, 935–40
turbulent boundary layer analysis,

1052–57
types of, 73
use of Navier-Stokes equations,

940–44
Volta Conference, 528
Volume flow, 182
Volume integrals, 118, 119

Volumetric heating, 946
von Helmholtz, Hermann, 435
von Kármán, Theodor, 298
Vortex breakdown, 485–86
Vortex filaments

applied to finite wings, 432–36
modeling as sheets, 333–35

Vortex flows, 264–67, 333–38
Vortex lattice method, 474
Vortex panel numerical method,

369–75
Vortex sheets

basic properties, 333–38
Kutta condition in terms of,

341–42
in vortex panel method, 369–70

Vortices
from aircraft wing tips, 14, 428,

429, 488–91
from delta wing leading edges,

476–87
in Prandtl’s lifting-line theory,

436–39
Vorticity

in boundary layers, 337
equations for, 169
relation to circulation, 177–78

V-2 rocket, 9

W
WAC Corporal rocket, 872
Wakes, 142
Wall boundary conditions, 241–42,

953–55
Wall temperature, 1000. See also

Temperature
Washin, 435
Washout, 435
Wave angle, 620
Wave drag, 29, 663. See also Drag

defined, 637
in supersonic versus subsonic

flows, 29
Waveriders

for inviscid, compressible flows,
908–21

Weak shock solutions, 627–28
Wedges

supersonic flow over, 634–38,
858

X-15 tail, 664–65
Wenham, Francis, 217, 488
Whitcomb, Richard T., 774, 801–2



1130 Index

Whittle, Frank, 739
Wind tunnels

as application of incompressible
flow in ducts, 217–20

dynamic similarity of flows in,
44–45, 46

supersonic, 534, 690–91, 718–23
Wing-body combinations, 513
Wing-body interaction, 513
Wing-flow method, 804–8
Wing loading, 49
Wings

airfoils vs., 427–28, 453–54
aspect ratio effects, 450–56
blended designs, 782–88
delta wing subsonic flows, 476–87
downwash and induced drag,

427–32
elliptical lift distributions, 442–47,

449–50
finite-wing theory development,

488–91
general lift distributions, 447–50

lift and drag at hypersonic speeds,
881–88

lifting-line theory overview,
436–42

lifting-surface theory, 469–74
modeling flows as vortex filaments,

432–36
numerical nonlinear lifting-line

analysis, 465–69
planform selection, 462–65
swept wing development, 792–801

Wingspan, Wright brothers’
discoveries, 8

Wing wires, 300–301
Work rates, 944–46
Wortmann airfoil, 1066, 1067
Wright brothers

airfoil development, 7–9, 406–7,
408

center of pressure calculations, 91,
92

initial flight, 206, 207
Wright Flyer, 445

X
X-43A hypersonic research vehicle,

105, 658
X-1 aircraft, 4
X-24C hypersonic test vehicle, 1068
X-15 hypersonic airplane, 638–39,

664–65, 668
X-43 hypersonic research vehicle,

871–72
XS-1 aircraft, 767

Y
Yeager, Charles, 740, 767–768, 811

Z
Zahm, Albert F., 205
Zero-drag paradox, 258
Zero-lift angle of attack

defined, 329
relation to camber, 402

Zero-lift drag coefficient
defined, 83, 515

Zero-mass synthetic jets, 1072


	Cover
	Copyright
	About the Author
	Contents
	Preface to the Sixth Edition
	PART 1: Fundamental Principles
	Chapter 1: Aerodynamics: Some Introductory Thoughts
	1.1 Importance of Aerodynamics: Historical Examples 
	1.2 Aerodynamics: Classification and Practical Objectives 
	1.3 Road Map for This Chapter 
	1.4 Some Fundamental Aerodynamic Variables 
	1.4.1 Units 

	1.5 Aerodynamic Forces and Moments 
	1.6 Center of Pressure 
	1.7 Dimensional Analysis: The Buckingham Pi Theorem 
	1.8 Flow Similarity 
	1.9 Fluid Statics: Buoyancy Force 
	1.10 Types of Flow 
	1.10.1 Continuum Versus Free Molecule Flow 
	1.10.2 Inviscid Versus Viscous Flow 
	1.10.3 Incompressible Versus Compressible Flows 
	1.10.4 Mach Number Regimes 

	1.11 Viscous Flow: Introduction to Boundary Layers 
	1.12 Applied Aerodynamics: The Aerodynamic Coefficients—Their Magnitudes and Variations
	1.13 Historical Note: The Illusive Center of Pressure 
	1.14 Historical Note: Aerodynamic Coefficients 
	1.15 Summary 
	1.16 Integrated Work Challenge: Forward-Facing Axial Aerodynamic Force on an Airfoil— Can It Happen and, If So, How?
	1.17 Problems 

	Chapter 2:Aerodynamics: Some Fundamental Principles and Equations 
	2.1 Introduction and Road Map 
	2.2 Review of Vector Relations 
	2.2.1 Some Vector Algebra 
	2.2.2 Typical Orthogonal Coordinate Systems 
	2.2.3 Scalar and Vector Fields 
	2.2.4 Scalar and Vector Products 
	2.2.5 Gradient of a Scalar Field 
	2.2.6 Divergence of a Vector Field 
	2.2.7 Curl of a Vector Field 
	2.2.8 Line Integrals 
	2.2.9 Surface Integrals 
	2.2.10 Volume Integrals 
	2.2.11 Relations Between Line, Surface, and Volume Integrals 
	2.2.12 Summary 

	2.3 Models of the Fluid: Control Volumes and Fluid Elements 
	2.3.1 Finite Control Volume Approach 
	2.3.2 Infinitesimal Fluid Element Approach 
	2.3.3 Molecular Approach 
	2.3.4 Physical Meaning of the Divergence of Velocity 
	2.3.5 Specification of the Flow Field 

	2.4 Continuity Equation 
	2.5 Momentum Equation 
	2.6 An Application of the Momentum Equation: Drag of a Two-Dimensional Body 
	2.6.1 Comment 

	2.7 Energy Equation 
	2.8 Interim Summary 
	2.9 Substantial Derivative 
	2.10 Fundamental Equations in Terms of the Substantial Derivative 
	2.11 Pathlines, Streamlines, and Streaklines of a Flow 
	2.12 Angular Velocity, Vorticity, and Strain 
	2.13 Circulation 
	2.14 Stream Function 
	2.15 Velocity Potential 
	2.16 Relationship Between the Stream Function and Velocity Potential 
	2.17 How Do We Solve the Equations? 
	2.17.1 Theoretical (Analytical) Solutions 
	2.17.2 Numerical Solutions—Computational Fluid Dynamics (CFD) 
	2.17.3 The Bigger Picture 

	2.18 Summary 
	2.19 Problems 


	PART 2: Inviscid, Incompressible Flow
	Chapter 3:Fundamentals of Inviscid, Incompressible Flow 
	3.1 Introduction and Road Map 
	3.2 Bernoulli's Equation 
	3.3 Incompressible Flow in a Duct: The Venturi and Low-Speed Wind Tunnel 
	3.4 Pitot Tube: Measurement of Airspeed 
	3.5 Pressure Coefficient 
	3.6 Condition on Velocity for Incompressible Flow 
	3.7 Governing Equation for Irrotational, Incompressible Flow: Laplace's Equation
	3.7.1 Infinity Boundary Conditions 
	3.7.2 Wall Boundary Conditions 

	3.8 Interim Summary 
	3.9 Uniform Flow: Our First Elementary Flow 
	3.10 Source Flow: Our Second Elementary Flow 
	3.11 Combination of a Uniform Flow with a Source and Sink 
	3.12 Doublet Flow: Our Third Elementary Flow 
	3.13 Nonlifting Flow over a Circular Cylinder 
	3.14 Vortex Flow: Our Fourth Elementary Flow 
	3.15 Lifting Flow over a Cylinder 
	3.16 The Kutta-Joukowski Theorem and the Generation of Lift 
	3.17 Nonlifting Flows over Arbitrary Bodies: The Numerical Source Panel Method 
	3.18 Applied Aerodynamics: The Flow over a Circular Cylinder—The Real Case 
	3.19 Historical Note: Bernoulli and Euler—The Origins of Theoretical Fluid Dynamics
	3.20 Historical Note: D'Alembert and His Paradox
	3.21 Summary 
	3.22 Integrated Work Challenge: Relation Between Aerodynamic Drag and the Loss of Total Pressure in the Flow Field
	3.23 Integrated Work Challenge: Conceptual Design of a Subsonic Wind Tunnel 
	3.24 Problems 

	Chapter 4:Incompressible Flow over Airfoils 
	4.1 Introduction 
	4.2 Airfoil Nomenclature 
	4.3 Airfoil Characteristics 
	4.4 Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils: The Vortex Sheet
	4.5 The Kutta Condition 
	4.5.1 Without Friction Could We Have Lift? 

	4.6 Kelvin's Circulation Theorem and the Starting Vortex 
	4.7 Classical Thin Airfoil Theory: The Symmetric Airfoil 
	4.8 The Cambered Airfoil 
	4.9 The Aerodynamic Center: Additional Considerations 
	4.10 Lifting Flows over Arbitrary Bodies: The Vortex Panel Numerical Method 
	4.11 Modern Low-Speed Airfoils 
	4.12 Viscous Flow: Airfoil Drag 
	4.12.1 Estimating Skin-Friction Drag: Laminar Flow 
	4.12.2 Estimating Skin-Friction Drag: Turbulent Flow 
	4.12.3 Transition 
	4.12.4 Flow Separation 
	4.12.5 Comment 

	4.13 Applied Aerodynamics: The Flow over an Airfoil—The Real Case 
	4.14 Historical Note: Early Airplane Design and the Role of Airfoil Thickness 
	4.15 Historical Note: Kutta, Joukowski, and the Circulation Theory of Lift 
	4.16 Summary 
	4.17 Integrated Work Challenge: Wall Effects on Measurements Made in Subsonic Wind Tunnels
	4.18 Problems 

	Chapter 5:Incompressible Flow over Finite Wings 
	5.1 Introduction: Downwash and Induced Drag 
	5.2 The Vortex Filament, the Biot-Savart Law, and Helmholtz's Theorems 
	5.3 Prandtl's Classical Lifting-Line Theory 
	5.3.1 Elliptical Lift Distribution 
	5.3.2 General Lift Distribution 
	5.3.3 Effect of Aspect Ratio 
	5.3.4 Physical Significance 

	5.4 A Numerical Nonlinear Lifting-Line Method 
	5.5 The Lifting-Surface Theory and the Vortex Lattice Numerical Method 
	5.6 Applied Aerodynamics: The Delta Wing 
	5.7 Historical Note: Lanchester and Prandtl—The Early Development of Finite-Wing Theory
	5.8 Historical Note: Prandtl—The Man 
	5.9 Summary 
	5.10 Problems 

	Chapter 6:Three-Dimensional Incompressible Flow 
	6.1 Introduction 
	6.2 Three-Dimensional Source 
	6.3 Three-Dimensional Doublet 
	6.4 Flow over a Sphere 
	6.4.1 Comment on the Three-Dimensional Relieving Effect 

	6.5 General Three-Dimensional Flows: Panel Techniques 
	6.6 Applied Aerodynamics: The Flow over a Sphere—The Real Case 
	6.7 Applied Aerodynamics: Airplane Lift and Drag 
	6.7.1 Airplane Lift 
	6.7.2 Airplane Drag 
	6.7.3 Application of Computational Fluid Dynamics for the Calculation of Lift and Drag

	6.8 Summary 
	6.9 Problems 


	PART 3:Inviscid, Compressible Flow 
	Chapter 7:Compressible Flow: Some Preliminary Aspects 
	7.1 Introduction 
	7.2 A Brief Review of Thermodynamics 
	7.2.1 Perfect Gas 
	7.2.2 Internal Energy and Enthalpy 
	7.2.3 First Law of Thermodynamics 
	7.2.4 Entropy and the Second Law of Thermodynamics 
	7.2.5 Isentropic Relations 

	7.3 Definition of Compressibility 
	7.4 Governing Equations for Inviscid, Compressible Flow 
	7.5 Definition of Total (Stagnation) Conditions 
	7.6 Some Aspects of Supersonic Flow: Shock Waves 
	7.7 Summary 
	7.8 Problems 

	Chapter 8: Normal Shock Waves and Related Topics
	8.1 Introduction 
	8.2 The Basic Normal Shock Equations 
	8.3 Speed of Sound 
	8.3.1 Comments 

	8.4 Special Forms of the Energy Equation 
	8.5 When Is a Flow Compressible? 
	8.6 Calculation of Normal Shock-Wave Properties 
	8.6.1 Comment on the Use of Tables to Solve Compressible Flow Problems 

	8.7 Measurement of Velocity in a Compressible Flow 
	8.7.1 Subsonic Compressible Flow 
	8.7.2 Supersonic Flow 

	8.8 Summary 
	8.9 Problems 

	Chapter 9:Oblique Shock and Expansion Waves 
	9.1 Introduction 
	9.2 Oblique Shock Relations 
	9.3 Supersonic Flow over Wedges and Cones 
	9.3.1 A Comment on Supersonic Lift and Drag Coefficients 

	9.4 Shock Interactions and Reflections 
	9.5 Detached Shock Wave in Front of a Blunt Body 
	9.5.1 Comment on the Flow Field Behind a Curved Shock Wave: Entropy Gradients and Vorticity

	9.6 Prandtl-Meyer Expansion Waves 
	9.7 Shock-Expansion Theory: Applications to Supersonic Airfoils 
	9.8 A Comment on Lift and Drag Coefficients 
	9.9 The X-15 and Its Wedge Tail 
	9.10 Viscous Flow: Shock-Wave/ Boundary-Layer Interaction 
	9.11 Historical Note: Ernst Mach—A Biographical Sketch 
	9.12 Summary 
	9.13 Integrated Work Challenge: Relation Between Supersonic Wave Drag and Entropy Increase—Is There a Relation?
	9.14 Integrated Work Challenge: The Sonic Boom 
	9.15 Problems 

	Chapter 10: Compressible Flow Through Nozzles, Diffusers, and Wind Tunnels
	10.1 Introduction 
	10.2 Governing Equations for Quasi-One-Dimensional Flow 
	10.3 Nozzle Flows 
	10.3.1 More on Mass Flow 

	10.4 Diffusers 
	10.5 Supersonic Wind Tunnels 
	10.6 Viscous Flow: Shock-Wave/Boundary-Layer Interaction Inside Nozzles 
	10.7 Summary 
	10.8 Integrated Work Challenge:Conceptual Design of a Supersonic Wind Tunnel 
	10.9 Problems 

	Chapter 11:Subsonic Compressible Flow over Airfoils: Linear Theory 
	11.1 Introduction 
	11.2 The Velocity Potential Equation 
	11.3 The Linearized Velocity Potential Equation 
	11.4 Prandtl-Glauert Compressibility Correction 
	11.5 Improved Compressibility Corrections 
	11.6 Critical Mach Number 
	11.6.1 A Comment on the Location of Minimum Pressure (Maximum Velocity) 

	11.7 Drag-Divergence Mach Number: The Sound Barrier 
	11.8 The Area Rule 
	11.9 The Supercritical Airfoil 
	11.10 CFD Applications: Transonic Airfoils and Wings 
	11.11 Applied Aerodynamics: The Blended Wing Body 
	11.12 Historical Note: High-SpeedAirfoils—Early Research and Development 
	11.13 Historical Note: The Origin of the Swept-Wing Concept 
	11.14 Historical Note: Richard T.Whitcomb—Architect of the Area Rule and the Supercritical Wing 
	11.15 Summary 
	11.16 Integrated Work Challenge: Transonic Testing by the Wing-Flow Method 
	11.17 Problems 

	Chapter 12:Linearized Supersonic Flow 
	12.1 Introduction 
	12.2 Derivation of the Linearized Supersonic Pressure Coefficient Formula 
	12.3 Application to Supersonic Airfoils 
	12.4 Viscous Flow: Supersonic Airfoil Drag 
	12.5 Summary 
	12.6 Problems 

	Chapter 13:Introduction to Numerical Techniques for Nonlinear Supersonic Flow 
	13.1 Introduction: Philosophy of Computational Fluid Dynamics 
	13.2 Elements of the Method of Characteristics 
	13.2.1 Internal Points 
	13.2.2 Wall Points 

	13.3 Supersonic Nozzle Design 
	13.4 Elements of Finite-Difference Methods 
	13.4.1 Predictor Step 
	13.4.2 Corrector Step 

	13.5 The Time-Dependent Technique: Application to Supersonic Blunt Bodies
	13.5.1 Predictor Step 
	13.5.2 Corrector Step 

	13.6 Flow over Cones 
	13.6.1 Physical Aspects of Conical Flow 
	13.6.2 Quantitative Formulation 
	13.6.3 Numerical Procedure 
	13.6.4 Physical Aspects of Supersonic Flow over Cones 

	13.7 Summary 
	13.8 Problem 

	Chapter 14:Elements of Hypersonic Flow 
	14.1 Introduction 
	14.2 Qualitative Aspects of Hypersonic Flow 
	14.3 Newtonian Theory 
	14.4 The Lift and Drag of Wings at Hypersonic Speeds: Newtonian Results for a Flat Plate at Angle of Attack
	14.4.1 Accuracy Considerations 

	14.5 Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory 
	14.6 Mach Number Independence 
	14.7 Hypersonics and Computational Fluid Dynamics 
	14.8 Hypersonic Viscous Flow: Aerodynamic Heating 
	14.8.1 Aerodynamic Heating and Hypersonic Flow—The Connection 
	14.8.2 Blunt Versus Slender Bodies in Hypersonic Flow 
	14.8.3 Aerodynamic Heating to a Blunt Body 

	14.9 Applied Hypersonic Aerodynamics: Hypersonic Waveriders 
	14.9.1 Viscous-Optimized Waveriders 

	14.10 Summary 
	14.11 Problems 


	PART 4:Viscous Flow 
	Chapter 15:Introduction to the Fundamental Principles and Equations of Viscous Flow 
	15.1 Introduction 
	15.2 Qualitative Aspects of Viscous Flow 
	15.3 Viscosity and Thermal Conduction 
	15.4 The Navier-Stokes Equations 
	15.5 The Viscous Flow Energy Equation 
	15.6 Similarity Parameters 
	15.7 Solutions of Viscous Flows: A Preliminary Discussion 
	15.8 Summary 
	15.9 Problems 

	Chapter 16:A Special Case: Couette Flow 
	16.1 Introduction 
	16.2 Couette Flow: General Discussion 
	16.3 Incompressible (Constant Property) Couette Flow 
	16.3.1 Negligible Viscous Dissipation 
	16.3.2 Equal Wall Temperatures 
	16.3.3 Adiabatic Wall Conditions (Adiabatic Wall Temperature) 
	16.3.4 Recovery Factor 
	16.3.5 Reynolds Analogy 
	16.3.6 Interim Summary 

	16.4 Compressible Couette Flow 
	16.4.1 Shooting Method 
	16.4.2 Time-Dependent Finite-Difference Method 
	16.4.3 Results for Compressible Couette Flow 
	16.4.4 Some Analytical Considerations 

	16.5 Summary 

	Chapter 17:Introduction to Boundary Layers 
	17.1 Introduction 
	17.2 Boundary-Layer Properties 
	17.3 The Boundary-Layer Equations 
	17.4 How Do We Solve the Boundary-Layer Equations? 
	17.5 Summary 

	Chapter 18:Laminar Boundary Layers 
	18.1 Introduction 
	18.2 Incompressible Flow over a Flat Plate: The Blasius Solution 
	18.3 Compressible Flow over a Flat Plate 
	18.3.1 A Comment on Drag Variation with Velocity 

	18.4 The Reference Temperature Method 
	18.4.1 Recent Advances: The Meador-SmartReference Temperature Method 

	18.5 Stagnation Point Aerodynamic Heating 
	18.6 Boundary Layers over Arbitrary Bodies: Finite-Difference Solution 
	18.6.1 Finite-Difference Method 

	18.7 Summary 
	18.8 Problems 

	Chapter 19:Turbulent Boundary Layers 
	19.1 Introduction 
	19.2 Results for Turbulent Boundary Layers on a Flat Plate 
	19.2.1 Reference Temperature Method for Turbulent Flow 
	19.2.2 The Meador-Smart Reference Temperature Method for Turbulent Flow
	19.2.3 Prediction of Airfoil Drag 

	19.3 Turbulence Modeling 
	19.3.1 The Baldwin-Lomax Model 

	19.4 Final Comments 
	19.5 Summary 
	19.6 Problems 

	Chapter 20:Navier-Stokes Solutions: Some Examples 
	20.1 Introduction 
	20.2 The Approach 
	20.3 Examples of Some Solutions 
	20.3.1 Flow over a Rearward-Facing Step 
	20.3.2 Flow over an Airfoil 
	20.3.3 Flow over a Complete Airplane 
	20.3.4 Shock-Wave/Boundary-Layer Interaction 
	20.3.5 Flow over an Airfoil with a Protuberance 

	20.4 The Issue of Accuracy for the Prediction of Skin Friction Drag 
	20.5 Summary 


	Appendix A: Isentropic Flow Properties
	Appendix B: Normal Shock Properties
	Appendix C:Prandtl-Meyer Function and Mach Angle 
	Appendix D:Standard Atmosphere, SI Units 
	Appendix E:Standard Atmosphere, English Engineering Units 
	References 
	Index 
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


		2016-11-01T19:59:55+0000
	Preflight Ticket Signature




